JPS5918931A - Optical deflecting element - Google Patents

Optical deflecting element

Info

Publication number
JPS5918931A
JPS5918931A JP12933982A JP12933982A JPS5918931A JP S5918931 A JPS5918931 A JP S5918931A JP 12933982 A JP12933982 A JP 12933982A JP 12933982 A JP12933982 A JP 12933982A JP S5918931 A JPS5918931 A JP S5918931A
Authority
JP
Japan
Prior art keywords
electrodes
lens
refractive index
electro
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12933982A
Other languages
Japanese (ja)
Inventor
Kazuo Eda
江田 和生
Yasutaka Horibe
堀部 泰孝
Yoneji Takubo
米治 田窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12933982A priority Critical patent/JPS5918931A/en
Publication of JPS5918931A publication Critical patent/JPS5918931A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Abstract

PURPOSE:To vary the focal length of a lens without any mechanical movable part, by providing plural concentric electrodes on a substrate with electrooptic effect, and applying a voltage among electrodes and varying the refractive index concentrically. CONSTITUTION:The concentric electrodes 2-5 are provided on the discoid substrate 1 (lens) with electrooptic effect and voltages are applied among the electrodes 2-5 through lead wires 6-9. The refractive index of a part applied with a voltage varies by the electrooptic effect to vary the focal length. The substrate 1 uses PLZT, etc., and the electrodes 2-5 use ITO, etc. Consequently, the focal length of the lens 1 is varied without any mechanical movable part.

Description

【発明の詳細な説明】 本発明は電気光学材料の電圧による屈折率の変化を利用
して、電圧によってレンズの焦点距離を変えることので
きる光偏向素子に関するものである・。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical deflection element that can change the focal length of a lens depending on the voltage by utilizing changes in the refractive index of an electro-optic material depending on the voltage.

近年電子装置を内蔵した光学機器、あるいは光学装置を
内蔵した電子機器が数多く出現している。
In recent years, many optical devices with built-in electronic devices or electronic devices with built-in optical devices have appeared.

これらの装置では、電気信号で光源と焦点の結ぶ位置と
の距離を制御したり、光の進路を様々に変化できる装置
が望捷れている。
Among these devices, devices that can control the distance between the light source and the focal point using electrical signals, or can change the path of light in various ways, are desirable.

たとえば自動焦点カメラでは、各種センサを用いて対象
物捷での距離を測定し、この結果に基づいてレンズとフ
ィルム間の相対位置をモータなどを用いて機械的に調節
し、目的とする対象物の像をフィルム面に結像するよう
にしている。しかしこのような機械的調節方法では、応
答が遅い、あるいは駆動装置が大型になるなどの欠点を
有している。
For example, in an autofocus camera, various sensors are used to measure the distance to the target object, and based on these results, the relative position between the lens and film is mechanically adjusted using a motor, etc. The image is formed on the film surface. However, such mechanical adjustment methods have drawbacks such as slow response and large drive devices.

本発明は、このような欠点がなく、レンズの焦点距離を
機械的な可動部なしに変えることのできる光偏向素子を
提供するものであり、以下にその一実施例を詳細に説明
する。
The present invention provides an optical deflection element that does not have such drawbacks and can change the focal length of a lens without a mechanically movable part, and one embodiment thereof will be described in detail below.

(実施例1) 第1図は本発明の第1の実施例を示したものである。図
において1は電気光学効果金有する円板状透光性物質か
ら成る基板、2.、3 、4 、5は同心円状に設けた
電極、6.7.8.9はそれぞれの電極に電圧を加える
ための引出し線である。図のような構造の素子において
、電極2,3.4゜5間に電圧全加えると電気光学効果
により、電圧か加えられた部分の屈折率が変化する。い
捷電気光学効果を有する透光性基板としてPLZTi用
いた。PLZTはランタン全添加したチタン酸ジ/l/
コア酸鉛で、通常(Pb+−xLax)C(ZryTI
Z)1−4]03(y −1−z=1)で表現されるも
のである。本発明では透光性に優れ1次電気光学効果、
すなわち屈折率の変化が電界に比例して変化するいわゆ
るポッケルス効果の大きなX二0.14 、 ”f =
0.4 、 z=0.6の組成を用い、酸素中でポット
プレスした試料を、直径6 m、R、厚み500μmに
研磨したものを用いた。
(Example 1) FIG. 1 shows a first example of the present invention. In the figure, 1 is a substrate made of a disk-shaped transparent material having an electro-optical effect; 2. , 3, 4, and 5 are electrodes provided concentrically, and 6, 7, 8, and 9 are lead wires for applying voltage to each electrode. In an element having the structure shown in the figure, when a full voltage is applied between the electrodes 2 and 3.4°5, the refractive index of the portion to which the voltage is applied changes due to the electro-optic effect. PLZTi was used as a transparent substrate having a transparent electro-optic effect. PLZT is di/l/titanate with total addition of lanthanum.
Lead core acid, usually (Pb+-xLax)C(ZryTI
Z)1-4]03(y-1-z=1). The present invention has excellent translucency and has a primary electro-optic effect.
In other words, the so-called Pockels effect, in which the change in refractive index changes in proportion to the electric field, is large
0.4, z=0.6, a sample pot-pressed in oxygen and polished to a diameter of 6 m, radius, and thickness of 500 μm was used.

電極は、ITOと呼ばれる酸化インジウムおよび酸化ス
ズから成る透明電極全一様に形成し、ホトリソグラフィ
ー技術を用いて、200/imの線幅で同心円状に形成
した。中心部電極は、直径200μmの円とした。引出
し線は、100μmの銅勝を導電性ペーストにより各電
極に設けた。
The electrodes were uniformly formed as transparent electrodes made of indium oxide and tin oxide called ITO, and were formed concentrically with a line width of 200/im using photolithography. The center electrode was a circle with a diameter of 200 μm. The lead wire was provided with a 100 μm copper wire on each electrode using conductive paste.

各電極間の距離は500μmとした。The distance between each electrode was 500 μm.

第2図は本発明の素子を用いて、レンズの焦点距離全可
変にてきるようにした実施例を示したものである。図に
おいて1は円板状PLZT素子、2゜3.4.5は第1
図に示すように同心円状に設けられた電極、6.7.8
.9は引出し線、1oは凸レンズ、11は各電極に電圧
を加えていない場合の光路、12はこの場合の焦点であ
る。
FIG. 2 shows an embodiment in which the element of the present invention is used to make the focal length of the lens completely variable. In the figure, 1 is a disc-shaped PLZT element, 2°3.4.5 is the first
Electrodes arranged concentrically as shown in the figure, 6.7.8
.. 9 is a lead line, 1o is a convex lens, 11 is an optical path when no voltage is applied to each electrode, and 12 is a focal point in this case.

いま図において、各電極2,3,4.5に同一電界強度
が加わるように電圧を加えた場合、各電極間部の屈折率
は、同心円状に一様に変化する。
In the figure, when a voltage is applied so that the same electric field intensity is applied to each electrode 2, 3, 4.5, the refractive index of the area between each electrode changes uniformly in a concentric circle.

本実施例で用いたPL ZTの場合には、屈折率の変化
、△nは次式に従って変化する。
In the case of PL ZT used in this example, the change in refractive index, Δn, changes according to the following equation.

△n = −−n  r E        (1)但
しnは屈折率、rはポッケルス定数、Eは電界強度であ
る。本発明で用いたPLZTの場合、2 KV / c
mの電界強度で、△nは約0.01であった。
Δn = −−n r E (1) where n is the refractive index, r is the Pockels constant, and E is the electric field intensity. In the case of PLZT used in the present invention, 2 KV/c
At an electric field strength of m, Δn was approximately 0.01.

一方、屈折率と光の入射角α1および屈折角α2の関係
は、スネルの法則 (但しnlは空気の屈折率で1.n2は本実施例で用い
−(I P L Z Tの屈折率で2.52である。)
で表わされる。
On the other hand, the relationship between the refractive index and the incident angle α1 and refraction angle α2 of light is expressed by Snell's law (where nl is the refractive index of air and 1.n2 is the refractive index of I P L Z T used in this example). 2.52)
It is expressed as

したがって各電惨間に電圧音訓えることによって(1)
式に従い、屈折率が減少し、(2)式にしたがって屈折
角が太きぐなる。その結果光路は1171・ら13に変
化し、それに伴って焦点が12から14に移動する。す
なわち本発明の素子により光学系の焦点距離全電圧によ
って変化させることができる。
Therefore, by teaching the voltage sound between each electric current (1)
According to the formula, the refractive index decreases, and the refraction angle increases according to the formula (2). As a result, the optical path changes from 1171 to 13, and the focal point moves from 12 to 14 accordingly. That is, the element of the present invention allows the focal length of the optical system to be changed by the total voltage.

(実施例2) 第3図は本発明の第2の実施例の素子の構造とその動作
原理を示したものである。図において、15は実施例1
で使用したものと同様の(2゛料から成る素子で、レン
ズ状構造に機械加工しである。
(Embodiment 2) FIG. 3 shows the structure of an element according to a second embodiment of the present invention and its operating principle. In the figure, 15 is Example 1
The device is made of a 2-metal material similar to that used in the previous study and is machined into a lens-like structure.

16.17,18.19は同心円状に設けられた透明電
極、20,21 .22.23は各透明電極から取り出
された電気端子であ為。この場合は実施例1と異なり透
光性電気光学素子そのものがレンズ状となっているため
、24に示す光路を経て、点25に焦点を結んでいる。
16.17, 18.19 are transparent electrodes provided concentrically, 20, 21 . 22 and 23 are electrical terminals taken out from each transparent electrode. In this case, unlike in Example 1, the translucent electro-optical element itself is lens-shaped, so that the light passes through the optical path shown at 24 and is focused at point 25.

い1各電極間に直流電圧を加えると、実施例1と同様の
原理によって屈折率が一様に変化する。したがって光路
は24から26にかわり、焦点を結ぶ位置も25f)・
ら27に変化する。すなわち電圧によって焦点距離全か
えることができる。
(1) When a DC voltage is applied between each electrode, the refractive index changes uniformly based on the same principle as in Example 1. Therefore, the optical path changes from 24 to 26, and the focal point is also 25f).
It changes from 27 to 27. In other words, the focal length can be completely changed by changing the voltage.

本実施例では、電気光学素子としてPLZTi用いたが
、その原理力・ら考えて、電圧によって屈折率の変わる
透光性材料であれば何を用いても良いことは明らかであ
る。
In this embodiment, PLZTi was used as the electro-optical element, but considering its principle, it is clear that any transparent material whose refractive index changes depending on the voltage may be used.

また本実施例では・PLZTの片面拠し力)重積全形成
していないが、各電極に対応してもう一方の而に同様に
同心円状電極を形成し、同じように電圧を加えることに
よって更に効果を増すことも可能である。
In addition, in this example, (one-sided support force of PLZT) is not fully stacked, but by forming concentric electrodes in the same way on the other side corresponding to each electrode and applying voltage in the same way. It is also possible to further increase the effect.

捷た本実施例では4本の円心円状電極しか構成していな
いが、その原理から考えて、最低2ケあtlば良い。丑
た多数個同心円状電極全形成した場合に本実施例のよう
に同一の電界強度になるような電圧の加えか7jfずれ
ば一様に屈折率が変化し焦点距離が変化することになる
が、各電極間に加える電圧全それぞれ変えてやることに
よって、色収差音生なくしたり、あるいは保全意識的に
変えるなとの操作が可能となる。
In the present embodiment, only four circular electrodes are formed, but considering the principle, at least two electrodes are sufficient. When a large number of concentric electrodes are all formed, the refractive index will change uniformly and the focal length will change if a voltage is applied to give the same electric field strength or shifted by 7jf as in this example. By changing the total voltage applied between each electrode, it is possible to eliminate chromatic aberration sound or to avoid changing it for conservation purposes.

本発明は以上述べた如く、透光性電気光学材料の電気光
学効果を巧みに利用して、レンズの焦点距離全可興1部
分なしに、電圧のみによって制御するようにしたもので
あシ、応答速度も速く、丑た小型にできることから、各
種光学装置、あるいは電子装置に応用すればきわめて有
用なものである。
As described above, the present invention skillfully utilizes the electro-optic effect of a translucent electro-optic material to control the focal length of a lens only by voltage, without changing the entire focal length of the lens. Since it has a fast response speed and can be made compact, it is extremely useful when applied to various optical devices or electronic devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における光偏向素子の構造を
示す正面図、第2図は同動作説明図、第3図は本発明の
第2の実施例の素子の構造と動作原理を示す側面図。 1・・・・電気光学効果を有する円板状透光性素子、2
.3,4.5・・・・・・同心円伏電極、6,7,8゜
9 ・・・引出し線、10・・ レンズ、11 、13
 。 24.26・・・・光路、12,14,25.27・・
・・焦点、15 ・・・・電気光学効果全有するレンズ
状透光IJA′、素子、16.17,18.19・・・
・・・同心円秋電極、20,21,22.23・・・・
・引出し線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図
FIG. 1 is a front view showing the structure of an optical deflection element in one embodiment of the present invention, FIG. 2 is an explanatory diagram of the same operation, and FIG. The side view shown. 1...Disc-shaped light-transmitting element having an electro-optic effect, 2
.. 3, 4.5...Concentric circle-shaped electrode, 6,7,8゜9...Leader line, 10...Lens, 11, 13
. 24.26... optical path, 12, 14, 25.27...
・・Focus, 15 ・・Lens-shaped light-transmitting IJA′ with full electro-optic effect, element, 16.17, 18.19 ・・・
...Concentric fall electrode, 20, 21, 22.23...
・Leader line. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)電気光学効果を有する透光性物質から成る基板−
1−の少くとも一方の表面に同心円状に複数個の電極を
設け、この電極間に電圧を加えて、電気光学効果により
電極間の基板の屈折率を同心円状に変化させることによ
って光の進路を同心円状に変化させることを特徴とする
光偏向素子。
(1) Substrate made of a translucent material with electro-optic effect
A plurality of electrodes are provided concentrically on at least one surface of 1-, and a voltage is applied between the electrodes to change the refractive index of the substrate between the electrodes in a concentric manner due to the electro-optic effect, thereby changing the path of light. An optical deflection element characterized by changing concentrically.
(2)電気光学効果を有する透光性物質から成る基板が
円盤状であり、電気光学効果により、電極間のレンズ部
分の屈折率を同心円状に変化させることによりて、レン
ズの焦点距離を可変にしたことを特徴とする特許請求の
範囲第1項記載の光偏向素子。
(2) The substrate made of a transparent material with an electro-optic effect is disk-shaped, and the focal length of the lens is variable by changing the refractive index of the lens part between the electrodes concentrically due to the electro-optic effect. An optical deflection element according to claim 1, characterized in that:
JP12933982A 1982-07-23 1982-07-23 Optical deflecting element Pending JPS5918931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12933982A JPS5918931A (en) 1982-07-23 1982-07-23 Optical deflecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12933982A JPS5918931A (en) 1982-07-23 1982-07-23 Optical deflecting element

Publications (1)

Publication Number Publication Date
JPS5918931A true JPS5918931A (en) 1984-01-31

Family

ID=15007156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12933982A Pending JPS5918931A (en) 1982-07-23 1982-07-23 Optical deflecting element

Country Status (1)

Country Link
JP (1) JPS5918931A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238020A (en) * 1985-04-15 1986-10-23 Omron Tateisi Electronics Co Electric field control type light guide lens
JPS61270736A (en) * 1985-05-27 1986-12-01 Kunihiro Nagata Light deflecting element
US20200218084A1 (en) * 2018-03-30 2020-07-09 Boe Technology Group Co., Ltd. Stereoscopic display device, method and apparatus for controlling stereoscopic display device, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946442A (en) * 1972-09-06 1974-05-04
JPS5681818A (en) * 1979-12-08 1981-07-04 Nippon Telegr & Teleph Corp <Ntt> Refractive index control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4946442A (en) * 1972-09-06 1974-05-04
JPS5681818A (en) * 1979-12-08 1981-07-04 Nippon Telegr & Teleph Corp <Ntt> Refractive index control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238020A (en) * 1985-04-15 1986-10-23 Omron Tateisi Electronics Co Electric field control type light guide lens
JPS61270736A (en) * 1985-05-27 1986-12-01 Kunihiro Nagata Light deflecting element
US20200218084A1 (en) * 2018-03-30 2020-07-09 Boe Technology Group Co., Ltd. Stereoscopic display device, method and apparatus for controlling stereoscopic display device, and storage medium

Similar Documents

Publication Publication Date Title
US4927241A (en) Optical imaging system having an electronically variable focal length and optical image sensor provided with such a system
KR102145930B1 (en) Liquid crystal devices, deflection devices, liquid crystal modules and electronic devices
JP3047082B2 (en) Focus mechanism
US6549730B1 (en) Focal position changeable spatial modulation unit and focus detection device
JPS634164B2 (en)
US4218120A (en) Electrochromic light regulator
US3360324A (en) Light displacement control system
JPS5918931A (en) Optical deflecting element
US4422729A (en) Electro-optical diaphragm with radial electrodes
JPS5918932A (en) Optical deflecting device
JPS59147327A (en) Optical deflector
US3960440A (en) Light optic data handling system
US5067829A (en) Dynamic optical beam steering
JP4077384B2 (en) Liquid crystal element drive device
SU611167A1 (en) Electrooptic lens
CN217305671U (en) Liquid crystal panel
JPS6256918A (en) Variable power finder optical system
JPS60129706A (en) Lens
JPS6380231A (en) Light quantity control diaphragm device
US3312827A (en) Ferroelectric optical-shutter radiation converter means
JP2022167026A (en) Liquid crystal panel
JPS5941170B2 (en) thin film light switch
SU593174A1 (en) Electrooptic deflector
JPS6167838A (en) Waveguide type optical switch
KR20210039147A (en) Liquid lens and liquid lens assembly