JPS59191019A - Parallel shifting device for light beam - Google Patents

Parallel shifting device for light beam

Info

Publication number
JPS59191019A
JPS59191019A JP6624883A JP6624883A JPS59191019A JP S59191019 A JPS59191019 A JP S59191019A JP 6624883 A JP6624883 A JP 6624883A JP 6624883 A JP6624883 A JP 6624883A JP S59191019 A JPS59191019 A JP S59191019A
Authority
JP
Japan
Prior art keywords
pair
light beam
bertier
effect elements
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6624883A
Other languages
Japanese (ja)
Inventor
Kazuo Mikami
和夫 三上
Naohisa Inoue
直久 井上
Maki Yamashita
山下 牧
Mitsutaka Kato
加藤 充孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP6624883A priority Critical patent/JPS59191019A/en
Publication of JPS59191019A publication Critical patent/JPS59191019A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To enable parallel shifting of a light beam with a high response speed and reliability by providing two Peltier effect element pairs facing each other on a pair of parallel side faces. CONSTITUTION:A photoconductor 1, such as TiO2 having a thermooptic effect is of a rectangular prism shape and a light beam 2 propagates therein upward and downward in the Z-axis direction. Peltier effect element pairs 7-10 facing each other are juxtaposed on the opposed side faces 3, 4 in the X-axis direction and similar elements 11-14 are provided on the opposed side faces 5, 6 in the Y-axis direction as well. The element pairs 7-14 heat and cool the contact surfaces in the direction of the current to terminals A1-A4, B1-B4, C1-C4, D1-D4. The beam is shifted parallel by DELTAl in the X-axis direction by driving the elements 7-10. If the elements 11-14 are simultaneously driven, the light beam emitted from the photoconductor 1 is parallel shifted as desired within the X-Y plane.

Description

【発明の詳細な説明】 (発明の分野) この発明は、ビデオディスク等の光電子機器において、
光ビームの照射位置を微小距離平()移動させる装置を
いわゆる固体化した光ビームの平行シフト装置に関づる
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention provides an opto-electronic device such as a video disk.
The present invention relates to a so-called solid-state parallel shift device for a light beam, which moves the irradiation position of a light beam by a small distance.

(発明の背景) 周知のように、光電子機器、例えばビデオディスクでは
、トラッキングミラーやクンジエンシ1!ルミラーを電
磁コイルによる電磁力で微動回動させ、これによってデ
ィスクの1本のトラックに正確に光ビームが照射される
ようにしている。このように、従来の光電子機器にあっ
ては、光ビームの照射位置を微小距離平行移動さけるた
めには、ミラー等の光学部品を機械的に回動または移動
させることで実現していた。
(Background of the Invention) As is well known, in opto-electronic equipment, such as video discs, tracking mirrors and optical discs are used. The mirror is slightly rotated by electromagnetic force from an electromagnetic coil, so that a light beam is accurately irradiated onto one track on the disk. As described above, in conventional optoelectronic devices, the irradiation position of the light beam can be avoided by moving the irradiation position by a minute distance in parallel by mechanically rotating or moving optical components such as mirrors.

しかしながら、機械的なIINMによって光ビームの平
行シフトを行なう場合には、機構が複雑となり、かつ高
精度なものが要求される。従って高価であり、また、小
型化を図ることが内勤である。
However, when performing a parallel shift of a light beam using a mechanical IINM, the mechanism becomes complex and requires high precision. Therefore, it is expensive, and miniaturization is an in-house effort.

(発明の目的) この発明の目的は、機械的な駆動は横を要さず、従って
安価であり、かつ小型化を図ることがでさる、づなわら
固体化した光ビームの平行シフト装置を提供することに
ある。
(Object of the Invention) An object of the present invention is to provide a parallel shift device for a solid-state light beam, which does not require a horizontal mechanical drive, is therefore inexpensive, and can be miniaturized. It's about doing.

(発明の構成と効果) この発明は、上記[;1的を達成づるために、溜1度光
学効果を有する導光体に形成される一対の平行な側面に
、互いに対向する第1のベルチェ効果素子対および第2
のベルチェ効果素子対を並置し、−ト記第1のベルチェ
効果素子対は一方が上記導光体を加熱し他方が冷却する
とともに、上記第2のベルチェ効果素子対は第1のベル
チェ効果素子対とは逆方向に一方が導光体を冷却し他方
か加熱づ−るように4ス4成され、」二記第1.12の
ベルチェ効果素子対の並置方向に伝搬する光ビームを、
第1のペルチェ効果素子対間で所定角度(扇面さV、第
2のペルチェ効果素子対間で上記偏向ビームを上記所定
角度と補角をなず方向に偏向させるようにしたことを特
徴とする。
(Structure and Effects of the Invention) In order to achieve the above-mentioned [; Effect element pair and second
A pair of Bertier effect elements are arranged side by side, one of the first pair of Bertier effect elements heats the light guide and the other cools the light guide, and the second pair of Bertier effect elements is connected to the first pair of Bertier effect elements. The light beam propagating in the juxtaposed direction of the Vertier effect element pair of 1.12 is
The device is characterized in that the deflected beam is deflected at a predetermined angle (fan surface size V) between the first pair of Peltier effect elements, and the deflected beam is deflected between the second pair of Peltier effect elements in a direction that is a supplementary angle to the predetermined angle. .

この構成によれば、導光体に生ずる屈折率変化を利用し
て光ビームを微小距離平行シフトすることができる、い
わゆる固体化した光ビームの平行シフ1〜装置が提供で
きる。そして、導光体内部に生ずる屈折率変化は)品度
光学効果によって19るJ、うにしたものであるから、
構成か1!i)甲て゛あり、がつ111(折率変化を生
しさせる複雑な製造工程が不要であり、従って極め−C
簡単に製造が−でき、安価なものにすることができる。
According to this configuration, it is possible to provide a so-called solid light beam parallel shift device 1 that can shift a light beam in parallel by a minute distance by utilizing the refractive index change that occurs in the light guide. The refractive index change that occurs inside the light guide is due to the quality optical effect, so
Composition or 1! i) Grade 111 (complicated manufacturing process that causes refractive index changes is not required, therefore extremely -C
It is easy to manufacture and can be made at low cost.

また、ベルチェ効果素子対を加熱動作・冷却動作をさけ
る電気信号でしって直接的に光ビームを一次元的にまた
は二次元的にゞ)を行シフ1〜づるのであるから、従来
のように駆動機構によって光学系を作動させるのに比べ
て、応答速1σを高めることがでさるどどしに、信頼性
を高めることができるという優れた効果が得られる。従
っ−C1この発明に係る光ビームの平行シフト装置を用
いた光電子機器は、高信頼性゛ζかつ小型軽iiI化が
図れるととしに、原価の低減を図ることかできるのであ
る。
In addition, since the pair of Beltier effect elements is known by electric signals that avoid heating and cooling operations, and the light beam is directly shifted one-dimensionally or two-dimensionally (from 1 to 1), unlike the conventional method, Compared to operating the optical system by a drive mechanism, an excellent effect of increasing the response speed 1σ not only improves reliability but also increases reliability can be obtained. Therefore, an optoelectronic device using the light beam parallel shift device according to the present invention can be made highly reliable, small and lightweight, and can also reduce cost.

(実施例の説明) 第1図はこの発明に係る光ビームの”4’lsシフト装
置の一実施例を示ず。同図において、符号1で示すもの
は温度光学効果を有づ−る導光体であり、例えば110
2や高分子フィルム、あるいは1iNb03等の強誘電
体、ガラス等のノ′七ルファス材である。この導光体1
は、直方体形状に形成され、光ビーム2が7軸方向の」
二面から下面に向()て伝搬する。そして、X軸方向に
形成される一対の夕・[向側面3./Iには互いに対向
するベルチェ効果素子対7,8および9.10が光ビー
ム2の伝搬方向に沿って並置され、またYII11方向
に形成される一対の対向側面5,6にはベルチェ効果素
子対11,12おJ:び13,1=1が光ビーム2の伝
搬方向に治って並置されている。
(Description of an Embodiment) Fig. 1 does not show an embodiment of the 4'ls shift device for a light beam according to the present invention. It is a light body, for example 110
2, a polymer film, a ferroelectric material such as 1iNb03, or a non-rufus material such as glass. This light guide 1
is formed into a rectangular parallelepiped shape, and the light beam 2 is oriented in the 7-axis direction.
It propagates from the second surface to the bottom surface. Then, a pair of opposite surfaces 3. /I, pairs of Bertier effect elements 7, 8 and 9.10 facing each other are arranged side by side along the propagation direction of the light beam 2, and Bertier effect elements are arranged on a pair of opposing side surfaces 5, 6 formed in the YII11 direction. The pairs 11, 12 and J: and 13, 1=1 are juxtaposed in the propagation direction of the light beam 2.

上記各ベルチェ効果素子対(7,8)、(9゜10>、
(11,12)、(13,14>はそれぞれの端子(A
+、B+)、(C+、D+)。
Each of the above Bertier effect element pairs (7, 8), (9°10>,
(11, 12), (13, 14> are the respective terminals (A
+, B+), (C+, D+).

(A2.B2)、(C2,D2〉、(A3.B3)、(
C3,D3 )、(A4 、B+ )、(C4、D4)
に供給する駆動電流の方向にJ、ってそれぞれの接触部
を加熱または冷却する。
(A2.B2), (C2, D2>, (A3.B3), (
C3, D3), (A4, B+), (C4, D4)
The respective contacts are heated or cooled in the direction of the drive current supplied to J.

第2図は、上記各端子に駆動電流を供給する駆動回路で
ある。この駆UJ回路は、1つの電源21と、この電源
21の両端に接続され連動するり苔スイツヂ22.23
と、加熱駆動電流路に挿入される電流制限用抵抗Rとを
備える。この抵抗Rは加熱駆動電流を制限し、これによ
って各ベルチェ効果素子対による加熱温度と冷MI温度
の絶対値を等しくする−6のである。、なお、この駆動
回路はX軸方向の対向側面3.4に配設されるペルチェ
効果索子対7,8および9,10を駆動するためのもの
で、Y軸方向の対向側面5,6に配設されるベルチェ効
果素子対11.12および13.14を駆動する回路は
同様の構成であるので省略した。
FIG. 2 shows a drive circuit that supplies drive current to each of the terminals. This driving UJ circuit consists of one power supply 21 and two switches 22 and 23 that are connected to both ends of this power supply 21 and are interlocked.
and a current limiting resistor R inserted into the heating drive current path. This resistor R is -6 to limit the heating drive current, thereby making the absolute value of the heating temperature and the cold MI temperature by each pair of Bertier effect elements equal. Note that this drive circuit is for driving the Peltier effect cord pairs 7, 8 and 9, 10 arranged on the opposing side surfaces 3.4 in the The circuits for driving the pair of Bertier effect elements 11.12 and 13.14 arranged in the figure are omitted because they have the same configuration.

この駆動回路によって上記ベルチェ効果素子対7.8お
よび9,10は次のようにして駆動される。切替スイッ
チ22.23を切替端子a側に操作すると、ベルチェ効
果素子対7.8では、ペルチェ効果索子7が端子A1か
ら端子131の方向に駆動電流が供給され加熱動作をし
、またベルチェ効果素子8は端子D1からC1の方向に
駆動電流が供給され冷却動作をする。そして、ペルチ」
−効果素子対9.10では、ベルチェ効果素子9が端子
D2から端子△2の方向に駆動電流が供給され冷却動作
をし、ベルチェ効果素子10が端子C2から端子D2の
方向に駆動電流が供給され加熱動作をする。つまり、ベ
ルチェ効果素子対7.8とベルチェ効果素子対9.10
とは加熱・冷却の動作方向が互いに逆方向になっている
。そして、図示の例でいえば、ペルチェ効果素子7,8
間を伝搬する光ビームはペルチェ効果素子7側に向かい
所定角度偏向され、そしてこの偏向ビームがベルチェ効
果素子対9,10間において上記所定角度と補角をなす
方向に、従って光ビーム2の伝搬方向とほぼ平行な方向
に偏向される。その結果、導光体1から出射される光ビ
・−ムはX軸方向にΔlだけ平行シフトされたものにな
る。
This drive circuit drives the pair of Bertier effect elements 7.8 and 9, 10 in the following manner. When the changeover switch 22.23 is operated to the changeover terminal a side, the Peltier effect cable 7 in the pair 7.8 of the Bertier effect element is heated by being supplied with a drive current from the terminal A1 to the terminal 131, and the Bertier effect A driving current is supplied to the element 8 in the direction from the terminal D1 to the terminal C1, and the element 8 performs a cooling operation. And Pelch.”
- In the effect element pair 9.10, the driving current is supplied to the Beltier effect element 9 in the direction from the terminal D2 to the terminal Δ2 and performs a cooling operation, and the driving current is supplied to the Beltier effect element 10 in the direction from the terminal C2 to the terminal D2. heating operation. In other words, the pair of Beltier effect elements is 7.8 and the pair of Beltier effect elements is 9.10.
The operating directions of heating and cooling are opposite to each other. In the illustrated example, the Peltier effect elements 7 and 8
The light beam propagating between them is deflected by a predetermined angle toward the Peltier effect element 7 side, and this deflected beam is propagated between the pair of Peltier effect elements 9 and 10 in a direction that is a supplementary angle to the above predetermined angle, so that the light beam 2 propagates. deflected in a direction approximately parallel to the As a result, the light beam emitted from the light guide 1 is parallel-shifted by Δl in the X-axis direction.

以上の説明では、導光体1のX軸方向に形成した一対の
対向側面に配設した各ペルチェ素子対7゜8および9,
10を駆動さぜたのであるが、これを!軸方向の対向側
面5,6に配設したベルチェ効果素子対11.12およ
び13.14をも同時に動作させると、導光体1から出
射される光ビームはXY面内において任意(こ平行シフ
1へさせることができる。
In the above description, each Peltier element pair 7°8 and 9, disposed on a pair of opposing side surfaces formed in the X-axis direction of the light guide 1,
I drove 10, but this! When the pair of Bertier effect elements 11.12 and 13.14 disposed on the axially opposite side surfaces 5 and 6 are also operated simultaneously, the light beam emitted from the light guide 1 can be arbitrarily shifted within the XY plane (this parallel shift is It can be set to 1.

次に、第3図および第4図に従ってこの発明に係る平行
シフトの概要を説明する。第3図はベルチェ効果素子対
7.8の部分を抽出して示したもので、また第4図はこ
のベルチェ効果素子対7゜8間に生じた温度分布および
屈折率分布を示している。なd5、導光体1はTi 0
2からなるものである。
Next, an outline of the parallel shift according to the present invention will be explained with reference to FIGS. 3 and 4. FIG. 3 shows an extracted portion of the pair of Bertier effect elements 7.8, and FIG. 4 shows the temperature distribution and refractive index distribution occurring between the pair of Bertier effect elements 7.8. d5, the light guide 1 is Ti 0
It consists of 2.

第4図において、符号41で示づものは加熱動作をする
ベルチェ効果素子7によって生した温度分布であり、こ
れに対応する屈折率分布は、符号42で示すように、全
体として一方向の屈折率変化(−Δ11)を示し、側面
4側にJ5いて屈折率変化が最大である。そして、符号
43−e示すものは冷l′1動作をするベルチェ効果素
子8によって生じた温度分布であり、これに対応する屈
折率分布は符号44で示すように、全体として子方向の
屈折率変化(十△n)を示し、側面3側において屈折率
変化(+Δn)が最大である。従って、ベルチェ効果素
子7の加熱動作とベルチェ効果素子8の冷却動作とが同
時に行なわれた場合には、側面3゜4間に生ずる屈折率
分布は、符号45で承りように、屈折率分布42.44
を合成したものになり、これは光ビーム2に対して適宜
角度傾斜したものになる。そして、光ビーム2と交差す
る部位にお番プる屈折率分布45の変化幅は各点におい
てほぼ一様にすることができるから、光ビーム2は一様
な偏向角θでもって側面3側に偏向されることになる。
In FIG. 4, the reference numeral 41 indicates the temperature distribution generated by the Bertier effect element 7 that performs a heating operation, and the refractive index distribution corresponding to this is the refraction in one direction as a whole, as indicated by the reference numeral 42. The refractive index change is maximum at J5 on the side surface 4 side. What is shown by reference numeral 43-e is the temperature distribution generated by the Bertier effect element 8 which performs cold l'1 operation, and the refractive index distribution corresponding to this is shown by reference numeral 44, which shows the overall refractive index in the child direction. The refractive index change (+Δn) is maximum on the side surface 3 side. Therefore, when the heating operation of the Beltier effect element 7 and the cooling operation of the Beltier effect element 8 are performed at the same time, the refractive index distribution generated between the side surfaces 3. .44
The light beam is a composite of the light beams 2 and is tilted at an appropriate angle with respect to the light beam 2. Since the width of change in the refractive index distribution 45 applied to the portion intersecting the light beam 2 can be made almost uniform at each point, the light beam 2 is directed toward the side surface 3 with a uniform deflection angle θ. will be deflected.

そして、図示省略したが、ペルチュ。効果累了対9.1
0間においては、ベルチェ効果素子9が冷却動作をし、
ペルヂ1効果素子10が加熱動作をしているから、そこ
に生成される屈折率分布は屈折率分布45を左右対象に
反転させたものになる。
And, although not shown, there is Pelchu. Effect completion vs. 9.1
Between 0 and 0, the Beltier effect element 9 performs a cooling operation,
Since the Pelzi 1 effect element 10 performs a heating operation, the refractive index distribution generated therein is a symmetrical inversion of the refractive index distribution 45.

従って、ベルチェ効果素子対9,10間においては、ベ
ルチェ効果素子対7.8間で所定角度θ偏向された偏向
ビームはこの偏向ビームの進行方向に対して角度θ、従
って上記偏向角θと補角をなす方向に偏向される。その
結果、導光体1の出射端から出射される光ビームは、上
jホしたように、X軸方向に△lだ(プ平行シフ1〜さ
れる。
Therefore, between the pair of Beltier effect elements 9 and 10, the deflected beam deflected by a predetermined angle θ between the pair of Beltier effect elements 7 and 8 is at an angle θ with respect to the traveling direction of this deflected beam, and therefore the deflection angle θ is compensated for. deflected in an angular direction. As a result, the light beam emitted from the output end of the light guide 1 is parallel shifted by Δl in the X-axis direction, as shown above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る光ビームの平行シフト装置の一
実施例を示す概略斜視図、第2図は上記実施例装置の駆
動回路を示す図、第3図は上記実施例装置の作用を説明
するために一部を抽出して示す概略側面断面図、第11
図はペルチェ効果素子対間における温度分布およびこれ
に対応する屈折率分布を示すとともに、光ビームの偏向
作用を説明する概略図である。 1・・・・・・導光体 2・・・・・・光ビーム 3.4および5,6・・・・・・一対の平tjな側面7
.8および9,10 ・・・・・・第1.第2のベルチ」効果素子対11.1
2および13.14 ・・・・・・第1.第2のベルチェ効果素子対41・・
・・・・加熱による温度分布を示す曲線42・・・・・
・加熱温度変化に対応覆る1口(折率変化を承り曲線 7′13・・・・・・冷7i11による温度変化を示づ
一曲線44・・・・)<j 2+l i品度変化に対応
りる屈折率変化を示す曲線 45・・・・・・合成した屈折率変化を>J<づ曲線θ
・・・・・・・・・嘔向角 Δ℃・・・・・・X 1r111方向の平行シフ1へ外
出(1特許出願人 立イコ電機株式会社 第7図
FIG. 1 is a schematic perspective view showing an embodiment of a light beam parallel shift device according to the present invention, FIG. 2 is a diagram showing a drive circuit of the above embodiment device, and FIG. 3 is a diagram showing the operation of the above embodiment device. Schematic side sectional view showing a part extracted for explanation, No. 11
The figure is a schematic diagram showing a temperature distribution and a corresponding refractive index distribution between a pair of Peltier effect elements, as well as explaining the deflection effect of a light beam. 1...Light guide 2...Light beam 3.4 and 5, 6...Pair of flat side surfaces 7
.. 8 and 9, 10... 1st. 11.1 “Second Belch” Effect Element Pair
2 and 13.14... 1st. Second pair of Bertier effect elements 41...
...Curve 42 showing temperature distribution due to heating...
・Corresponds to changes in heating temperature (Curve 7'13 corresponds to change in refractive index... Curve 44 corresponds to temperature change due to cold 7i11) <j 2+l Corresponds to changes in quality Curve 45 showing the change in refractive index...The curve θ shows the change in the combined refractive index.
・・・・・・・・・Direction angle Δ℃・・・・・・X 1r111 Direction parallel shift 1 (1 patent applicant Riiko Denki Co., Ltd. Figure 7)

Claims (1)

【特許請求の範囲】[Claims] (1)湿度光学効果を有J゛る導光体に形成される一対
の平行な側面に、互いに対向する第1のベルチェ効果素
子対および第2のベルチェ効果素子対を並置し、を記第
1のベルチェ効果素子対は一方が上記導光体を加熱し他
方が冷却するとともに、上記第2のベルチェ効果素子対
は上記第1のベルチェ効果素子対とは逆方向に一方が導
光体を冷却し他方が加熱するように構成され、上記第1
.第2のベルチェ効果素子対の並置方向に伝搬する光ビ
ームを、第1のベルチュー効果素子対間で所定角度偏向
さけ、第2のペルチェ効果素子対間で上記偏向ビームを
上記所定角度と補角をなす方向に偏向さけるようにした
ことを特徴とする光ビームの平行シフト装置。
(1) A first pair of Bertier effect elements and a second pair of Bertier effect elements facing each other are arranged side by side on a pair of parallel side surfaces formed on a light guide having a humidity optical effect. One pair of Bertier effect elements heats the light guide and the other cools the light guide, and the second pair of Bertier effect elements heats the light guide in the opposite direction to the first pair of Bertier effect elements. The first one is configured to be cooled while the other is heated;
.. A light beam propagating in the direction in which the second pair of Bertier effect elements are juxtaposed is deflected at a predetermined angle between the first pair of Bertier effect elements, and the deflected beam is deflected at a complementary angle to the predetermined angle between the second pair of Peltier effect elements. What is claimed is: 1. A parallel shift device for a light beam, characterized in that the light beam is deflected in a direction that
JP6624883A 1983-04-14 1983-04-14 Parallel shifting device for light beam Pending JPS59191019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6624883A JPS59191019A (en) 1983-04-14 1983-04-14 Parallel shifting device for light beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6624883A JPS59191019A (en) 1983-04-14 1983-04-14 Parallel shifting device for light beam

Publications (1)

Publication Number Publication Date
JPS59191019A true JPS59191019A (en) 1984-10-30

Family

ID=13310371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6624883A Pending JPS59191019A (en) 1983-04-14 1983-04-14 Parallel shifting device for light beam

Country Status (1)

Country Link
JP (1) JPS59191019A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003601A1 (en) * 1984-12-03 1986-06-19 Hughes Aircraft Company Variable lens and birefringence compensator for continuous operation
US4848881A (en) * 1984-12-03 1989-07-18 Hughes Aircraft Company Variable lens and birefringence compensator
CN103838008A (en) * 2012-11-21 2014-06-04 福州高意通讯有限公司 Tunable filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003601A1 (en) * 1984-12-03 1986-06-19 Hughes Aircraft Company Variable lens and birefringence compensator for continuous operation
US4848881A (en) * 1984-12-03 1989-07-18 Hughes Aircraft Company Variable lens and birefringence compensator
CN103838008A (en) * 2012-11-21 2014-06-04 福州高意通讯有限公司 Tunable filter

Similar Documents

Publication Publication Date Title
US4239329A (en) Optical nonreciprocal device
US4783152A (en) Variable focal length lens
JP2000056146A (en) Light self-guide optical circuit
US5892863A (en) Silica optical circuit switch and method
US3458247A (en) Electro-optic prism beam deflection apparatus
JPS59191019A (en) Parallel shifting device for light beam
GB2171535A (en) Variable focal-length lens system
JPH10227934A (en) Optical circuit component and its manufacture, and optical circuit aligning device
US6560391B2 (en) Optical switch and optical disk drive
US6215576B1 (en) Method for making a second-order nonlinear optical material, the material obtained by the method, and an optical modulation device comprising the material
JP2005128518A (en) Variable focus lens
JP2003215516A (en) Variable light attenuator
JPS5924804A (en) Switching system of optical waveguide
US6917725B2 (en) Modulated light source
US5375138A (en) Optical cavities for lasers
JPS60242434A (en) Optical deflector
JPS59191001A (en) Variable refractive index distribution type lens
JP2003177438A (en) Optical switch and driving method of the switch
WO2023187872A1 (en) Projector module and retinal projection display device comprising same
JPS6086530A (en) Waveguide type optical switch
JPS59185313A (en) Optical deflector
JP3670654B2 (en) Optical circuit components
JPS59191002A (en) Variable refractive index distribution type lens
JPH0713685B2 (en) Crossed-waveguide optical switch
JPS61160703A (en) Te-tm mode splitter