JPS59193426A - Driving method of optical modulating element - Google Patents

Driving method of optical modulating element

Info

Publication number
JPS59193426A
JPS59193426A JP6865983A JP6865983A JPS59193426A JP S59193426 A JPS59193426 A JP S59193426A JP 6865983 A JP6865983 A JP 6865983A JP 6865983 A JP6865983 A JP 6865983A JP S59193426 A JPS59193426 A JP S59193426A
Authority
JP
Japan
Prior art keywords
liquid crystal
signal
optical modulation
electrode group
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6865983A
Other languages
Japanese (ja)
Other versions
JPS6245535B2 (en
Inventor
Junichiro Kanbe
純一郎 神辺
Kazuharu Katagiri
片桐 一春
Shuzo Kaneko
金子 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP6865983A priority Critical patent/JPS59193426A/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to US06/598,800 priority patent/US4655561A/en
Priority to DE3448307A priority patent/DE3448307C2/de
Priority to DE3448305A priority patent/DE3448305C2/de
Priority to DE3448303A priority patent/DE3448303C2/de
Priority to DE19843414704 priority patent/DE3414704A1/en
Priority to DE3448304A priority patent/DE3448304C2/de
Priority to GB08410068A priority patent/GB2141279B/en
Priority to DE3448306A priority patent/DE3448306C2/de
Priority to FR8406275A priority patent/FR2544884B1/en
Publication of JPS59193426A publication Critical patent/JPS59193426A/en
Priority to GB08619691A priority patent/GB2180384B/en
Priority to GB08619692A priority patent/GB2180385B/en
Priority to GB08619831A priority patent/GB2180386B/en
Priority to GB08712392A priority patent/GB2190530B/en
Priority to GB08712391A priority patent/GB2191623B/en
Publication of JPS6245535B2 publication Critical patent/JPS6245535B2/ja
Priority to US07/139,162 priority patent/US5448383A/en
Priority to US07/557,643 priority patent/US5418634A/en
Priority to SG5291A priority patent/SG5291G/en
Priority to SG6491A priority patent/SG6491G/en
Priority to SG6591A priority patent/SG6591G/en
Priority to SG6191A priority patent/SG6191G/en
Priority to SG10391A priority patent/SG10391G/en
Priority to SG116/91A priority patent/SG11691G/en
Priority to HK708/91A priority patent/HK70891A/en
Priority to HK715/91A priority patent/HK71591A/en
Priority to HK705/91A priority patent/HK70591A/en
Priority to HK707/91A priority patent/HK70791A/en
Priority to HK706/91A priority patent/HK70691A/en
Priority to HK709/91A priority patent/HK70991A/en
Priority to US08/440,321 priority patent/US5812108A/en
Priority to US08/444,899 priority patent/US5548303A/en
Priority to US08/444,898 priority patent/US5825390A/en
Priority to US08/444,746 priority patent/US5592192A/en
Priority to US08/465,225 priority patent/US5565884A/en
Priority to US08/462,978 priority patent/US5790449A/en
Priority to US08/463,780 priority patent/US5621427A/en
Priority to US08/463,781 priority patent/US5841417A/en
Priority to US08/462,974 priority patent/US5886680A/en
Priority to US08/465,058 priority patent/US5696525A/en
Priority to US08/465,357 priority patent/US5696526A/en
Priority to US08/465,090 priority patent/US5831587A/en
Priority to US08/863,598 priority patent/US6091388A/en
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To obtain a driving method having a high speed responsiveness of a large-sized optical modulating element having a picture element of a high density by applying a prescribed voltage between a scanning electrode group and a signal electrode group which are selected, and both electrode groups which are not selected. CONSTITUTION:Alternating voltage which becomes V and -V at a phase (time) t1 and at a phase t2, respectively is applied to a selected scanning electrode 12 (s) of a bistable liquid crystal cell 11 containing a ferroelectric liquid crystal, and an electric signal of an electrode 12 (n) except said electrode is ''0''. On the other hand, an electric signal applied to a selected signal electrode 13 (s) is V, and voltage of -V is applied to an unselected signal electrode 13 (n). Threshold voltages of the first and the second stable states of the liquid crystal cell 11 are denoted as Vth1 and Vth2, respectively, and the voltage V is set to a desired value for satisfying (V<Vth1<2V), and (-V>-Vth2>-2V). Accordingly, an electric signal applied to the scanning electrode 12 is apt to cause a reversible variation of the first stable state (bright) and the second stable state (dark), therefore, a driving having a high speed responsiveness is executed.

Description

【発明の詳細な説明】 本発明は、液晶素子などの光学変調素子の駆動法に係シ
、詳しくは表示素子や光シャックーアレイ等の光学変調
素子に用いる液晶素子の時分割駆動方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving an optical modulation element such as a liquid crystal element, and more particularly to a time-division driving method for a liquid crystal element used in an optical modulation element such as a display element or an optical shuck array.

従来より、走査電極群と信号電極群をマトリクス状に構
成し、その電極間に液晶化合物を充填し、多数の画素を
形成して画像或いは情報の表示を行う液晶表示素子は、
よく知られている。
Conventionally, liquid crystal display elements display images or information by configuring a group of scanning electrodes and a group of signal electrodes in a matrix, filling a liquid crystal compound between the electrodes, and forming a large number of pixels.
well known.

仁の表示素子の駆動法としては、走査電極群に順次周期
的にアドレス信号を選択印加し、信号電極群には所定の
情報信号をアドレス信号と同期させて並列的に選択印加
する時分割駆動が採用されているが、この表示素子及び
その駆動法には以下に述べる如き致命的とも言える大き
な欠点を有していた。
The driving method for Jin's display elements is time-division driving, in which an address signal is selectively applied periodically to a group of scanning electrodes, and a predetermined information signal is selectively applied in parallel to a group of signal electrodes in synchronization with the address signal. However, this display element and its driving method had major and fatal drawbacks as described below.

即ち、i嵩密度を高く、或いは画面を大きくするのが難
しいことである。従来の液晶の中で応答速度が比較的高
く、しかも消費電力が小さいことから、表示素子として
実用に供されているのは殆んどが、例えばM、5cha
dtとW、Hθlf ri ch著 ”  Appli
ed  Physics  Letters  ″ V
o、  18.No、4(1971,2,15)、 p
、 127〜12BのVoltage −DePenc
Lent  0ptical  Activity  
of  a  TwisteaNematic Liq
vid Crystal” に示されたTN(twis
ted nematic )型の液晶を用いたものであ
り、この型の液晶は無電界状態で正の誘電異方性をもク
ネマチック液晶の分子が液晶層厚方向で捩れたff4造
(ヘリカル構造)を形成し、両電極面でこの液晶の分子
が並行例配列した構造を形成している。一方、電界印加
状態では、正の誘電異方性をもつネマチック液晶が電界
方向に配列し、この結果光調変調を起すことができる。
That is, it is difficult to increase the i bulk density or increase the screen size. Among conventional liquid crystals, most of them are practically used as display elements because they have a relatively high response speed and low power consumption, for example, M, 5ch.
Written by dt and W, Hθlf rich ” Appli
ed Physics Letters ″V
o, 18. No. 4 (1971, 2, 15), p.
, 127~12B Voltage-DePenc
Lent 0ptical Activity
of a TwisteaNematic Liq
vid Crystal” TN (twis
This type of liquid crystal has positive dielectric anisotropy in the absence of an electric field and forms an FF4 structure (helical structure) in which the molecules of the cnematic liquid crystal are twisted in the thickness direction of the liquid crystal layer. However, a structure is formed in which the liquid crystal molecules are arranged in parallel on both electrode surfaces. On the other hand, when an electric field is applied, nematic liquid crystals with positive dielectric anisotropy are aligned in the direction of the electric field, resulting in optical modulation.

この型の液晶を用いてマトリクス電極構造によって表示
素子を構成した場合、走査電極と信号電極が共に選択さ
れる領域(選択点)には、液晶分子を電極面に垂直に配
列させるに要する閾値以上の電圧が印加され、走査電極
と信号電極が共に選択されない領域(非選択点)には電
圧は印加されず、したがって液晶分子は電極面に対して
並行な安定配列を保っている。このような液晶セルの上
下に互いにクロスニコル関係にある直線偏光子を配置す
ることにょシ、選択点では光が透過せず、非選択点では
光が透過するため、画像素子とすることが可能となる。
When a display element is constructed with a matrix electrode structure using this type of liquid crystal, the area where both the scanning electrode and the signal electrode are selected (selected point) has a threshold value greater than or equal to the threshold required to align the liquid crystal molecules perpendicular to the electrode surface. A voltage is applied to the region where neither the scanning electrode nor the signal electrode is selected (unselected point), and therefore the liquid crystal molecules maintain a stable alignment parallel to the electrode plane. By arranging linear polarizers above and below such a liquid crystal cell in a cross-Nicol relationship with each other, light does not pass through selected points, but light passes through non-selected points, making it possible to use it as an image element. becomes.

然し乍ら、マトリクス電極構造を構成した場合には、走
査電極が選択され、信号電極が選択されない領域或いは
走査電極が選択されず、信号電極が選択される領域(所
謂6半選択点”)にも有限の電界がかかってしまう。選
択点にがかる電圧と、半選択点にかかる電圧の差が充分
に大きく、液晶分子を電界に垂直に配列させるに要する
電圧閾値がこの中間の電圧値に設定されるならば、表示
素子は正常に動作するわけであるが、走査線数(N)を
増やして行った場合、画面全体(1フレーム)を走査す
る間に−りの選択点に有効な電界がかかつている時間(
duty比)か1の割合で減少してしまう。このために
、くシ返し走査を行った場合の選択点と非選択点にかか
る実効値としての電圧差は走査線数が増えれば増える程
小さくな9、結果的には画像コントラストの低下やクロ
ストークが避は難い欠点となっている。このような現象
は、双安定性を有さない液晶(電極面に対し、液晶分子
が水平に配向しているのが安定状態であシ、電界が有効
に印加されている間のみ垂直に配向する)を時間的蓄積
効果を利用して駆動する(即ち、繰り返し走査)ときに
生ずる本質的には避は難い問題点である。この点を改良
するために、電圧平均化法、2周波駆動法や多重マトリ
クス法等が既に提案されているが、いずれの方法でも不
充分であり、表示素子の大画面化や高密度化け、走査線
数が充分に増やせないことによって頭打ちになっている
のが現状である。
However, when a matrix electrode structure is configured, there is a limited number of areas where scan electrodes are selected and signal electrodes are not selected, or areas where scan electrodes are not selected and signal electrodes are selected (so-called 6 half-selected points). The difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large, and the voltage threshold required to align the liquid crystal molecules perpendicular to the electric field is set to an intermediate voltage value. If so, the display element will operate normally, but if the number of scanning lines (N) is increased, an effective electric field will be generated at each selected point while scanning the entire screen (one frame). Once upon a time (
duty ratio) or 1. For this reason, the effective voltage difference between selected points and non-selected points when repeat scanning is performed becomes smaller as the number of scanning lines increases9, resulting in a decrease in image contrast and Talk is an unavoidable drawback. This phenomenon is caused by liquid crystals that do not have bistability (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). This is an essentially unavoidable problem that arises when driving (i.e., repeated scanning) using the temporal accumulation effect. In order to improve this point, voltage averaging methods, dual frequency driving methods, multiple matrix methods, etc. have already been proposed, but all of these methods are insufficient, and as the screen size and density of display elements increases, Currently, the number of scanning lines has reached a plateau because the number of scanning lines cannot be increased sufficiently.

一方、プリンタ分野を眺めて見るに、電気信号を入力と
してハードコピーを得る手段として、画素密度の点から
もスピードの点からも電気画像信号を光の形で電子写真
感光体に与えるレーザービームブリンク(LBP)が現
在量も優れている。ところがLBPには、 1 プリンタとしての装置が大型になる:2 ポリゴン
スキャナの様な高速の駆動部分があシ騒音が発生し、ま
た厳しい機械的精度が要求される;など の欠点がある。この様な欠点を解消すべく電気信号を光
信号に変換する素子として、液晶シャッターアレイが提
案されている。ところが、液晶シャック−アレイを用い
て画素信号を与える場合、たとえば200朋の長さの中
に画素信号を10dOt/rmの割合で書き込むために
は4000個の信号発生部を有していなければならず、
それぞれに独立した信号を与えるためには、元来それぞ
れの信号発生部全てに信号を送るリード線を配線しなけ
ればならず、製作上困難であった。
On the other hand, looking at the field of printers, laser beam blinking is a means of obtaining hard copies using electrical signals as input, and is effective in terms of both pixel density and speed. (LBP) is also excellent in current quantity. However, LBP has the following disadvantages: 1. The device used as a printer is large; 2. High-speed driving parts such as polygon scanners generate abrasion noise, and strict mechanical precision is required. In order to overcome these drawbacks, a liquid crystal shutter array has been proposed as an element that converts electrical signals into optical signals. However, when providing pixel signals using a liquid crystal shack array, for example, in order to write pixel signals at a rate of 10 dOt/rm within a length of 200 mm, it is necessary to have 4000 signal generators. figure,
In order to provide independent signals to each, it was originally necessary to wire lead wires to send signals to all of the signal generating parts, which was difficult to manufacture.

そのため、I L工1 (ライン)分の画素信号を数行
に分割された信号発生部により行うことに時分割して与
える試みがなされている。
Therefore, an attempt has been made to time-divide and provide pixel signals for 1 (line) of I L using signal generators divided into several lines.

この様にすることにより、信号を与える電極を複数の信
号発生部に対して共通にすることができ、実質配線を大
幅に軽減することができるからである。ところが、この
場合通常行われているように双安定性を有さない液晶を
用いて行数(N)を増やして行くと、信号ONの時間が
実質的に互となり、感光体上で得られる光量が減少して
しまったり、クロストークの問題が生ずるという難点が
ある。
By doing so, it is possible to use a common electrode for applying a signal to a plurality of signal generating sections, and the amount of wiring can be substantially reduced. However, in this case, if the number of lines (N) is increased using a liquid crystal that does not have bistability, as is usually done, the signal ON times become substantially equal, and the signals obtained on the photoreceptor are There are disadvantages in that the amount of light decreases and crosstalk problems occur.

本発明の目的は、前述したような従来の液晶表示素子或
いは液晶光シャッターにおける問題点を悉く解決した新
規な光学変調素子、特に液晶素子駆動法を提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel optical modulation element, particularly a method for driving a liquid crystal element, which solves all the problems of conventional liquid crystal display elements or liquid crystal optical shutters as described above.

本発明の別の目的は、高速応答性を有する液晶素子の、
駆動法を提供することにある。
Another object of the present invention is to provide a liquid crystal element having high-speed response.
The objective is to provide a driving method.

本発明の他の目的は、高密度の画素を有する液晶素子の
駆動法を提供することKある。
Another object of the present invention is to provide a method for driving a liquid crystal device having a high density of pixels.

さらに本発明の仙の目的は、クロストークを発生しない
液晶素子の、駆動法を提供することにある。
A further object of the present invention is to provide a method for driving a liquid crystal element that does not generate crosstalk.

さらに、本発明の他の目的は、電界に対し双安定性を有
する液晶、特に強誘電性を有するカイラルスメクテイッ
クC相又はH相の液晶を用いた液晶素子の新規な駆動法
を提供することにある、 さらに、本発明の・他の目的は、高密度の画素と大面積
の両面を有する液晶素子に適した新規な駆動法を提供す
ることにある。
Furthermore, another object of the present invention is to provide a novel method for driving a liquid crystal device using a liquid crystal that is bistable with respect to an electric field, particularly a chiral smectic C-phase or H-phase liquid crystal that has ferroelectricity. In particular, another object of the present invention is to provide a novel driving method suitable for a liquid crystal device having a high density of pixels and a large surface area.

すなわち、本発明のかかる目的は、走査電極群と信号電
極群を有し、該走査電極群と信号室%、群の間の電界に
対して双安定性を有する光学変調物質(例えば液晶)を
配置した構造を有する液晶素子などの光学変調素子の駆
動法において、前記走査電極群の選択された走査電極と
前記信号電極群の選択された信号電極の間で前記双安定
性を有する液晶が第1の安定状態(一方の光学的安定状
態)に配向する電圧を印加し、且つ前記走査電極と前記
信号電極群の選択されない信号電極の間で前記双安定性
を有する液晶が第2の安定状態(他方の光学的安定状態
)に配向する電圧を印加するとともに、前記走査電極群
の選択されない走査電極と前記信号電椿群の間で前記双
安定性を有する液晶の閾値電圧−vth2(第2安定状
態の閾値な圧を言う)とVthl(第1安定状態の閾値
電圧を言う)の間の値に設定した電圧を印加する光学7
に調累子の駆動法によって達成される。
That is, the object of the present invention is to provide an optical modulation material (for example, liquid crystal) having a scanning electrode group and a signal electrode group, and having bistable properties with respect to an electric field between the scanning electrode group and the signal chamber. In a method for driving an optical modulation element such as a liquid crystal element having a structure in which the bistable liquid crystal is A voltage is applied to align the liquid crystal in one stable state (one optically stable state), and the bistable liquid crystal is brought into a second stable state between the scanning electrode and the unselected signal electrode of the signal electrode group. (the other optically stable state), and at the same time, the threshold voltage -vth2 (second An optical device 7 that applies a voltage set to a value between Vthl (which refers to the threshold voltage in a stable state) and Vthl (which refers to a threshold voltage in a first stable state)
This is achieved by the driving method of the tuner.

本発明の好ましい具体例では、走査信号に基すいて順次
選択される走査電極群と該走査?lz極群に対向し所定
の情報信号に基ずいて選択され液晶素子の選択された走
査電極には互いに電圧の異なる位相t1とt2を有する
電気信号を与え且つ信号電極群には所定の1n報の有、
無に応じてIh圧の異なる電気信号を与えることKより
、上記選択された走査電極線上の情報信号有の部分に於
てけ、位相1.(12)で上記液晶に対して第を与える
逆方向の電界を付与することによって液晶素子を駆動す
ることができる。その具体的な例は第1図に示されるが
、詳細は後程説明する。
In a preferred embodiment of the present invention, the scanning electrode groups are sequentially selected based on the scanning signal and the scanning electrode group is sequentially selected based on the scanning signal. An electrical signal having phases t1 and t2 with different voltages is applied to the selected scanning electrode of the liquid crystal element facing the lz pole group and selected based on a predetermined information signal, and a predetermined 1n signal is applied to the signal electrode group. There is,
By applying electrical signals with different Ih pressures depending on whether the information signal is present or not, the phase 1. In (12), the liquid crystal element can be driven by applying an electric field in the opposite direction to the liquid crystal. A specific example thereof is shown in FIG. 1, and details will be explained later.

本発明の駆動法で用いる光学変調物質は、電界に対して
第1の光学的安定状態と第2の光学的安定状態からなる
双安定状態を有しており、特に電界に対して前述の如き
双安定性を有する液晶が用いられる。
The optical modulation material used in the driving method of the present invention has a bistable state consisting of a first optically stable state and a second optically stable state with respect to an electric field, and in particular has a bistable state with respect to an electric field as described above. A liquid crystal with bistability is used.

本発明のPIA m法で用いることができる双安定性を
泪する液晶としては、強誘電性を有するカイラルスメク
テインク液晶が最も好ましく、そのうち力イラルスメク
ティックC相(Bmc勺又はH相(Sm)(*)の液晶
が適している。この強誘電性液晶については、LE J
OURNAL DE PHMS工QUKTJKTTER
8” 36  (L−69) 1975 、  「Fe
rroelectricLiquid、Crystal
Il]J  ;  ”  Applied Physi
cs Letters”56  (11)19130 
 「Submicro 5econd B15tabl
eElectrooptic  Switching 
in Liquid Crystalθ」;1固体物理
” l6(141) 1981 「液晶」等に記載され
て≠送おシ、本発明ではこれらに開示された強誘電性液
晶を用いることができる。
As a liquid crystal exhibiting bistability that can be used in the PIA m method of the present invention, a chiral smectic liquid crystal having ferroelectricity is most preferable, and chiral smectic C phase (Bmc or H phase (Sm)) is most preferable. (*) liquid crystal is suitable.For this ferroelectric liquid crystal, please refer to LE J
OURNAL DE PHMS ENGINEERING QUKTJKTTER
8” 36 (L-69) 1975, “Fe
rroelectricLiquid, Crystal
Il]J; ”Applied Physi
cs Letters”56 (11)19130
"Submicro 5econd B15table
eElectrooptic Switching
In Liquid Crystal θ''; 1 Solid State Physics'' 16 (141) 1981 ``Liquid Crystals'', etc., and the present invention can use the ferroelectric liquid crystals disclosed in these publications.

第2図は、強誘電性液晶セルの例を模式的に描いたもの
である。21と21′は、工n203.SnO2やIT
O(工ndium−Tin 0xide )等の透明電
極がコートされた基板(ガラス板)であシ、その間にt
何22がガラス面に垂直になるよう配向したSmC*相
又はSm H*相の液晶が対人されている。
FIG. 2 schematically depicts an example of a ferroelectric liquid crystal cell. 21 and 21' are engineering n203. SnO2 and IT
A substrate (glass plate) coated with a transparent electrode such as O (ndium-tin oxide), etc.
A liquid crystal of an SmC* phase or an SmH* phase, in which the liquid crystal layer 22 is oriented perpendicular to the glass surface, is used.

太線で示した線23が液晶分子を表わしており、この液
晶分子23は、その分子に直交した方向工 に双極子モーメン) (P、) 24を有している0基
板21と21′上の電極間に一定の閾値以上の電圧を印
加すると、液晶分子23のらせん構造が工 はどけ、双極子モーメント(P、) 24はすべて電界
方向に向くよう、液晶分子23け配向方向を変えること
ができる。液晶分子23は細長い形状を有しておシ、そ
の長軸方向と短軸方向で屈折率異方性を示し、従って例
えばガラス面の上下に互いにクロスニコルの偏光子を置
けば、電圧印加極性によって光学特性が変わる液晶光学
変調素子となることは、容易に理解される。さらに液晶
セルの厚さを充分に薄くした場合(例えば1μ)には、
第6図に示すように電界を印加していない状態でも液晶
分子のらせん構造はほどけ、その双極子モーメン)P又
はP′は上向き(64)又は下向き(34つのどちらか
の状態をとる。
A thick line 23 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (P,) 24 in the direction perpendicular to the molecule on the substrates 21 and 21'. When a voltage higher than a certain threshold is applied between the electrodes, the helical structure of the liquid crystal molecules 23 is broken and the alignment direction of the liquid crystal molecules 23 can be changed so that all dipole moments (P,) 24 are oriented in the direction of the electric field. can. The liquid crystal molecules 23 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and short axis direction. Therefore, for example, if crossed Nicol polarizers are placed above and below the glass surface, the voltage application polarity can be changed. It is easily understood that the liquid crystal optical modulation element has optical characteristics that change depending on the amount of the liquid crystal. Furthermore, when the thickness of the liquid crystal cell is made sufficiently thin (for example, 1μ),
As shown in FIG. 6, even when no electric field is applied, the helical structure of the liquid crystal molecules unwinds, and the dipole moment) P or P' assumes either an upward (64) or downward (34) state.

このようなセルに第3図に示す如く一定の閾値以上の極
性の異る電界E又はE′を付与すると、双極子モーメン
トは電界E又はE′の電界ベルクトルに対応して上向き
34又は下向き34′と向きを変え、それに応じて液晶
分子は第1の安定状態33かあるいけ第2の安定状態3
6′の倒れか1方に配向する。
When an electric field E or E' with a different polarity above a certain threshold value is applied to such a cell as shown in FIG. ', and the liquid crystal molecules change direction accordingly, either in the first stable state 33 or in the second stable state 3.
6' is tilted or oriented in one direction.

このような強誘電性液晶を光学変調素子として用いるこ
との利点は2つある。第1に、応答速度が極めて速いこ
と、第2に液晶分子の配向が双安定性を有することであ
る。第2の点を例えば第3図によって説明すると、電界
Eを印加すると液晶分子は第1の安定状態33に配向す
るが、この状態は電界を切っても安定である。
There are two advantages to using such a ferroelectric liquid crystal as an optical modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has bistability. To explain the second point with reference to FIG. 3, for example, when the electric field E is applied, the liquid crystal molecules are oriented in a first stable state 33, and this state remains stable even when the electric field is turned off.

又、逆向きの電界E′を印加すると、液晶分子は第2の
安定状態33′に配向してその分子の向きに変えるが、
やは、!7電界を切ってもこの状態に留っている。又、
与える電界Eが一定の閾値を越えない限り、それぞれの
配向状態にやはシ維持されている。このような応答速度
の速さと、双安定性が有効に実現されるにはセルとして
は出来るだけ薄い方が好ましく、一般的には0.5μ〜
21〕μ、特に1μ〜5μが適している。この種の強誘
電性液晶を用いたマトリクス電極構造を有する液晶−電
気光学装置は、例えばクラークとラガバルにより、米国
特許第4’567924号公報で提案されている。
Moreover, when an electric field E' in the opposite direction is applied, the liquid crystal molecules are aligned to the second stable state 33' and the orientation of the molecules is changed.
Yay! 7 It remains in this state even if the electric field is turned off. or,
As long as the applied electric field E does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable for the cell to be as thin as possible, and generally from 0.5μ to
21]μ, especially 1μ to 5μ is suitable. A liquid crystal-electro-optical device having a matrix electrode structure using this type of ferroelectric liquid crystal has been proposed, for example, by Clark and Ragaval in US Pat. No. 4,567,924.

本発明の駆動法の好ましい具体例を第1図に示す。A preferred example of the driving method of the present invention is shown in FIG.

第1図fA+ −(a) I−t、中間に強誘電性液晶
化合物が挾まれたマトリクス電極構造を有するセル11
の模式図である。12は走査電極群であυ、13は信号
1E極群である。第1図(Al−(1))と(勺−(c
)はそれぞれ選択された走査電極12(S)に与えられ
る電気信号とそれ以外の走査電極(選択されない走査電
極)12(n)に与えられる電気信号を示し、第1図(
勺−(dJと(A) −(e)はそれぞれ選択された信
号電極13(りに与えられる電気信号と選択されない信
号電極13 (n)に与えられる電気信号を表わす。第
1図(A) −(b)〜(勺−(e)それぞれ横軸が時
間を、縦軸が電圧を表す。例えば、動画を表示するよう
な場合には、走査電極群12は逐次、周期的に選択され
る。今、双安定性を有する液晶セルの第1の安定状態を
寿えるためのしく1値電圧をv thlとし、第2の安
定状態を与えるためのν、り値電圧を−v th2とす
ると、選択された走査電極12t8)に与えられる電気
信号は第1図(A)−(b)に示される如く位相(時間
)t、では、■を、位相(時間)t2では−Vとなるよ
うな交番する電圧である。又、それ以外の走査電極12
(n)は、第1図(勺−(C)に示す如くアース状態と
なっており、電気信号Qである。一方、選択された信号
電極13 is)に与えられる電気信号は第1図(A)
−(d)に示される如ぐVであり、又選択されない信号
電極13(n)に与えられる電気信号は第1図(A)−
(θ)に示される如(−Vである。以上に於て、電圧値
VはV<vthl< 2V ト−V > −Vth2>
 −2Vを満足する所望の値に設定される。このような
電気信号が寿えられたときの各画素に印加される電圧波
形を第1図(B)に示す。第1図(B)の(B)−(a
)、(B)−(b)、(B)−(C1と(II−(C1
)はそれぞれ第1図(A)中の画素A、B、CとDは対
応している。すなわち、第1図(Blによシ明らかな如
く、選択された走査線上にある画素Aでは位相t2に於
て閾値Vth、を越える電圧2Vが印加される。又、同
一走査線上に存在する画素Bでは閾値−vth 2を越
える電圧−2■が印加される。従って、選択された走査
電極線上に於て信号電極が選択されたか否かに応じて、
選択された場合には、液晶分子は第1の安定状態に配向
を揃え、選択されない場合には第2の安定状態に配向を
揃える。
Figure 1 fA+-(a) I-t, cell 11 having a matrix electrode structure with a ferroelectric liquid crystal compound sandwiched between them.
FIG. 12 is a scanning electrode group υ, and 13 is a signal 1E electrode group. Figure 1 (Al-(1)) and (Al-(c)
) indicate the electrical signals given to the selected scanning electrode 12(S) and the electrical signals given to the other scanning electrodes (unselected scanning electrodes) 12(n), respectively, and FIG.
庺-(dJ and (A)-(e) represent the electric signal applied to the selected signal electrode 13 (n) and the electric signal applied to the unselected signal electrode 13 (n), respectively. -(b) to (e) The horizontal axis represents time and the vertical axis represents voltage. For example, when displaying a moving image, the scanning electrode group 12 is selected sequentially and periodically. .Now, if we let v thl be the primary voltage required to maintain the first stable state of a liquid crystal cell with bistability, and −v th2 be the value ν and value voltage needed to provide the second stable state. , the electric signal given to the selected scanning electrode 12t8) becomes -V at phase (time) t, and -V at phase (time) t2, as shown in FIGS. 1(A)-(b). This is an alternating voltage.Also, other scanning electrodes 12
(n) is in a grounded state as shown in FIG. A)
-V as shown in (d), and the electric signal given to the unselected signal electrode 13(n) is as shown in Fig. 1(A)-
As shown in (θ) (-V. In the above, the voltage value V is V<vthl<2V t-V>-Vth2>
It is set to a desired value that satisfies -2V. FIG. 1B shows a voltage waveform applied to each pixel when such an electric signal is used. (B)-(a in Figure 1(B))
), (B)-(b), (B)-(C1 and (II-(C1
) correspond to pixels A, B, C, and D in FIG. 1(A), respectively. That is, as is clear from FIG. 1 (Bl), a voltage of 2V exceeding the threshold value Vth is applied to the pixel A on the selected scanning line at phase t2. At B, a voltage -2■ exceeding the threshold value -vth 2 is applied.Therefore, depending on whether a signal electrode is selected on the selected scanning electrode line,
If selected, the liquid crystal molecules are aligned to the first stable state, and if not selected, the liquid crystal molecules are aligned to the second stable state.

いずれにしても各画素の前歴には関係することはない。In any case, it has nothing to do with the previous history of each pixel.

一方、画素CとDに示される如く選択されない走査線上
では、すべての画素CとDに印加される電圧は+V又は
−Vであって、いずれも同値電圧を越えない。従って、
各画素CとDにおける液晶分子は、配向状態を変乏、る
ことなく前回走査されたときの信号状態に対応した配向
をそのまま保持している。即ち、走査電極が選択された
ときにその一ライン分の信号の¥fき込みカ行われ、−
フレームが終了して次回選択され・るまでの間は、その
信号状態を保持し得るわけである。従って、走査電極数
が増とても、実質的なデユーティ比はかわらず、コント
ラストの低下とクロストーク等は全く生じない。この際
ζ;L圧値Vの値及び位相(t、+t2)−丁の値とし
ては、用いられる液晶材料やセルの厚さにも依存するが
、通常3ボルト〜70ボルトで0.1μθθC〜2mF
3ecの範囲で用いられる。従来公知の駆動方法と本質
的に異るのは、本発明の方法では選択された走査電極に
与えられる電気信号が第1の安定状態(光信号に変換さ
れたとき「明」状態であるとする)から第2の安定状態
(光信号に変換されたとき「暗」状態であるとする)へ
、又はその逆のいずれの変化も起し易くするものである
点にある。このために、選択された走査電極に与えられ
る信号は、十■から一■へと交番している。又、信号電
極に与えられる電圧は、明又は暗の状態を指定すべく、
互いに逆極性の電圧としている。
On the other hand, on unselected scanning lines as shown in pixels C and D, the voltages applied to all pixels C and D are +V or -V, neither of which exceeds the same voltage. Therefore,
The liquid crystal molecules in each pixel C and D maintain the orientation corresponding to the signal state when scanned last time without changing the orientation state. That is, when a scanning electrode is selected, the signal for one line is loaded, and -
The signal state can be maintained until the frame ends and is selected next time. Therefore, even if the number of scanning electrodes increases, the actual duty ratio does not change, and contrast reduction and crosstalk do not occur at all. At this time, the value of ζ;L pressure value V and the value of phase (t, +t2) - 2 depend on the liquid crystal material used and the thickness of the cell, but usually 0.1 μθθC ~ 3 volts ~ 70 volts 2mF
It is used in the range of 3ec. What is essentially different from conventionally known driving methods is that in the method of the present invention, the electrical signal applied to the selected scanning electrode is in a first stable state (a "bright" state when converted into an optical signal). The point here is that it facilitates a change from a second stable state (which is assumed to be a "dark" state when converted to an optical signal) or vice versa. For this purpose, the signals applied to the selected scanning electrodes alternate from 10 to 1. In addition, the voltage applied to the signal electrode is determined to specify the bright or dark state.
The voltages are of opposite polarity.

本発明の駆動法が有効に達成されるためには走査電極或
いは信号電極に与えられる電気信号が、必ずしも第1図
(b)〜(e)に於て説明されたような単純な矩形波信
号でなくてもよいことは自明である。例えば、正弦波や
三角波によって駆動することも可能である。
In order for the driving method of the present invention to be effectively achieved, the electrical signal applied to the scanning electrode or the signal electrode is not necessarily a simple rectangular wave signal as explained in FIGS. 1(b) to (e). It is obvious that this does not have to be the case. For example, it is also possible to drive with a sine wave or a triangular wave.

又、第4図は本発明の駆動法の別の具体例を示している
。第4図(a) 、 (b) 、 (C)と(d)はそ
れぞれ選択された走丘電極の信号を、選択されない走査
′1(1、極の信号を、選択された(情報有の)情報信
、号を、および選択されない−(情報−無の)情報信号
を表わしている。すなわち、第4図に示すように情報有
の信号電極には、位相(時間)t2の間のみ+■の電圧
を印加し、情報無の信号電極には位相(時間)tlの間
のみ−Vの電圧を印加しても、結果的には第1図に示し
たと同じ、駆動形態となる。
Further, FIG. 4 shows another specific example of the driving method of the present invention. Figures 4(a), (b), (C) and (d) show the signals of the selected scanning electrodes, the signals of the unselected scanning poles (1 and 1), and the signals of the selected scanning poles (with information), respectively. ) represents an information signal, signal, and an unselected − (information − no) information signal.That is, as shown in FIG. Even if the voltage (2) is applied and the voltage -V is applied to the signal electrode with no information only during the phase (time) tl, the same driving form as shown in FIG. 1 is obtained as a result.

E4’−S 5121には、第4図に示した例をさらに
変形した例が示されている。第5図(a) T fb)
 l (C)と(a)は、それぞれ苛択された走査電極
の信号(第5図(a))を、選択されない走査電極の信
号(第5図(b))を、選択された(情報有の)情報信
号(第5図(C))を、および選択されない(情報無の
)情報信月(第5図(a))を表わしている。この際、
本発明に基ずいて−正しく駆動されるためには、第51
λ′1に示す駆動法では、 の関係を満足することが必要となる。
E4'-S 5121 shows a further modified example of the example shown in FIG. Figure 5 (a) T fb)
l (C) and (a) show the signal of the selected scanning electrode (Fig. 5(a)), the signal of the unselected scanning electrode (Fig. 5(b)), and the signal of the selected scanning electrode (Fig. 5(b)), respectively. 5(C)) and an unselected (no information) information signal (FIG. 5(a)). On this occasion,
Based on the invention - in order to be driven correctly, the 51st
In the driving method shown in λ'1, it is necessary to satisfy the following relationship.

第6図は、液晶−光シャツクに応用した時のマトリクス
電極構造の模式図が示されている。
FIG. 6 shows a schematic diagram of a matrix electrode structure when applied to a liquid crystal-optical shield.

この際、41は画素であって、この部分のみ両側の電極
を透明なもので形成している。42は、走査電極群、4
3は信号電極群を表わしている。
At this time, 41 is a pixel, and the electrodes on both sides of this portion are made of transparent material. 42 is a scanning electrode group, 4
3 represents a signal electrode group.

これらの材料を用いて、素子を開成する場合、液晶化合
物が、S:C相又はSmH*相となるような塩度状態に
保持する為、必要に応じて素子をヒーターが埋め込まれ
た銅ブロック等によシ支持することができる。
When forming an element using these materials, in order to maintain the salinity state such that the liquid crystal compound becomes an S:C phase or an SmH* phase, the element may be placed in a copper block with a heater embedded as necessary. etc. can be supported.

本発明の方法は、液晶−光シャッタや液晶テレビなどの
光♀シャックあるいはディスプレイ分野に広く応用する
ことができる。
The method of the present invention can be widely applied to the field of optical shutters and displays such as liquid crystal-optical shutters and liquid crystal televisions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図+A+ +(a)は、本発明の超勤法に用いる液
晶素子を模式的に示す平面図である。第1図fA)−%
(b)は、選択された走査電極の信号を示す説明図であ
る。第1図(A) %−tc)は、選択されない走査電
極の信号を示す説明図である。第1図(A) 4 (C
1)は、選択された信号電極の情報信号を示す説明図で
ある。第1図iAJヤfe)は、選択されない信号1江
極の情報信号を示す説明図である。第1図FB)−ww
(a)は、画素Aの液晶に印加される電圧の波形図であ
る。第1図(B)−+(b)は、画素Bの液晶に印加さ
れる電圧の波形図である。第1図CB) −+ (c)
は、画素Cの液晶に印加される電圧の波形図である。 第1図FB1 % (d)は、画素りの液晶に印加され
る電圧の波形図である。2(r、 2図は、カイラルス
メクデイツク相液晶を翁する液晶素子を模式的に示す斜
視図である。第3図は、本発明で用いる液晶素子を模式
的に示す斜視図である。第4図fa)は、別の具体例に
おける選択された走査電極の信号を示す説明図である。 第4図(b)は、別の具体例における選択されない走査
電極の信号を示す説明図である。第4図(e)は、別の
具体例における選択された信号電極の情報信号を示す説
明図である。第4図(d)は、別の具体例における選択
されない信号電極の情報信号を示す説明図である。第5
図(a)は、別の具体例における選択された走査電極の
信号を示す説明図である。第5図(b)は、別の具体例
における選択されない走査電極の信号を示す説明図であ
る。第5図(clは、別の具体例における選択でれた信
号電極の情報信号を示す説明図である。第5図(d)け
、別の具体例における選択されない信号電極の情報信号
を示す説明図である。第6図は、本発明の駆動法を用い
た液晶−元シャツタの平面図である。 11・・・液晶素子 12・・・走査電極群 12(す・・・選択された走査電極 12 (nl・・・選択されない走査電イ反13・・・
信号電極群 13(s)・・・選択された信号電極 13(nl・・・選択されない信号電極36・・・第1
の安定状態に配向した液晶66′・・・第2の安定状態
に配向した液晶34・・・上向き双極子モーメントP 34′・・・F向き双極子モーメントP′特許出願人 
キャノン株式会社 瀉3■ 21 弓4 目 第5ノ (0)          (C) (b)            (d)手続補正書(自
発) 昭和59”4月51」 特許庁長官 着 杉和夫  殿 1 事件の表示 昭和58年 特許願  第 68659   号2 発
明の名称 光学変調素子の駆動法 3 補正をする者 ・1汁1との関係       特許出願人件 所 東
京litニ人I11区丁九子3−30−2名称 (+0
0)キャノン株式会社 代表名賀来龍三部 4代理人 居 所 Li] 146東!、、L傭人F11区下丸子
3−30−2キャノン株式会ン4内(電話75B−21
11)5、補正の対象 明細書 6、補正の内容 (1)明細書第5頁第6行の「光調変調」を「光学変調
」と訂正する。 (2)同上第7頁最下行のrlOdotJを1−20 
dotJと訂正する。 (3)同上第16頁第18行の「画素Bでは」の次に「
位相tlにおける」を挿入する。
FIG. 1+A++(a) is a plan view schematically showing a liquid crystal element used in the overtime method of the present invention. Figure 1 fA) -%
(b) is an explanatory diagram showing signals of selected scanning electrodes. FIG. 1(A) (%-tc) is an explanatory diagram showing signals of unselected scanning electrodes. Figure 1 (A) 4 (C
1) is an explanatory diagram showing information signals of selected signal electrodes. FIG. 1 is an explanatory diagram showing the information signal of signal 1 which is not selected. Figure 1 FB)-ww
(a) is a waveform diagram of the voltage applied to the liquid crystal of pixel A. FIG. 1(B)-+(b) is a waveform diagram of the voltage applied to the liquid crystal of pixel B. Figure 1 CB) −+ (c)
is a waveform diagram of the voltage applied to the liquid crystal of pixel C. FIG. 1 FB1% (d) is a waveform diagram of the voltage applied to the liquid crystal of each pixel. 2(r) FIG. 2 is a perspective view schematically showing a liquid crystal element using a chiral smect phase liquid crystal. FIG. 3 is a perspective view schematically showing a liquid crystal element used in the present invention. FIG. 4 fa) is an explanatory diagram showing signals of selected scanning electrodes in another specific example. FIG. 4(b) is an explanatory diagram showing signals of unselected scan electrodes in another specific example. FIG. 4(e) is an explanatory diagram showing information signals of selected signal electrodes in another specific example. FIG. 4(d) is an explanatory diagram showing information signals of unselected signal electrodes in another specific example. Fifth
Figure (a) is an explanatory diagram showing signals of selected scanning electrodes in another specific example. FIG. 5(b) is an explanatory diagram showing signals of unselected scanning electrodes in another specific example. FIG. 5 (cl is an explanatory diagram showing the information signal of the selected signal electrode in another specific example. FIG. 5(d) is an explanatory diagram showing the information signal of the unselected signal electrode in another specific example. FIG. 6 is a plan view of a liquid crystal shutter using the driving method of the present invention. 11...Liquid crystal element 12...Scanning electrode group 12 (selected Scanning electrode 12 (nl...scanning electrode not selected 13...
Signal electrode group 13(s)...selected signal electrode 13 (nl...unselected signal electrode 36...first
Liquid crystal 66' oriented in a second stable state...Liquid crystal 34 oriented in a second stable state...Upward dipole moment P 34'...F direction dipole moment P'Patent applicant
Canon Co., Ltd. 3 ■ 21 Bow 4 Item 5 No. 0 (C) (b) (d) Procedural Amendment (Voluntary) April 51, 1982 Commissioner of the Patent Office Kazuo Sugi 1 Display of the case Showa 1958 Patent Application No. 68659 2 Name of the invention Driving method for optical modulation element 3 Relationship with the person who makes the correction 1 Patent applicant Location Tokyo lit Nijin I11-ku Chokuko 3-30-2 Name (+0
0) Canon Co., Ltd. Representative Ryu Nagaku 3rd Department 4th Agent Residence Li] 146 East! ,, L Mercenary F11 Ward Shimomaruko 3-30-2 Canon Co., Ltd. 4 (Telephone 75B-21
11) 5. Specification subject to correction 6, Contents of correction (1) "Optical modulation" on page 5, line 6 of the specification is corrected to "optical modulation." (2) rlOdotJ on the bottom line of page 7 above is 1-20
Correct it to dotJ. (3) On page 16, line 18 of the same page, after “at pixel B”, “
Insert "in the phase tl."

Claims (8)

【特許請求の範囲】[Claims] (1)定食電極群と信号電極群を有し、該走査電極群と
信号電極群の間に電界に対して双安定性を有する光学変
調物質を配置した構造を有する光学変調素子の駆動法に
おいて、前記走査電極群の選択された走査電極と前記信
号電極群の選択された信号電極の間で前記双安定性を有
する光学変調物質が第1の安定状態に配向する電圧を印
加し、且つ前記走査電極と前記信号電極群の選択されな
い信号電極の間で前記双安定性を有する光学変調物質が
第2の安定状態に配向する電圧を印加するとともに、前
記走査電極群の選択されない走査電極と前記信号電極群
の間で前記双安定性を有する光学変調物質の閾値電圧−
vth2(第2安定状態の閾値電圧を言う)とvth、
 (第1安定状態の閾値電圧を言う)の間の値に設定し
た電圧を印加することを特徴とする光学変調素子の駆動
法。
(1) In a method for driving an optical modulation element having a structure including a set electrode group and a signal electrode group, and an optical modulation material having bistable property against an electric field is arranged between the scanning electrode group and the signal electrode group. , applying a voltage to orient the bistable optical modulation material to a first stable state between a selected scan electrode of the scan electrode group and a selected signal electrode of the signal electrode group; A voltage is applied between the scan electrode and the unselected signal electrode of the signal electrode group to orient the bistable optical modulation material to the second stable state, and a voltage is applied between the unselected scan electrode of the scan electrode group and the Threshold voltage of the optical modulation material having bistability between the signal electrode group -
vth2 (referring to the threshold voltage of the second stable state) and vth,
1. A method for driving an optical modulation element, characterized by applying a voltage set to a value between (referring to a threshold voltage in a first stable state).
(2)  前記走査電極群の選択された走査電極に電圧
の異なる位相を有する電気信号を印加し、且つ前記信号
電極群の選択された信号電極と選択されない信号電極に
それぞれ電圧の異なる電気信号を与える特許請求の範囲
第1項記載の光学変調素子の駆動法。
(2) Applying electrical signals having different voltage phases to selected scanning electrodes of the scanning electrode group, and applying electrical signals having different voltages to the selected signal electrodes and unselected signal electrodes of the signal electrode group. A method for driving an optical modulation element according to claim 1.
(3)  前記走査電極群の選択された走査電極に電圧
極性の異なる位相を有する電気信号を印加し、且つ前記
信号電極群の選択された信号電極と選択されない信号電
極にそれぞれ電圧極性の異なる電気信号を与える特許請
求の範囲第1項記載の光学変調素子の駆動法。
(3) Applying electrical signals having different voltage polarities and phases to selected scanning electrodes of the scanning electrode group, and applying electrical signals having different voltage polarities to the selected signal electrodes and unselected signal electrodes of the signal electrode group. A method for driving an optical modulation element according to claim 1, which provides a signal.
(4)前記双安定性を有する光学変調物質が強誘電性液
晶である特許請求の範囲第1項記載の光学変調素子の駆
動法。
(4) The method for driving an optical modulation element according to claim 1, wherein the optical modulation substance having bistability is a ferroelectric liquid crystal.
(5)  前記強誘電性液晶がカイラルスメクテイツク
相を有する液晶でちる特許請求の範囲第4項記載の光学
変調素子の駆動法。
(5) The method for driving an optical modulation element according to claim 4, wherein the ferroelectric liquid crystal is a liquid crystal having a chiral smectoid phase.
(6)  前記カイラルスメクテイツク相を有する液晶
がC相又はH相を有する液晶である特許請求の範囲第5
項記載の光学変調素子の駆動法。
(6) Claim 5, wherein the liquid crystal having a chiral smectoid phase is a liquid crystal having a C phase or an H phase.
Driving method of the optical modulation element described in 2.
(7)  前記カイラルスメクティツク相を有する液晶
がらせん構造を形成していない液晶相である特許請求の
範囲第5項記載の光学変調素子の駆動法。
(7) The method for driving an optical modulation element according to claim 5, wherein the liquid crystal having a chiral smectic phase is a liquid crystal phase that does not form a helical structure.
(8)  前記C相又はH相を有するカイラルスメクテ
イツク液晶がらせん構造を形成していない液晶相である
特許請求の範囲第6項記載の光学変調素子の駆動法。
(8) The method for driving an optical modulation element according to claim 6, wherein the chiral smect liquid crystal having the C phase or H phase is a liquid crystal phase that does not form a helical structure.
JP6865983A 1983-04-13 1983-04-19 Driving method of optical modulating element Granted JPS59193426A (en)

Priority Applications (42)

Application Number Priority Date Filing Date Title
JP6865983A JPS59193426A (en) 1983-04-19 1983-04-19 Driving method of optical modulating element
US06/598,800 US4655561A (en) 1983-04-19 1984-04-10 Method of driving optical modulation device using ferroelectric liquid crystal
DE3448307A DE3448307C2 (en) 1983-04-19 1984-04-18
DE3448305A DE3448305C2 (en) 1983-04-19 1984-04-18
DE3448303A DE3448303C2 (en) 1983-04-19 1984-04-18
DE19843414704 DE3414704A1 (en) 1983-04-19 1984-04-18 METHOD FOR DRIVING AN OPTICAL MODULATING DEVICE
DE3448304A DE3448304C2 (en) 1983-04-19 1984-04-18
GB08410068A GB2141279B (en) 1983-04-19 1984-04-18 Method of driving optical modulation device
DE3448306A DE3448306C2 (en) 1983-04-19 1984-04-18
FR8406275A FR2544884B1 (en) 1983-04-19 1984-04-19 METHOD FOR CONTROLLING AN OPTICAL MODULATION DEVICE
GB08619692A GB2180385B (en) 1983-04-19 1986-08-13 Liquid crystal apparatus
GB08619691A GB2180384B (en) 1983-04-19 1986-08-13 Driving display devices
GB08619831A GB2180386B (en) 1983-04-19 1986-08-14 Liquid crystal apparatus
GB08712392A GB2190530B (en) 1983-04-19 1987-05-27 Liquid crystal apparatus
GB08712391A GB2191623B (en) 1983-04-19 1987-05-27 Liquid crystal apparatus
US07/139,162 US5448383A (en) 1983-04-19 1987-12-21 Method of driving ferroelectric liquid crystal optical modulation device
US07/557,643 US5418634A (en) 1983-04-19 1990-07-25 Method for driving optical modulation device
SG5291A SG5291G (en) 1983-04-19 1991-01-31 Liquid crystal apparatus
SG6491A SG6491G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG6591A SG6591G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG6191A SG6191G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG10391A SG10391G (en) 1983-04-19 1991-02-21 Liquid crystal apparatus
SG116/91A SG11691G (en) 1983-04-19 1991-02-23 Method of driving optical modulation device
HK708/91A HK70891A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK709/91A HK70991A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK715/91A HK71591A (en) 1983-04-19 1991-09-05 Method of driving optical modulation device
HK705/91A HK70591A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK707/91A HK70791A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK706/91A HK70691A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
US08/440,321 US5812108A (en) 1983-04-19 1995-05-12 Method of driving optical modulation device
US08/444,899 US5548303A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/444,898 US5825390A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/444,746 US5592192A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/465,090 US5831587A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,225 US5565884A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,357 US5696526A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/462,978 US5790449A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/463,780 US5621427A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/463,781 US5841417A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/462,974 US5886680A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,058 US5696525A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/863,598 US6091388A (en) 1983-04-13 1997-05-27 Method of driving optical modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6865983A JPS59193426A (en) 1983-04-19 1983-04-19 Driving method of optical modulating element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10311887A Division JPS62294224A (en) 1987-04-28 1987-04-28 Liquid crystal device

Publications (2)

Publication Number Publication Date
JPS59193426A true JPS59193426A (en) 1984-11-02
JPS6245535B2 JPS6245535B2 (en) 1987-09-28

Family

ID=13380048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6865983A Granted JPS59193426A (en) 1983-04-13 1983-04-19 Driving method of optical modulating element

Country Status (1)

Country Link
JP (1) JPS59193426A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156229A (en) * 1984-12-28 1986-07-15 Canon Inc Method for driving liquid crystal element
JPS61245142A (en) * 1985-04-23 1986-10-31 Canon Inc Liquid crystal optical element
JPS627024A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Driving method for optical switch element
JPS6275516A (en) * 1985-09-30 1987-04-07 Matsushita Electric Ind Co Ltd Driving method for optical modulation switch
JPS62286094A (en) * 1986-06-04 1987-12-11 キヤノン株式会社 Information reading of display panel
JPS62294224A (en) * 1987-04-28 1987-12-21 Canon Inc Liquid crystal device
JPS635326A (en) * 1986-06-25 1988-01-11 Nec Corp Driving method for liquid crystal element
JPS63118129A (en) * 1986-11-05 1988-05-23 Citizen Watch Co Ltd Driving method for liquid crystal shutter head
US5075030A (en) * 1989-07-31 1991-12-24 Canon Kabushiki Kaisha Liquid crystal composition and liquid crystal device using same
US5076961A (en) * 1989-07-10 1991-12-31 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5091109A (en) * 1989-08-25 1992-02-25 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5116530A (en) * 1988-10-17 1992-05-26 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5118441A (en) * 1989-04-14 1992-06-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition and liquid crystal device using same
US5190690A (en) * 1989-04-20 1993-03-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5200109A (en) * 1989-09-22 1993-04-06 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5250218A (en) * 1991-02-20 1993-10-05 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5250219A (en) * 1989-05-08 1993-10-05 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5262083A (en) * 1991-02-13 1993-11-16 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5268123A (en) * 1991-02-14 1993-12-07 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5269964A (en) * 1990-06-06 1993-12-14 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5413735A (en) * 1990-05-24 1995-05-09 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device using the liquid crystal composition, and display method and apparatus using the liquid crystal composition and device
US5422748A (en) * 1991-11-22 1995-06-06 Canon Kabushiki Kaisha Liquid crystal device and display apparatus
US5460749A (en) * 1992-12-25 1995-10-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal display apparatus
EP0711818A1 (en) 1994-11-10 1996-05-15 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5573703A (en) * 1993-10-13 1996-11-12 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and liquid crystal apparatus using it
EP0769543A1 (en) 1995-10-20 1997-04-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
EP0770662A2 (en) 1991-11-22 1997-05-02 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and display apparatus
US5629788A (en) * 1992-12-29 1997-05-13 Canon Kabushiki Kaisha Liquid crystal device providing tilt angle inclination angle and ps satisfying relationships at 55 degrees
EP0789261A1 (en) 1996-02-09 1997-08-13 Canon Kabushiki Kaisha Liquid crystal device
US5709819A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5710433A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709818A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5733475A (en) * 1995-01-31 1998-03-31 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5744059A (en) * 1995-01-31 1998-04-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5785890A (en) * 1995-10-12 1998-07-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, and liquid crystal display apparatus using same
US5841497A (en) * 1995-07-28 1998-11-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5858269A (en) * 1995-09-20 1999-01-12 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5885482A (en) * 1995-12-28 1999-03-23 Canon Kabushiki Kaisha Liquid crystal device, production process thereof and liquid crystal apparatus
US5956010A (en) * 1996-05-31 1999-09-21 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method
US6083574A (en) * 1997-07-31 2000-07-04 Canon Kabushiki Kaisha Aligning method of liquid crystal, process for producing liquid crystal device, and liquid crystal device produced by the process
US6177152B1 (en) 1995-10-20 2001-01-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6195147B1 (en) 1997-08-01 2001-02-27 Canon Kabushiki Kaisha Liquid crystal substrate with optical modulation region having different alignment control forces
US6252641B1 (en) 1996-06-17 2001-06-26 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6452581B1 (en) 1997-04-11 2002-09-17 Canon Kabushiki Kaisha Driving method for liquid crystal device and liquid crystal apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515993A (en) * 1974-07-03 1976-01-19 Suwa Seikosha Kk
JPS56757A (en) * 1979-06-15 1981-01-07 Nippon Telegr & Teleph Corp <Ntt> Terminal unit for diversity of car telephone
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515993A (en) * 1974-07-03 1976-01-19 Suwa Seikosha Kk
JPS56757A (en) * 1979-06-15 1981-01-07 Nippon Telegr & Teleph Corp <Ntt> Terminal unit for diversity of car telephone
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof
US4367924A (en) * 1980-01-08 1983-01-11 Clark Noel A Chiral smectic C or H liquid crystal electro-optical device

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261931B2 (en) * 1984-12-28 1987-12-24 Canon Kk
JPS61156229A (en) * 1984-12-28 1986-07-15 Canon Inc Method for driving liquid crystal element
JPH0422487B2 (en) * 1985-04-23 1992-04-17 Canon Kk
JPS61245142A (en) * 1985-04-23 1986-10-31 Canon Inc Liquid crystal optical element
JPS627024A (en) * 1985-07-03 1987-01-14 Hitachi Ltd Driving method for optical switch element
JPS6275516A (en) * 1985-09-30 1987-04-07 Matsushita Electric Ind Co Ltd Driving method for optical modulation switch
JPS62286094A (en) * 1986-06-04 1987-12-11 キヤノン株式会社 Information reading of display panel
JPH0564773B2 (en) * 1986-06-25 1993-09-16 Nippon Electric Co
JPS635326A (en) * 1986-06-25 1988-01-11 Nec Corp Driving method for liquid crystal element
JPS63118129A (en) * 1986-11-05 1988-05-23 Citizen Watch Co Ltd Driving method for liquid crystal shutter head
JPS62294224A (en) * 1987-04-28 1987-12-21 Canon Inc Liquid crystal device
US5116530A (en) * 1988-10-17 1992-05-26 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5118441A (en) * 1989-04-14 1992-06-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition and liquid crystal device using same
US5190690A (en) * 1989-04-20 1993-03-02 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5250219A (en) * 1989-05-08 1993-10-05 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5076961A (en) * 1989-07-10 1991-12-31 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5075030A (en) * 1989-07-31 1991-12-24 Canon Kabushiki Kaisha Liquid crystal composition and liquid crystal device using same
US5091109A (en) * 1989-08-25 1992-02-25 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5200109A (en) * 1989-09-22 1993-04-06 Canon Kabushiki Kaisha Mesomorphic compound, liquid crystal composition containing same and liquid crystal device using same
US5413735A (en) * 1990-05-24 1995-05-09 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device using the liquid crystal composition, and display method and apparatus using the liquid crystal composition and device
US5269964A (en) * 1990-06-06 1993-12-14 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5262083A (en) * 1991-02-13 1993-11-16 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5268123A (en) * 1991-02-14 1993-12-07 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5250218A (en) * 1991-02-20 1993-10-05 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, display apparatus and display method
US5422748A (en) * 1991-11-22 1995-06-06 Canon Kabushiki Kaisha Liquid crystal device and display apparatus
EP0770662A2 (en) 1991-11-22 1997-05-02 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and display apparatus
US5460749A (en) * 1992-12-25 1995-10-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal display apparatus
US5657141A (en) * 1992-12-25 1997-08-12 Canon Kabushiki Kaisha Liquid crystal device
US5629788A (en) * 1992-12-29 1997-05-13 Canon Kabushiki Kaisha Liquid crystal device providing tilt angle inclination angle and ps satisfying relationships at 55 degrees
US5573703A (en) * 1993-10-13 1996-11-12 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and liquid crystal apparatus using it
US5728318A (en) * 1994-11-10 1998-03-17 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
EP0711818A1 (en) 1994-11-10 1996-05-15 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5733475A (en) * 1995-01-31 1998-03-31 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5710433A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709818A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709819A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5744059A (en) * 1995-01-31 1998-04-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5841497A (en) * 1995-07-28 1998-11-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5858269A (en) * 1995-09-20 1999-01-12 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5785890A (en) * 1995-10-12 1998-07-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, and liquid crystal display apparatus using same
EP0769543A1 (en) 1995-10-20 1997-04-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5932136A (en) * 1995-10-20 1999-08-03 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6177152B1 (en) 1995-10-20 2001-01-23 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US5885482A (en) * 1995-12-28 1999-03-23 Canon Kabushiki Kaisha Liquid crystal device, production process thereof and liquid crystal apparatus
EP0789261A1 (en) 1996-02-09 1997-08-13 Canon Kabushiki Kaisha Liquid crystal device
US6122031A (en) * 1996-02-09 2000-09-19 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus including same
US5956010A (en) * 1996-05-31 1999-09-21 Canon Kabushiki Kaisha Liquid crystal apparatus and driving method
US6252641B1 (en) 1996-06-17 2001-06-26 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal apparatus
US6452581B1 (en) 1997-04-11 2002-09-17 Canon Kabushiki Kaisha Driving method for liquid crystal device and liquid crystal apparatus
US6083574A (en) * 1997-07-31 2000-07-04 Canon Kabushiki Kaisha Aligning method of liquid crystal, process for producing liquid crystal device, and liquid crystal device produced by the process
US6195147B1 (en) 1997-08-01 2001-02-27 Canon Kabushiki Kaisha Liquid crystal substrate with optical modulation region having different alignment control forces

Also Published As

Publication number Publication date
JPS6245535B2 (en) 1987-09-28

Similar Documents

Publication Publication Date Title
JPS59193426A (en) Driving method of optical modulating element
US5633652A (en) Method for driving optical modulation device
JPS59193427A (en) Driving method of optical modulating element
US5092665A (en) Driving method for ferroelectric liquid crystal optical modulation device using an auxiliary signal to prevent inversion
JPS60156047A (en) Driving method of optical modulating element
JPS6249604B2 (en)
JPS6186732A (en) Liquid crystal element for time division drive
JPS6261931B2 (en)
US5296953A (en) Driving method for ferro-electric liquid crystal optical modulation device
JPS6031120A (en) Driving method of optical modulating element
JPS60172029A (en) Driving method of optical modulation element
US5093737A (en) Method for driving a ferroelectric optical modulation device therefor to apply an erasing voltage in the first step
JPS6167836A (en) Driving method of liquid crystal element
JPS6033535A (en) Driving method of optical modulating element
JP2759589B2 (en) Ferroelectric liquid crystal display device
JPS61149933A (en) Driving method of optical modulating element
JPS6170532A (en) Driving method of liquid crystal element
JPS6246845B2 (en)
JPS6361233A (en) Driving method for optical modulating element
JPS62294224A (en) Liquid crystal device
US5757350A (en) Driving method for optical modulation device
JPS63306424A (en) Driving device
JPS6170530A (en) Driving method of liquid crystal element
JPS61267739A (en) Method for driving optical modulating element
JPS6391634A (en) Driving method for optical modulating element