JPS6031120A - Driving method of optical modulating element - Google Patents

Driving method of optical modulating element

Info

Publication number
JPS6031120A
JPS6031120A JP13870783A JP13870783A JPS6031120A JP S6031120 A JPS6031120 A JP S6031120A JP 13870783 A JP13870783 A JP 13870783A JP 13870783 A JP13870783 A JP 13870783A JP S6031120 A JPS6031120 A JP S6031120A
Authority
JP
Japan
Prior art keywords
signal
liquid crystal
voltage
electrode group
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13870783A
Other languages
Japanese (ja)
Other versions
JPS6243167B2 (en
Inventor
Junichiro Kanbe
純一郎 神辺
Kazuharu Katagiri
片桐 一春
Shuzo Kaneko
金子 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP13870783A priority Critical patent/JPS6031120A/en
Application filed by Canon Inc filed Critical Canon Inc
Priority to US06/598,800 priority patent/US4655561A/en
Priority to DE3448303A priority patent/DE3448303C2/de
Priority to DE3448305A priority patent/DE3448305C2/de
Priority to DE19843414704 priority patent/DE3414704A1/en
Priority to DE3448304A priority patent/DE3448304C2/de
Priority to DE3448307A priority patent/DE3448307C2/de
Priority to GB08410068A priority patent/GB2141279B/en
Priority to DE3448306A priority patent/DE3448306C2/de
Priority to FR8406275A priority patent/FR2544884B1/en
Publication of JPS6031120A publication Critical patent/JPS6031120A/en
Priority to GB08619692A priority patent/GB2180385B/en
Priority to GB08619691A priority patent/GB2180384B/en
Priority to GB08619831A priority patent/GB2180386B/en
Priority to GB08712392A priority patent/GB2190530B/en
Priority to GB08712391A priority patent/GB2191623B/en
Publication of JPS6243167B2 publication Critical patent/JPS6243167B2/ja
Priority to US07/139,162 priority patent/US5448383A/en
Priority to US07/557,643 priority patent/US5418634A/en
Priority to SG5291A priority patent/SG5291G/en
Priority to SG6491A priority patent/SG6491G/en
Priority to SG6591A priority patent/SG6591G/en
Priority to SG6191A priority patent/SG6191G/en
Priority to SG10391A priority patent/SG10391G/en
Priority to SG116/91A priority patent/SG11691G/en
Priority to HK715/91A priority patent/HK71591A/en
Priority to HK705/91A priority patent/HK70591A/en
Priority to HK706/91A priority patent/HK70691A/en
Priority to HK707/91A priority patent/HK70791A/en
Priority to HK708/91A priority patent/HK70891A/en
Priority to HK709/91A priority patent/HK70991A/en
Priority to US08/440,321 priority patent/US5812108A/en
Priority to US08/444,898 priority patent/US5825390A/en
Priority to US08/444,899 priority patent/US5548303A/en
Priority to US08/444,746 priority patent/US5592192A/en
Priority to US08/463,781 priority patent/US5841417A/en
Priority to US08/465,058 priority patent/US5696525A/en
Priority to US08/465,090 priority patent/US5831587A/en
Priority to US08/462,974 priority patent/US5886680A/en
Priority to US08/463,780 priority patent/US5621427A/en
Priority to US08/465,357 priority patent/US5696526A/en
Priority to US08/465,225 priority patent/US5565884A/en
Priority to US08/462,978 priority patent/US5790449A/en
Priority to US08/863,598 priority patent/US6091388A/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3622Control of matrices with row and column drivers using a passive matrix
    • G09G3/3629Control of matrices with row and column drivers using a passive matrix using liquid crystals having memory effects, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0205Simultaneous scanning of several lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/04Partial updating of the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/065Waveforms comprising zero voltage phase or pause
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

PURPOSE:To avoid a drop of a picture contrast and a crosstalk by applying a voltage which has set a threshold voltage of an optical mudulating substance having a bistability to a specified value. CONSTITUTION:When a threshold voltage for giving the first stable stage of a liquid crystal cell having a bistability, and a threshold voltage for giving the second stable state are denoted as Vth1 and -Vth2, respectively, a voltage 2V exceeding the threshold Vth1 is applied to a picture element A on a selected scanning line, and a voltage -2V exceeding the threshold -Vth2 is applied to a picture element B existing on the same scanning line. On the other hand, on a scanning line which is not selected, a voltage applied to all picture elements C and D is +V or -V, and both of them do not exceed the threshold voltage. Accordingly, a liquid crystal molecule in each picture element of C and D holds an orientation as it is corresponding to a signal state in case of the previous scanning without changing the oriented state. Accordingly, even if the number of scanning electrodes is increased, a substantial duty ratio is not changed, and a drop of a contrast, a crosstalk, etc. are not generated at all.

Description

【発明の詳細な説明】 本発明は、液晶素子などの光学変調素子の駆動法に係り
、詳しくは表示素子やシャッターアレイ等の光学変調素
子に用いる液晶素子の時分割駆動法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving an optical modulation element such as a liquid crystal element, and more particularly to a time division driving method for a liquid crystal element used in an optical modulation element such as a display element or a shutter array.

従来より、走査電極群と信号電極群をマトリクス状に構
成し、その電極間に液晶化合物を充填し、多数の画素を
形成して画像或いは情報の表示を行う液晶表示素子は、
よく知られている。この表示素子の駆動法としては、走
査電極群に、順次、周期的にアドレス信号を選択印加し
、信号電極群には所定の情報信号をアドレス信号と同期
させて並列的に選択印加する時分割駆動が採用されてい
るが、この表示素子及びその駆動法は、以下に述べる如
き致命的とも言える大きな欠点を有していた。
Conventionally, liquid crystal display elements display images or information by configuring a group of scanning electrodes and a group of signal electrodes in a matrix, filling a liquid crystal compound between the electrodes, and forming a large number of pixels.
well known. The driving method for this display element is a time-sharing method in which an address signal is selectively and periodically applied to a group of scanning electrodes, and a predetermined information signal is selectively applied in parallel to a group of signal electrodes in synchronization with the address signal. However, this display element and its driving method had major and fatal drawbacks as described below.

即ち、画素密度を高く、或いは画面を大きくするのが難
しいことである。従来の液晶の中で応答速度が比較的高
く、しかも消費電力が小さいことから、表示素子として
実用に供されているのは殆んどが、例えば、M、5ch
adtとW、He1frich著、IIApplied
 Physics Letters”、 Vol、1B
、No、4 (1971,2,15) 、 P、127
〜128の°’ Voltage−Dependent
 0ptical Activity of a Tw
istedNematic Liquid Cryst
a+”に示されたTN(twisted nemati
c)型の液晶を用いたものであり、この型の液晶は、無
電界状態で正の誘電異方性をもつ、ネマチック液晶の分
子が、液晶層厚方向で捩れた構造(ヘリカル構造)を形
成し、両電極面でこの液晶の分子が互いに並行に配列し
た構造を形成している。一方、電界印加状態では、正の
誘電異方性をもつネマチック液晶が電界方向に配列し、
この結果光調変調を起すことができる。この型の液晶を
用いてマトリクス電極構造によって表示素子を構成した
場合、走査電極と信号電極が共に選択される領域(選択
点)には、液晶分子を電極面に垂直に配列させるに要す
る閾値以上の電圧が印加され、走査電極と信号電極が共
に選択されない領域(非選択点)には電圧は印加されず
、したがって液晶分子は電極面に対して並行な安定配列
を保っている。このような液晶セルの上下に、互いにク
ロスニコル関係にある直線偏光子を配置することにより
、選択点では光が透過せず、非選択点では光が透過する
ため、画像素子とすることが可能となる。然し乍ら、マ
トリクス電極構造を構成した場合には、走査電極が選択
され、信号電極が選択されない領域或いは、走査電極が
選択さ、れす、竺号電極が選択される領域(所謂 パ半
選択点 ′)にも有限の電界がかかってしまう。
That is, it is difficult to increase the pixel density or enlarge the screen. Among conventional liquid crystals, most of them are practically used as display elements, for example, M, 5ch, because of their relatively high response speed and low power consumption.
adt and W, He1frich, IIApplied
Physics Letters”, Vol, 1B
, No. 4 (1971, 2, 15), P. 127
~128°' Voltage-Dependent
0Ptical Activity of a Tw
istedNematic Liquid Crystal
TN (twisted nemati) shown in “a+”
c) type liquid crystal, which has a structure (helical structure) in which nematic liquid crystal molecules are twisted in the thickness direction of the liquid crystal layer and has positive dielectric anisotropy in the absence of an electric field. The liquid crystal molecules form a structure in which they are arranged parallel to each other on both electrode surfaces. On the other hand, when an electric field is applied, nematic liquid crystals with positive dielectric anisotropy align in the direction of the electric field.
As a result, optical modulation can occur. When a display element is constructed with a matrix electrode structure using this type of liquid crystal, the area where both the scanning electrode and the signal electrode are selected (selected point) has a threshold value greater than or equal to the threshold required to align the liquid crystal molecules perpendicular to the electrode surface. A voltage is applied to the region where neither the scanning electrode nor the signal electrode is selected (unselected point), and therefore the liquid crystal molecules maintain a stable alignment parallel to the electrode plane. By arranging linear polarizers above and below such a liquid crystal cell in a cross Nicol relationship, light does not pass through selected points, but light passes through non-selected points, making it possible to use it as an image element. becomes. However, when a matrix electrode structure is configured, there are areas where scan electrodes are selected and signal electrodes are not selected, or areas where scan electrodes are selected and red and square electrodes are selected (so-called semi-selected points ′ ) is also subject to a finite electric field.

選択点にかかる電圧と、半選択点にかかる電圧の差が充
分に大きく、液晶分子を電界に垂直に配列させるに要す
る電圧閾値がこの中間の電圧値に設定されるならば、表
示素子は正常に動作するわけである。しかし、この方式
において、走査線数(N)を増やして行った場合、画面
全体(lフレーム)を走査する間に一つの選択点に有効
な電界がかかっている時間(duty比)は、l/Nの
割合で減少してしまう。このために、くり返し走査を行
った場合の選択点と比選択点にかかる実効値としての電
圧差は、走査線数が増えれば増える程小さくなり、結果
的には画像コントラストの低下やクロストークが避は難
い欠点となっている。このような現象は、双安定性を有
さない液晶(電極面に対し、液晶分子が水平に配向して
いるのが安定状態であり、電界が有効に印加されている
間のみ垂直に配向する)を、時間的蓄積効果を利用して
駆動する(即ち、繰り返し走査する)ときに生じる本質
的には避は難い問題点である。この点を改良するために
、電圧平均化法、2周波駆動法や多重マトリクス法等が
既に提案されているが、いずれの方法でも不充分であり
、表示素子の大画面化や高密度化は、走査線数が充分に
増やせないことによって頭打ちになっているのが現状で
ある。
If the difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large, and the voltage threshold required to align liquid crystal molecules perpendicular to the electric field is set to a voltage value in between, the display element will function normally. This is why it works. However, in this method, when the number of scanning lines (N) is increased, the time during which an effective electric field is applied to one selected point (duty ratio) while scanning the entire screen (l frames) is /N. For this reason, the effective voltage difference between the selection point and the ratio selection point when repeated scanning is performed becomes smaller as the number of scanning lines increases, resulting in a decrease in image contrast and crosstalk. This is a drawback that is difficult to avoid. This phenomenon is caused by liquid crystals that do not have bistability (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). ) is essentially an unavoidable problem that arises when driving using the temporal accumulation effect (that is, repeatedly scanning). In order to improve this point, voltage averaging method, dual frequency drive method, multiple matrix method, etc. have already been proposed, but all of these methods are insufficient, and it is difficult to increase the screen size and density of display elements. Currently, the number of scanning lines has reached a plateau due to the inability to increase the number of scanning lines sufficiently.

本発明の目的は、前述したような従来の液晶表示素子に
おける問題点を悉く解決した新規な光学変調素子、特に
液晶素子駆動法を提供することにある。
An object of the present invention is to provide a novel optical modulation element, particularly a liquid crystal element driving method, which solves all the problems of conventional liquid crystal display elements as described above.

本発明の別の目的は、高速応答性を有する液晶素子の駆
動法を提供することにある。
Another object of the present invention is to provide a method for driving a liquid crystal element having high-speed response.

本発明の他の目的は、高密度の画素を有する液晶素子の
駆動法を提供することにある。
Another object of the present invention is to provide a method for driving a liquid crystal device having high density pixels.

さらに、本発明の・他の目的は、クロストークを発生し
ない液晶素子の駆動法を提供することにある。
Furthermore, another object of the present invention is to provide a method for driving a liquid crystal element that does not generate crosstalk.

さらに、本発明の他の目的は、部分的な書き換えが可能
なディスプレイ装置に適した液晶素子の駆動法を提供す
ることにある。
Furthermore, another object of the present invention is to provide a method for driving a liquid crystal element suitable for a partially rewritable display device.

さらに、本発明の他の目的は、電界に対し双安定性を有
する液晶、特に強誘電性を有するカイラルスメクテイッ
クC相又はH相の液晶を用いた液晶素子の新規な駆動法
を提供することにある。
Furthermore, another object of the present invention is to provide a novel method for driving a liquid crystal device using a liquid crystal that is bistable with respect to an electric field, particularly a chiral smectic C-phase or H-phase liquid crystal that has ferroelectricity. There is a particular thing.

さらに、本発明の他の目的は、高密度の画素と大面積の
画面を有する液晶素子に適した新規な駆動法を提供する
ことにある。
Furthermore, another object of the present invention is to provide a novel driving method suitable for a liquid crystal device having a high density of pixels and a large screen area.

本発明の光学変調素子の駆動法は、上述の目的を達成す
るために開発されたものであり、より詳しくは、走査電
極群と所定の情報信号を与える信号電極群とを有し、該
走査電極群と信号電極群との間に電界に対して、双安定
性を有する光学変調物質(例えば液晶)を配置した構造
を有する、液晶素子などの光学変調素子の駆動法におい
て、前記走査電極群の選択された走査電極と前記信号電
極群の新たな画像情報を与えるべき信号電極のうち選択
されたものとの間で、前記双安定性を有する光学変調物
質が第1の安定状態(一方の光学的安定状態)に配向す
る電圧を印加し、且つ前記選択された走査電極と前記信
号電極群の新たな画像情報を与えるべき信号電極のうち
選択されないものとの間で、前記双安定性を有する光学
変調物質が第2の安定状態(他方の光学的安定状態)に
配向する電圧を印加するとともに、前記走査電極群の選
択されない走査電極と前記信号電極群との間、及びすべ
ての走査電極と新たな画像情報を与えない信号電極との
間で、前記双安定性を有する光学変調物質の閾値電圧−
Vth2(第2安定状態の閾値電圧を言う)と、Vth
x(第1安定状態の閾値電圧を言う)との間の値に設定
した電圧を印加することを特徴とするものである。
The method for driving an optical modulation element of the present invention was developed to achieve the above-mentioned object, and more specifically includes a scanning electrode group and a signal electrode group for giving a predetermined information signal, In a method for driving an optical modulation element such as a liquid crystal element, which has a structure in which an optical modulation substance (for example, liquid crystal) having bistable properties with respect to an electric field is arranged between an electrode group and a signal electrode group, the scanning electrode group The bistable optical modulation material is placed between the selected scanning electrode of the signal electrode group and the selected signal electrode to provide new image information of the signal electrode group. applying a voltage that orients the scanning electrode to an optically stable state), and establishing the bistability between the selected scanning electrode and the unselected signal electrode that is to provide new image information of the signal electrode group; A voltage is applied to orient the optical modulation substance having the second stable state (the other optically stable state), and a voltage is applied between the unselected scan electrodes of the scan electrode group and the signal electrode group, and between all the scan electrodes. and a signal electrode that does not give new image information, the threshold voltage of the optical modulation material having bistability -
Vth2 (referring to the threshold voltage in the second stable state) and Vth
This is characterized by applying a voltage set to a value between x (referring to the threshold voltage in the first stable state).

本発明の好ましい具体例では、走査信号に基づいて順次
選択される走査電極群と、該走査電極群に対向し所定の
情報信号に基づいて選択される信号電極群と、上記両電
極間に保持され電界に対して双安定性を有する液晶とを
少なくとも有する液晶素子の、選択された走査電極には
、位相t□とt2において互いに電圧が異なる電気信号
を与え、且つ信号電極群には所定の情報の有、無、又は
前回走査時の情報をそのまま保持するか否かに応じて、
電圧の異なる電気信号を与える。すなわち、上記選択さ
れた走査電極線上の情報信号有の部分に於ては、位相t
1 (tj2)で上記液晶に対して、第1の安定状態を
与える一方向の電界を付与し、無の部分に於ては位相t
2 (tt)で第2の安定状態を与える逆方向の電界を
付与し、又、前回走査時の情報をそのまま保持したい部
分に於ては、位相t1及びt2に於て、一つの安定状態
から他の安定状態へ転移するための電界閾値以下の電界
を付与することによって、液晶素子を駆動することがで
きる。その具体例の詳細は、図面を参照しつつ、後程説
明する。
In a preferred embodiment of the present invention, a group of scanning electrodes are sequentially selected based on a scanning signal, a group of signal electrodes facing the group of scanning electrodes are selected based on a predetermined information signal, and a group of signal electrodes is held between the two electrodes. Electric signals having different voltages at phases t□ and t2 are applied to selected scanning electrodes of a liquid crystal element having at least a liquid crystal that is bistable with respect to an electric field, and a predetermined voltage is applied to a group of signal electrodes. Depending on the presence or absence of information, or whether or not to retain the information from the previous scan,
Give electrical signals of different voltages. That is, in the portion where the information signal is present on the selected scanning electrode line, the phase t
1 (tj2), a unidirectional electric field that gives the first stable state is applied to the liquid crystal, and in the empty part, the phase t
2 (tt), apply an electric field in the opposite direction to give a second stable state, and in the part where you want to keep the information from the previous scan, change from one stable state at phases t1 and t2. The liquid crystal element can be driven by applying an electric field below the electric field threshold for transition to another stable state. Details of the specific example will be explained later with reference to the drawings.

本発明の駆動法で用いる光学変調物質としては、加えら
れる電界に応じて第1の光学的安定状態と第2の光学的
安定状態とのいずれかを取る、すなわち電界に対する双
安定状態を有する物質、特にこのような性質を有する液
晶、が用いられる。
The optical modulation material used in the driving method of the present invention is a material that takes either a first optically stable state or a second optically stable state depending on the applied electric field, that is, a material that has a bistable state with respect to the electric field. In particular, liquid crystals having such properties are used.

本発明の駆動法で用いることができる双安定性を有する
液晶としては、強誘電性を有するカイラルスメクテイッ
ク液晶が最も好ましく、そのうち力イラルスメクテイッ
クC相(SmC”)又はH相(SmH” )の液晶が適
している。この強誘電性液晶については、′”LE J
OυRNAL DE PHYSIQUELETTERS
 ” 3B (L−8El)1975. rFerro
electricLiquid Crystals J
 ; ” Applied Physics Let−
ters” 3B (11)1880、 rSubmi
cro 5econd B1−5table Elec
trooptic Switching in Liq
uidCrystalsJ ; ”固体物理” 18 
(141) 11181 r液晶」等に記載されており
、本発明ではこれらに開示された強誘電性液晶を用いる
ことができる。
As the liquid crystal having bistability that can be used in the driving method of the present invention, a chiral smectic liquid crystal having ferroelectricity is most preferable. ”) is suitable. Regarding this ferroelectric liquid crystal, ``LE J
OυRNAL DE PHYSIQUELETTERS
” 3B (L-8El) 1975. rFerro
electricLiquid Crystals J
; ” Applied Physics Let-
ters” 3B (11) 1880, rSubmi
cro 5econd B1-5table Elec
trooptic Switching in Liq
uidCrystalsJ; “Solid State Physics” 18
(141) 11181r Liquid Crystal", etc., and the ferroelectric liquid crystal disclosed in these can be used in the present invention.

より具体的には、本発明法に用いられる強誘電性液晶化
合物の例としては、デシロキシベンジリデン−E′−ア
ミノ−2−メチルブチルシンナメート(DOBAMBC
)、ヘキシルオキシベンジリデン−E′−アミノ−2−
クロロプロビルシンナメ−) (HOBACPC)およ
び4−o−(2−メチル)−ブチルレゾルシリチン−4
フーオクチルアニリン(MBRA8)等が挙げられる。
More specifically, an example of a ferroelectric liquid crystal compound used in the method of the present invention is decyloxybenzylidene-E'-amino-2-methylbutylcinnamate (DOBAMBC).
), hexyloxybenzylidene-E'-amino-2-
Chloroprovir cinname-) (HOBACPC) and 4-o-(2-methyl)-butylresorsilitin-4
Examples include fuoctylaniline (MBRA8).

これらの材料を用いて、素子を構成する場合、液晶化合
物が、S m C”相又はS m H”相となるような
温度状態に保持する為、必要に応じて素子をヒーターが
埋め込まれた銅ブロック等により支1 持することができる。
When constructing an element using these materials, a heater may be embedded in the element as necessary to maintain the temperature at which the liquid crystal compound becomes the S m C" phase or the S m H" phase. It can be supported by copper blocks, etc.

第1図は、強誘電性液晶セルの例を模式的に描いたもノ
テある。21と21’は、In20B、5n02やI 
T O(Indium−Tin 0xide)等の透明
電極がコートされた基板(ガラス板)であり、その間に
液晶分子層22がラス面に垂直になるよう配向したS 
m C”相の液晶が封入されている。太線で示した線2
3が液晶分子を表わしており、この液晶分子23は、そ
の分子に直交した方向に双極子モーメント(Pよ)24
を有している。基板21と21’上の電極間に一定の閾
値具」二の電圧を印加すると、液晶分子23のらせん構
造がほどけ、双極子モーメント(Pよ)24はすべて電
界方向に向くよう、液晶分子23の配向方向を変えるこ
とができる。液晶分子23は細長い形状を有しており、
その長袖方向と短軸方向で屈折率異方性を示し、従って
例えばガラス面の上下に互いにクロスニコルの位置関係
に配置した偏光子を置けば、電圧印加極性によって光学
特性が変わる液晶光学変調素子となることは、容易に理
解される。
Figure 1 schematically depicts an example of a ferroelectric liquid crystal cell. 21 and 21' are In20B, 5n02 and I
It is a substrate (glass plate) coated with a transparent electrode such as TO (Indium-Tin Oxide), between which a liquid crystal molecular layer 22 is oriented perpendicular to the lath surface.
m C” phase liquid crystal is sealed. Line 2 shown by thick line
3 represents a liquid crystal molecule, and this liquid crystal molecule 23 has a dipole moment (P) 24 in the direction perpendicular to the molecule.
have. When a certain threshold voltage is applied between the electrodes on the substrates 21 and 21', the helical structure of the liquid crystal molecules 23 is unraveled, and the liquid crystal molecules 23 are twisted so that all the dipole moments (P) 24 are oriented in the direction of the electric field. The orientation direction can be changed. The liquid crystal molecules 23 have an elongated shape,
It exhibits refractive index anisotropy in the long axis direction and the short axis direction, and therefore, if polarizers are placed above and below the glass surface in a crossed nicol positional relationship, the optical properties of the liquid crystal optical modulation element change depending on the polarity of voltage application. It is easy to understand that.

2 さらに液晶セルの厚さを充分に薄くした場合(例えばi
p)には、第2図に示すように電界を印加していない状
態でも液晶分子のらせん構造は、はどけ、その双極子モ
ーメン)P又はP′は上向き(34)又は下向(34’
)のどちらかの状態をとる。このようなセルに第2図に
示す如く一定の閾値以上の極性の異る電界E又はE′を
付与すると、双極子モーメントは電界E又はE′の電界
ベクトルに対応して上向き34又は、下向き34′と向
きを変え、それに応じて液晶分子は第1の安定状態33
かあるいは第2の安定状態33′の何れか1方に配向す
る。
2 Furthermore, when the thickness of the liquid crystal cell is made sufficiently thin (for example, i
As shown in Fig. 2, the helical structure of the liquid crystal molecules is released even when no electric field is applied, and its dipole moment) P or P' is directed upward (34) or downward (34') as shown in Figure 2.
). When an electric field E or E' with a different polarity above a certain threshold value is applied to such a cell as shown in FIG. 34', and accordingly the liquid crystal molecules enter the first stable state 33
or the second stable state 33'.

このような強誘電性液晶を光学変調素子として用いるこ
との利点は2つある。第1に、応答速度が極めて速いこ
と、第2に液晶分子の配向が双安定・性を有することで
ある。第2の点を例えば、第2図によって説明すると、
電界Eを印加すると液晶分子は第1の安定状態33に配
向するが、この状態は電界を切っても安定である。又、
逆向きの電界E′を印加すると、液晶分子は第2の安定
状33′に配向して、その分子の向きを変えるが、やは
り電界を切ってもこの状態に留っている。又、与える電
界Eが一定の閾値を越えない限り、それぞれの配向状態
にやはり維持されている。このような応答速度の速さと
、双安定性が有効に実現されるには、セルとしては出来
るだけ薄い方が好ましく、一般的には、0.5p〜20
4、特にIIl、〜5ルが適している。この種の強誘電
性液晶を用いたマトリクス電極構造を有する液晶−電気
光学装置は、例えばクラークとラガバルにより、米国特
許第4367924号明細書で提案されている。
There are two advantages to using such a ferroelectric liquid crystal as an optical modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules is bistable. To explain the second point using, for example, Figure 2,
When the electric field E is applied, the liquid crystal molecules are aligned in a first stable state 33, and this state remains stable even when the electric field is turned off. or,
When an opposite electric field E' is applied, the liquid crystal molecules are oriented in a second stable state 33' and change their orientation, but they remain in this state even after the electric field is turned off. Further, as long as the applied electric field E does not exceed a certain threshold value, each orientation state is maintained. In order to effectively realize such fast response speed and bistability, it is preferable for the cell to be as thin as possible, and generally, the thickness is 0.5p to 20p.
4, especially IIl, to 5l are suitable. A liquid crystal-electro-optical device having a matrix electrode structure using this type of ferroelectric liquid crystal has been proposed, for example, by Clark and Ragabal in US Pat. No. 4,367,924.

本発明の駆動法の好ましい具体例を、第3図(A)−(
D)を用いて説明する。
A preferred specific example of the driving method of the present invention is shown in FIGS.
This will be explained using D).

第3図(A)−(a)は、中間に強誘電性液晶化合物(
図示せず)が挟まれたマトリクス電極構造を有するセル
11の電極の模式配置図である。
Figure 3(A)-(a) shows a ferroelectric liquid crystal compound (
FIG. 2 is a schematic layout diagram of electrodes of a cell 11 having a matrix electrode structure in which electrodes (not shown) are sandwiched.

12は走査電極群であり、13は信号電極群である。第
3図(A)−(b)と(A)−(c)はそれぞれ選択さ
れた走査電極12(s)に与えられる電気信号とそれ以
外の走査電極(選択されない走査電極)12(n)に与
えられる電気信号を示し、第3図(A)−(b)と(A
)−(d)はそれぞれ選択された信号電極13(s)に
与えられる電気信号と選択されない信号電極13(n)
に与えられる電気信号を表わす。第3図(A)−(b)
〜(A)−(e)それぞれ横軸が時間を、縦軸が電圧を
表す。例えば、動画を表示するような場合には、走査電
極群12は逐次、周期的に選択される。今、双安定性を
有する液晶セルの、第1の安定状態を与えるための閾値
電圧をvth、とし、第2の安定状態を与えるための閾
値電圧を−Vth、とすると、選択された走査電極12
(s)に与えられる電極信号は、第3図(A) −(b
)に示される如く位相(時間)trではV、位相(時間
)t2では一■、となるような交番する電圧である。こ
のように選択された走査電極に互いに電圧の異なる複数
の位相間隔を有する電気信号を印加すると、素子の表示
状態を決定する液晶の二つの安定状態を、容易且つ速や
かに変換し得るとい5 う重要な効果が得られる。
12 is a scanning electrode group, and 13 is a signal electrode group. FIGS. 3(A)-(b) and (A)-(c) show electrical signals applied to the selected scanning electrode 12(s) and other scanning electrodes (unselected scanning electrodes) 12(n), respectively. Figures 3 (A)-(b) and (A
)-(d) are the electrical signals given to the selected signal electrode 13(s) and the unselected signal electrode 13(n), respectively.
represents the electrical signal given to Figure 3 (A)-(b)
~(A)-(e) The horizontal axis represents time and the vertical axis represents voltage. For example, when displaying a moving image, the scanning electrode groups 12 are sequentially and periodically selected. Now, if the threshold voltage for providing the first stable state of a liquid crystal cell having bistable property is vth, and the threshold voltage for providing the second stable state is -Vth, then the selected scanning electrode 12
The electrode signals given to (s) are shown in Fig. 3 (A) - (b
), it is an alternating voltage such that it is V at phase (time) tr and 12 at phase (time) t2. It is said that by applying electrical signals having a plurality of phase intervals with different voltages to the scanning electrodes selected in this way, it is possible to easily and quickly convert between the two stable states of the liquid crystal that determine the display state of the element. Important effects can be obtained.

一方、それ以外の走査電極12(n)は、第3図(A)
−(c)に示す如くアース状態となっており、電気信号
0である。また、選択された信号電極13(s)に与え
られる電気信号は、第3図(A)−(d)に示される如
くVであり、また選択されない信号電極13(n)に与
えられる電気信号は、第3図(A)−(e)に示される
如く一■である。以上に於て電圧値■は、v<vth□
<2Vと−V>−Vt h2>−2Vを満足する所望の
値に設定される。このような電気信号が与えられたとき
の各画素、すなわち第3図(A)−(a)に示される画
素A、B、CおよびD、にそれぞれ印加される電圧波形
を、第3図(B)の(a)、(b)、(C)および(d
)に示す。すなわち、第3図(B)−(a)〜(d)よ
り明らかな如く、選択された走査線上にある画素Aでは
位相t2に於て閾値vth□を越える電圧2vが印加さ
れる。又、同一走査線上に存在する画素Bでは位相11
に於て閾値−Vth2を越える電圧−26 ■が印加される。従って、選択された走査電極線上に於
て、信号電極が選択されたか否かに応じて、選択された
場合には、液晶分子は第1の安定状態に配向を揃え、選
択されない場合には第2の安定状態に配向を揃える。い
ずれにしても各画素の前歴には関係することはない。
On the other hand, the other scanning electrodes 12(n) are shown in FIG. 3(A).
- As shown in (c), it is in a grounded state and the electrical signal is 0. Further, the electric signal given to the selected signal electrode 13(s) is V as shown in FIGS. 3(A)-(d), and the electric signal given to the unselected signal electrode 13(n) is V. is 1, as shown in FIGS. 3(A)-(e). In the above, the voltage value ■ is v<vth□
It is set to a desired value that satisfies <2V and -V>-Vt h2>-2V. The voltage waveforms applied to each pixel, that is, pixels A, B, C, and D shown in FIG. 3(A)-(a) when such an electric signal is applied, are shown in FIG. B) (a), (b), (C) and (d
). That is, as is clear from FIG. 3(B)-(a) to (d), a voltage of 2v exceeding the threshold value vth□ is applied to the pixel A on the selected scanning line at phase t2. Furthermore, for pixel B existing on the same scanning line, the phase is 11.
At , a voltage of -26 (2) exceeding the threshold value -Vth2 is applied. Therefore, depending on whether or not a signal electrode is selected on the selected scanning electrode line, if the signal electrode is selected, the liquid crystal molecules are aligned in the first stable state, and if not selected, the liquid crystal molecules are aligned in the first stable state. Align the orientation to the stable state of 2. In any case, it has nothing to do with the previous history of each pixel.

一方、画素CとDに示される如く、選択されない走査線
上では、すべての画素CとDに印加される電圧は+V又
は、−■であって、いずれも閾値電圧を越えない。従っ
て、各画素CとDにおける液晶分子は、配向状態を変え
ることなく前回走査されたときの信号状態に対応した配
向を、そのまま保持している。即ち、走査電極が選択さ
れたときにそのlライフ分の信号の書き込みが行われ、
1フレームが終了して次回選択されるまでの間は、その
信号状態を保持し得るわけである。従って、走査電極数
が増えても、実質的なデユーティ比はかわらず、コント
ラストの低下とクロストーク等は全く生じない。この際
電圧値Vの値及び位相(t□+t2)=Tの値としては
、用いられる液晶材料やセルの厚さにも依存するが、通
常3ポルト〜770ポルトでO,1pLsec 〜2m
5ecの範囲が用いられる。従来公知の駆動方法と本質
的の異なるのは、本発明の方法では選択された走査電極
に与えられる電気信号が、第1の安定状態(光信号に変
換されたとき「明」状態であるとする)から第2の安定
状態(光信号に変換されたとき「暗」状態であるとする
)へ、又はその逆のいずれの変化も起し易くするもので
ある点にある。
On the other hand, as shown in pixels C and D, on unselected scanning lines, the voltages applied to all pixels C and D are +V or -■, neither of which exceeds the threshold voltage. Therefore, the liquid crystal molecules in each pixel C and D maintain the orientation corresponding to the signal state when scanned last time without changing the orientation state. That is, when a scanning electrode is selected, signals for its l life are written,
The signal state can be maintained until the next selection after one frame ends. Therefore, even if the number of scanning electrodes increases, the actual duty ratio does not change, and contrast reduction and crosstalk do not occur at all. At this time, the value of the voltage value V and the value of the phase (t□+t2)=T depend on the liquid crystal material used and the thickness of the cell, but it is usually O, 1 pLsec ~ 2 m at 3 ports to 770 ports.
A range of 5ec is used. The essential difference from conventionally known driving methods is that in the method of the present invention, the electrical signal applied to the selected scanning electrode is in a first stable state (a "bright" state when converted into an optical signal). The point here is that it facilitates a change from a second stable state (which is assumed to be a "dark" state when converted to an optical signal) or vice versa.

このために、選択された走査電極に与えられる信号は、
例えば+Vから一■へと交番している。又、信号電極に
与えられる電圧は、明又は暗の状態を指定すべく、互い
に異なる電圧としている。
For this purpose, the signal given to the selected scanning electrode is
For example, it alternates from +V to 1■. Further, the voltages applied to the signal electrodes are set to be different voltages to specify a bright or dark state.

さて、このようにしてlフレームの走査が終了したとき
の画像例を第3図(C)に示す。次に、例えば、この画
像の部分的な書換えを行ったときの例を第3図(D)−
(a)に示す。図に示すように、走査電極群X′、信号
電極群Y′の領域のみを書き換えたい場合には、走査信
号は順次X′の領域のみに加える。又、情報信号は情報
の有無に応じた信号をY′の領域に加え、前回走査時に
書き込んだ情報をそのまま保持したい(すなわち新たな
情報を与えない)領域Yには、第3図(D)−(b)に
示すような信号(この場合は、0V信号)を加える。従
って、領域Yに於て各画素に印加される電圧は、走査時
は第3図(D) −(C)の如く、また非走査時は第3
図(D)−dの如くなり、いずれの場合にも閾値電圧を
越えないため、前回走査したときの画像がそのまま保存
される。
Now, FIG. 3(C) shows an example of an image when scanning of one frame is completed in this manner. Next, for example, an example of partially rewriting this image is shown in Fig. 3(D)-
Shown in (a). As shown in the figure, when it is desired to rewrite only the area of the scanning electrode group X' and the signal electrode group Y', the scanning signal is sequentially applied only to the area of X'. In addition, as for the information signal, a signal corresponding to the presence or absence of information is added to the area Y', and in the area Y where it is desired to keep the information written in the previous scan as it is (that is, do not give new information), the signal shown in FIG. 3 (D) is added. - Add a signal as shown in (b) (in this case, a 0V signal). Therefore, the voltage applied to each pixel in area Y is as shown in FIGS. 3(D)-(C) during scanning, and as shown in FIGS.
As shown in Figure (D)-d, since the threshold voltage is not exceeded in any case, the image scanned last time is saved as is.

本発明の駆動法が有効に達成されるためには、走査電極
或いは信号電極に与えられる電気信号が必ずしも第3図
(A)−(b)〜(e)及び第3図(D)−(b)〜(
d)に於て説明されたような、単純な矩形波信号でなく
てもよいことは自明である。例えば、有効な時間巾が与
えられる限りにおいて、正弦波や三角波によって駆動す
ることも可能である。
In order for the driving method of the present invention to be effectively achieved, the electrical signals applied to the scanning electrodes or the signal electrodes do not necessarily correspond to the values shown in FIGS. 3(A)-(b) to (e) and 3(D)-( b)~(
It is obvious that the signal does not have to be a simple rectangular wave signal as explained in d). For example, it is also possible to drive with a sine wave or a triangular wave, as long as an effective time span is provided.

また、第4図は、本発明の駆動法の別の具体例を示して
いる。第4図(a)、(b)、(C)、9 (d)および(e)は、それぞれ選択された走査電極の
信号、選択されない走査電極の信号、選択された(情報
有の)情報信号、選択されない(情報無の)情報信号お
よび前回走査時の信号をそ(のまま保持する情報信号、
を表わしている。第4図(e)に於けるY′の値は、 IV’−Vl<1Vthl I、1vth21、l v
 ’ l < l V t h t I、1Vth21
を満足するよう設定される。
Further, FIG. 4 shows another specific example of the driving method of the present invention. Figures 4 (a), (b), (C), 9 (d) and (e) respectively show the signal of the selected scanning electrode, the signal of the unselected scanning electrode, and the selected (with information) information. signals, information signals that are not selected (no information), and information signals that keep the signals from the previous scan as they are;
It represents. The value of Y' in FIG. 4(e) is IV'-Vl<1Vthl I, 1vth21, l v
' l < l V th t I, 1Vth21
is set to satisfy.

第5図には、更に別の変形例が示されている。FIG. 5 shows yet another modification.

すなわち第5図(EL)、(b)、(C)、(d)およ
び(e)は、それぞれ、選択された走査電極の信号(第
5図(a))、選択されない走査電極の信号(第5図(
b)、選択された(情報有の)情報信号(第5図(C)
)、選択されない(情報無しの)情報信号(第5図(d
))および前回走査の信号をそのまま保持する情報信号
(第5図(e))、を表わしている。この際、本発明に
基づいて正しく駆動されるためには、第5図に示す駆動
法では、以下の関係が満足されることが必要で0 ある。 すなわち、 且つ、 (Va ’ Vo 2V)<−Vt h2
That is, FIGS. 5(EL), (b), (C), (d), and (e) represent the signals of the selected scanning electrode (FIG. 5(a)) and the signals of the unselected scanning electrodes (FIG. 5(a)), respectively. Figure 5 (
b) Selected (information-containing) information signal (Fig. 5(C)
), unselected (no information) information signal (Fig. 5(d)
)) and an information signal (FIG. 5(e)) that retains the signal of the previous scan as it is. At this time, in order to drive correctly based on the present invention, the following relationship must be satisfied in the driving method shown in FIG. That is, and (Va'Vo 2V)<-Vt h2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、カイラルスメクテイック相液晶を有する液晶
素子を、模式的に示す斜視図である。第2図は、本発明
法で用いる液晶素子の双安定性を模式的に示す斜視図で
ある。 第3図(A)(a)は、本発明の駆動法に用いる液晶素
子の電極配列状態を模式的に示す平面図である。第3図
(A)(b)は選択された走査電極に加えられる電気信
号波形図である。第3図(A)(C)は、選択されない
走査電極に加えられる信号波形図である。第3図(A)
(d)は、選択された信号電極に加えられる情報信号波
形図である。第3図(A)(e)は、選択されない信号
電極に加えられる情報信号波形図である。第3図(B)
(a)は、画素Aの液晶に印加される電圧の波形図であ
る。第3図(B)(b)は、画素Bの液晶に印加される
電圧の波形図である。第3図(B)(c)は、画素Cの
液晶に印加される電圧の波形図である。第3図(B)(
d)は、画素りの液晶に印加される電圧の波形図である
。第3図(C)は、lフレーム走査終了後の液晶素子に
与えられた画像例の説明図である。第3図(D)(a)
は、第3図(C)の画像の一部を書換えた後の画像例で
ある。第3図(D)(b)は、書換え時に新たな画像情
報を与えない信号電極に加えられる情報信号波形図であ
る。第3図(D)CG>および(d)は、書換え時に新
たな画像情報を与えない信号電極と、それぞれ、選択さ
れた、および選択されない走査電極と、の間の液晶に印
加される電圧波形図である。 第4図(a)は、別の具体的における選択された走査電
極に加えられる信号波形図である。第4図(b)は、当
該別の具体例における選択されない走査電極に加えられ
る信号波形図である。第4図(C)および(d)は、そ
れぞれ当該別の具体例において、新たな画像情報を与え
るべき信号電極のうち、それぞれ選択された、および選
択されない信号電極に加えられる情報信号波形図である
。第4図(e)は、新たな画像情報を与えない信号電極
に加えられる信号波形図である。 第5図(a)は、他の具体例における選択された、走査
電極に加えられる信号波形図である。第5図(b)は、
当該他の具体例における選択されない走査電極に加えら
れる信号波形図である。第5図(C)および(d)は、
それぞれ当該他の具体例において、新たな画像情報を与
えるべき信号電極のうち、それぞれ選択された、および
選択されない信号電極に加えられる情報信号波形図であ
る。第5図(e)は、新たな画像情報を与えない3 信号電極に加えられる信号波形図である。 11 ・・・・液晶素子 12 ・・・・走査電極群 12(a)・・選択された走査電極 12(n)・・選択されない走査電極 13 ・・・Φ信号電極群 13(s)・拳選択された信号電極 13(n)・・選択されない信号電極 33 −・・第1の安定状態に配向した液晶33′ ・
・・第2の安定状態に配向した液晶34 ・拳・上向き
双極子モーメントP34′ ・・Φ下向き双極子モーメ
ントP′X・−Φ・走査電極群の非書換対象領域X′・
・・走査電極群の書換対象領域 Y・争・・信号電極群の非書換対象領域Y′・・・信号
電極群の書換対象領域 4 電 l 霞 rl!;5図(A) 麺 第3 即(8) 緩 ゲ 雪5図(D) (C) (ct) ロロuu口 (b) 4 良 (d) 1e) 1gs <a) (b) UILど (C) (d) Ce)
FIG. 1 is a perspective view schematically showing a liquid crystal element having chiral smectic phase liquid crystal. FIG. 2 is a perspective view schematically showing the bistability of the liquid crystal element used in the method of the present invention. FIG. 3(A)(a) is a plan view schematically showing the electrode arrangement state of a liquid crystal element used in the driving method of the present invention. FIGS. 3A and 3B are waveform diagrams of electrical signals applied to selected scanning electrodes. FIGS. 3A and 3C are signal waveform diagrams applied to unselected scanning electrodes. Figure 3 (A)
(d) is an information signal waveform diagram applied to a selected signal electrode. FIGS. 3(A) and 3(e) are information signal waveform diagrams applied to unselected signal electrodes. Figure 3 (B)
(a) is a waveform diagram of the voltage applied to the liquid crystal of pixel A. FIG. 3(B)(b) is a waveform diagram of the voltage applied to the liquid crystal of pixel B. FIGS. 3B and 3C are waveform diagrams of voltages applied to the liquid crystal of pixel C. Figure 3 (B) (
d) is a waveform diagram of the voltage applied to the liquid crystal of each pixel. FIG. 3(C) is an explanatory diagram of an example of an image given to the liquid crystal element after one frame scanning is completed. Figure 3 (D) (a)
is an example of an image after a part of the image in FIG. 3(C) has been rewritten. FIGS. 3(D) and 3(b) are information signal waveform diagrams applied to signal electrodes that do not provide new image information during rewriting. FIG. 3 (D) CG> and (d) show voltage waveforms applied to the liquid crystal between the signal electrode that does not give new image information during rewriting and the selected and unselected scanning electrodes, respectively. It is a diagram. FIG. 4(a) is a signal waveform diagram applied to selected scanning electrodes in another example. FIG. 4(b) is a signal waveform diagram applied to unselected scanning electrodes in this other specific example. FIGS. 4(C) and (d) are information signal waveform diagrams applied to selected and unselected signal electrodes, respectively, among the signal electrodes to which new image information is to be given in the other specific example. be. FIG. 4(e) is a signal waveform diagram applied to a signal electrode that does not provide new image information. FIG. 5(a) is a diagram of selected signal waveforms applied to the scanning electrodes in another specific example. Figure 5(b) shows
FIG. 7 is a signal waveform diagram applied to unselected scanning electrodes in the other specific example. FIGS. 5(C) and (d) are
FIG. 7 is a waveform diagram of information signals applied to selected and unselected signal electrodes among the signal electrodes to provide new image information in the other specific examples. FIG. 5(e) is a diagram of signal waveforms applied to the three signal electrodes that do not provide new image information. 11...Liquid crystal element 12...Scanning electrode group 12(a)...Selected scanning electrode 12(n)...Unselected scanning electrode 13...Φ signal electrode group 13(s)/Fist Selected signal electrode 13(n)...Unselected signal electrode 33--Liquid crystal 33' aligned in the first stable state.
... Liquid crystal 34 oriented in the second stable state - Fist - upward dipole moment P34' - Φ downward dipole moment P'X - -Φ - non-rewriting target area X' of scanning electrode group
...Rewriting target area Y of the scanning electrode group...Rewriting target area Y' of the signal electrode group...Rewriting target area 4 of the signal electrode group Electric l Kasumi rl! ;5 figure (A) Noodles No. 3 Soku (8) Yugeyuki figure 5 (D) (C) (ct) Roro uu mouth (b) 4 Good (d) 1e) 1gs <a) (b) UIL ( C) (d) Ce)

Claims (1)

【特許請求の範囲】 1、走査電極群と所定の情報信号を与える信号電極群と
を有し、該走査電極群と信号電極群と゛の間に、電界に
対して双安定性を有する光学変調物質を配置した構造を
有する光学変調素子の駆動法において、前記走査電極群
の選択された走査電極と前記信号電極群の新たな画像情
報を与えるべき信号電極のうち選択されたものとの間で
、前記双安定性を有する光学変調物質が第1の安定状態
に配向する電圧を印加し、且つ前記選択された走査電極
と前記信号電極群の新たな画像情報を与えるべき信号電
極のうち選択されないものとの間で、前記双安定性を有
する光学変調物質が第2の安定状態に配向する電圧を印
加するとともに、前記走査電極群の選択されない走査電
極と前記信号電極群との間、及びすべての走査電極と新
たな画像情報を与えない信号電極との間で、前記双安定
性を有する光学変調物質の閾値電圧−vth、、(第2
安定状態の閾値電圧を言う)とvth、(第1安定状態
の閾値電圧を言う)との間の値に設定した電圧を印加す
ることを特徴とする光学変調素子の駆動法。 2、前記走査電極群の選択された走査電極に電圧の異な
る位相を有する電気信号を印加し、且つ前記信号電極群
の選択された信号電極と、選択されない信号電極と、新
たな画像情報を与えない信号電極とに、それぞれ電圧の
異なる電気信号を与える特許請求の範囲第1項記載の光
学変調素子の駆動法。 3、前記走査電極群の選択された走査電極に電圧極性の
異なる位相を有する電気信号を印加し、且つ前記信号電
極群の選択された信号電極と選択されない信号電極とに
それぞれ電圧極性の異なる電気信号を与える特許請求の
範囲第1項記載の光学変調素子の駆動法。 4、前記双安定性を有する光学変調物質が強誘電性液晶
である特許請求の範囲第1項記載の光学変調素子の駆動
法。 5.前記強誘電性液晶がカイラルスメクテイック相を有
する液晶である特許請求の範囲第4項記載の光学変調素
子の駆動法。 6、前記力イラルスメテイック相を有する液晶がらせん
構造を形成していない液晶相である特許請求の範囲第5
項記載の光学変調素子の駆動法。 7、前記力イラルスメクテイック相を有する液晶がC相
又はH相を有する液晶である特許請求の範囲第5項また
は第6項記載の光学変調素子の駆動法。
[Claims] 1. An optical modulation material having a scanning electrode group and a signal electrode group that provides a predetermined information signal, and having bistability with respect to an electric field between the scanning electrode group and the signal electrode group. In the driving method of an optical modulation element having a structure in which: between a selected scanning electrode of the scanning electrode group and a selected signal electrode to give new image information of the signal electrode group, Applying a voltage to orient the bistable optical modulation material to a first stable state, and applying a voltage to the signal electrodes that are not selected among the selected scanning electrodes and the signal electrode group to provide new image information. A voltage is applied between the bistable optical modulating material to align it to the second stable state, and between unselected scan electrodes of the scan electrode group and the signal electrode group, and between all of the signal electrode groups. The threshold voltage -vth, (second
1. A method for driving an optical modulation element, comprising applying a voltage set to a value between Vth (referring to a threshold voltage in a stable state) and vth (referring to a threshold voltage in a first stable state). 2. Applying electrical signals having voltages with different phases to the selected scanning electrodes of the scanning electrode group, and providing new image information to the selected signal electrodes and unselected signal electrodes of the signal electrode group; 2. The method of driving an optical modulation element according to claim 1, wherein electrical signals of different voltages are applied to each signal electrode. 3. Applying electrical signals having different voltage polarities and phases to the selected scanning electrodes of the scanning electrode group, and applying electrical signals having different voltage polarities to the selected signal electrodes and unselected signal electrodes of the signal electrode group. A method for driving an optical modulation element according to claim 1, which provides a signal. 4. The method for driving an optical modulation element according to claim 1, wherein the optical modulation substance having bistability is a ferroelectric liquid crystal. 5. 5. The method of driving an optical modulation element according to claim 4, wherein the ferroelectric liquid crystal is a liquid crystal having a chiral smectic phase. 6. Claim 5, wherein the liquid crystal having a helical smetic phase is a liquid crystal phase that does not form a helical structure.
Driving method of the optical modulation element described in 2. 7. The method for driving an optical modulation element according to claim 5 or 6, wherein the liquid crystal having a radial smectic phase is a liquid crystal having a C phase or an H phase.
JP13870783A 1983-04-13 1983-07-30 Driving method of optical modulating element Granted JPS6031120A (en)

Priority Applications (42)

Application Number Priority Date Filing Date Title
JP13870783A JPS6031120A (en) 1983-07-30 1983-07-30 Driving method of optical modulating element
US06/598,800 US4655561A (en) 1983-04-19 1984-04-10 Method of driving optical modulation device using ferroelectric liquid crystal
DE3448303A DE3448303C2 (en) 1983-04-19 1984-04-18
DE3448305A DE3448305C2 (en) 1983-04-19 1984-04-18
DE19843414704 DE3414704A1 (en) 1983-04-19 1984-04-18 METHOD FOR DRIVING AN OPTICAL MODULATING DEVICE
DE3448304A DE3448304C2 (en) 1983-04-19 1984-04-18
DE3448307A DE3448307C2 (en) 1983-04-19 1984-04-18
GB08410068A GB2141279B (en) 1983-04-19 1984-04-18 Method of driving optical modulation device
DE3448306A DE3448306C2 (en) 1983-04-19 1984-04-18
FR8406275A FR2544884B1 (en) 1983-04-19 1984-04-19 METHOD FOR CONTROLLING AN OPTICAL MODULATION DEVICE
GB08619691A GB2180384B (en) 1983-04-19 1986-08-13 Driving display devices
GB08619692A GB2180385B (en) 1983-04-19 1986-08-13 Liquid crystal apparatus
GB08619831A GB2180386B (en) 1983-04-19 1986-08-14 Liquid crystal apparatus
GB08712392A GB2190530B (en) 1983-04-19 1987-05-27 Liquid crystal apparatus
GB08712391A GB2191623B (en) 1983-04-19 1987-05-27 Liquid crystal apparatus
US07/139,162 US5448383A (en) 1983-04-19 1987-12-21 Method of driving ferroelectric liquid crystal optical modulation device
US07/557,643 US5418634A (en) 1983-04-19 1990-07-25 Method for driving optical modulation device
SG5291A SG5291G (en) 1983-04-19 1991-01-31 Liquid crystal apparatus
SG6491A SG6491G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG6591A SG6591G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG6191A SG6191G (en) 1983-04-19 1991-02-07 Liquid crystal apparatus
SG10391A SG10391G (en) 1983-04-19 1991-02-21 Liquid crystal apparatus
SG116/91A SG11691G (en) 1983-04-19 1991-02-23 Method of driving optical modulation device
HK715/91A HK71591A (en) 1983-04-19 1991-09-05 Method of driving optical modulation device
HK709/91A HK70991A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK705/91A HK70591A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK706/91A HK70691A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK707/91A HK70791A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
HK708/91A HK70891A (en) 1983-04-19 1991-09-05 Liquid crystal apparatus
US08/440,321 US5812108A (en) 1983-04-19 1995-05-12 Method of driving optical modulation device
US08/444,898 US5825390A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/444,899 US5548303A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/444,746 US5592192A (en) 1983-04-19 1995-05-19 Method of driving optical modulation device
US08/462,978 US5790449A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/463,781 US5841417A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,225 US5565884A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,058 US5696525A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,090 US5831587A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/462,974 US5886680A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/463,780 US5621427A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/465,357 US5696526A (en) 1983-04-19 1995-06-05 Method of driving optical modulation device
US08/863,598 US6091388A (en) 1983-04-13 1997-05-27 Method of driving optical modulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13870783A JPS6031120A (en) 1983-07-30 1983-07-30 Driving method of optical modulating element

Publications (2)

Publication Number Publication Date
JPS6031120A true JPS6031120A (en) 1985-02-16
JPS6243167B2 JPS6243167B2 (en) 1987-09-11

Family

ID=15228243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13870783A Granted JPS6031120A (en) 1983-04-13 1983-07-30 Driving method of optical modulating element

Country Status (1)

Country Link
JP (1) JPS6031120A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118929A (en) * 1984-07-05 1986-01-27 Seiko Instr & Electronics Ltd Liquid-crystal display device
JPS6275516A (en) * 1985-09-30 1987-04-07 Matsushita Electric Ind Co Ltd Driving method for optical modulation switch
JPS62133426A (en) * 1985-12-06 1987-06-16 Canon Inc Liquid crystal device
JPS62134691A (en) * 1985-12-07 1987-06-17 キヤノン株式会社 Liquid crystal unit
US5422748A (en) * 1991-11-22 1995-06-06 Canon Kabushiki Kaisha Liquid crystal device and display apparatus
US5458804A (en) * 1992-05-26 1995-10-17 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5460749A (en) * 1992-12-25 1995-10-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal display apparatus
EP0711818A1 (en) 1994-11-10 1996-05-15 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5573703A (en) * 1993-10-13 1996-11-12 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and liquid crystal apparatus using it
US5582763A (en) * 1993-09-29 1996-12-10 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus using same
EP0770662A2 (en) 1991-11-22 1997-05-02 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and display apparatus
US5709818A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709819A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5710433A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5733475A (en) * 1995-01-31 1998-03-31 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5744059A (en) * 1995-01-31 1998-04-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5785890A (en) * 1995-10-12 1998-07-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, and liquid crystal display apparatus using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515993A (en) * 1974-07-03 1976-01-19 Suwa Seikosha Kk
JPS5299857A (en) * 1976-02-17 1977-08-22 Citizen Watch Co Ltd Electro chromic indicator drive circuit
JPS56757A (en) * 1979-06-15 1981-01-07 Nippon Telegr & Teleph Corp <Ntt> Terminal unit for diversity of car telephone
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515993A (en) * 1974-07-03 1976-01-19 Suwa Seikosha Kk
JPS5299857A (en) * 1976-02-17 1977-08-22 Citizen Watch Co Ltd Electro chromic indicator drive circuit
JPS56757A (en) * 1979-06-15 1981-01-07 Nippon Telegr & Teleph Corp <Ntt> Terminal unit for diversity of car telephone
JPS56107216A (en) * 1980-01-08 1981-08-26 Clark Noel A Liquid crystal electrooptical device and production thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118929A (en) * 1984-07-05 1986-01-27 Seiko Instr & Electronics Ltd Liquid-crystal display device
JPH0466327B2 (en) * 1984-07-05 1992-10-22 Seiko Instr & Electronics
JPS6275516A (en) * 1985-09-30 1987-04-07 Matsushita Electric Ind Co Ltd Driving method for optical modulation switch
JPH0448366B2 (en) * 1985-12-06 1992-08-06 Canon Kk
JPS62133426A (en) * 1985-12-06 1987-06-16 Canon Inc Liquid crystal device
JPS62134691A (en) * 1985-12-07 1987-06-17 キヤノン株式会社 Liquid crystal unit
JPH0448367B2 (en) * 1985-12-07 1992-08-06 Canon Kk
US5422748A (en) * 1991-11-22 1995-06-06 Canon Kabushiki Kaisha Liquid crystal device and display apparatus
EP0770662A2 (en) 1991-11-22 1997-05-02 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and display apparatus
US5458804A (en) * 1992-05-26 1995-10-17 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5460749A (en) * 1992-12-25 1995-10-24 Canon Kabushiki Kaisha Liquid crystal device and liquid crystal display apparatus
US5657141A (en) * 1992-12-25 1997-08-12 Canon Kabushiki Kaisha Liquid crystal device
US5582763A (en) * 1993-09-29 1996-12-10 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus using same
US5573703A (en) * 1993-10-13 1996-11-12 Canon Kabushiki Kaisha Ferroelectric liquid crystal device and liquid crystal apparatus using it
EP0711818A1 (en) 1994-11-10 1996-05-15 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5728318A (en) * 1994-11-10 1998-03-17 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal display apparatus
US5709818A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5709819A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5710433A (en) * 1995-01-31 1998-01-20 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5733475A (en) * 1995-01-31 1998-03-31 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5744059A (en) * 1995-01-31 1998-04-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device and liquid crystal apparatus
US5785890A (en) * 1995-10-12 1998-07-28 Canon Kabushiki Kaisha Liquid crystal composition, liquid crystal device, and liquid crystal display apparatus using same

Also Published As

Publication number Publication date
JPS6243167B2 (en) 1987-09-11

Similar Documents

Publication Publication Date Title
JPS6186732A (en) Liquid crystal element for time division drive
JPS6245535B2 (en)
JPS6245536B2 (en)
JPS60156046A (en) Driving method of optical modulating element
JPS6031120A (en) Driving method of optical modulating element
JPS6167836A (en) Driving method of liquid crystal element
JPS6244247B2 (en)
JPS60172029A (en) Driving method of optical modulation element
JPS60262133A (en) Driving method of liquid-crystal element
JPS6031121A (en) Driving method of optical modulating element
JPH0431373B2 (en)
JPS6170530A (en) Driving method of liquid crystal element
JPS6122325A (en) Driving method of optical modulating element
JPH0422493B2 (en)
JPS617829A (en) Driving method of liquid-crystal element
JPS60262135A (en) Driving method of liquid-crystal element
JPS617828A (en) Driving method of liquid-crystal element
JPS60262134A (en) Driving method of liquid-crystal element
JPS61267739A (en) Method for driving optical modulating element
JPH0453293B2 (en)
JPH0823636B2 (en) Driving method of optical modulator
JPS63118130A (en) Liquid crystal device
JPS60262137A (en) Driving method of liquid-crystal element
JPS62294224A (en) Liquid crystal device
JPS62289816A (en) Driving method for optical modulation element