JPS61270736A - Light deflecting element - Google Patents

Light deflecting element

Info

Publication number
JPS61270736A
JPS61270736A JP11209185A JP11209185A JPS61270736A JP S61270736 A JPS61270736 A JP S61270736A JP 11209185 A JP11209185 A JP 11209185A JP 11209185 A JP11209185 A JP 11209185A JP S61270736 A JPS61270736 A JP S61270736A
Authority
JP
Japan
Prior art keywords
light
deflection
deflection angle
angle
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11209185A
Other languages
Japanese (ja)
Inventor
Kunihiro Nagata
永田 邦裕
Toshio Utsunomiya
宇都宮 俊男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11209185A priority Critical patent/JPS61270736A/en
Publication of JPS61270736A publication Critical patent/JPS61270736A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain a deflection having a large angle by forming perovskite or tungsten bronze type polycrystal as a prism to form an electrode for generating an electric field rectangular to a light transmission direction. CONSTITUTION:The rays of light from a light source 7 are made incident upon a prism-like perovskite type polycrystalline light deflecting element 1, and while changing voltage to be applied, the deflection angle is measured. Consequently, the rays of light can be oscillated by >=1 deg. in case of vertical polarization and an optional deflection angle can be selected because the deflection angle is large.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は光偏向素子、特に電気光学材料を用いる光偏向
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical deflection element, and particularly to an optical deflection element using an electro-optic material.

(従来技術〕 従来から光偏向器には種々のものが提案されている。(Conventional technology) Various types of optical deflectors have been proposed in the past.

中でも、電気光学効果による屈折率の変化を利用するも
のは光偏向器の設計が単純となるので広く用いられてい
る。簡単に言うと、電気光学効果を有する素子に、光の
伝播方向に対して直角な方向の電界を加えると、電界の
大きさに応じて屈折率が変わり、光の偏向角が変わる・
光偏向器に用いる偏向素子の材料は、電気光学係数と屈
折率の大きいものが必要であり、その他光の透過率、抵
抗率、光学的均一性、光学的損傷などの面も考慮される
Among these, those that utilize changes in refractive index due to electro-optic effects are widely used because the design of the optical deflector is simple. Simply put, when an electric field in a direction perpendicular to the propagation direction of light is applied to an element that has an electro-optic effect, the refractive index changes depending on the magnitude of the electric field, and the deflection angle of the light changes.
The material of the deflection element used in the optical deflector needs to have a large electro-optic coefficient and refractive index, and other aspects such as light transmittance, resistivity, optical uniformity, and optical damage are also taken into consideration.

しかし、従来の光偏向材料は最もすぐれたものでも74
00Vという高電圧で測定した場合でも偏向角度(垂直
偏向に対して)はα2度程度に過ぎない。従って、偏向
角度の大きい光偏向素子が要望されている。
However, even the best conventional optical deflection materials have 74
Even when measured at a high voltage of 00V, the deflection angle (with respect to vertical deflection) is only about α2 degrees. Therefore, an optical deflection element with a large deflection angle is desired.

〔発明の目的〕[Purpose of the invention]

本発明は偏向角度の大きい光偏向素子を提供することを
目的とする。
An object of the present invention is to provide an optical deflection element with a large deflection angle.

〔発明の概要〕[Summary of the invention]

本発明の光偏向素子はぺ田プスカイ)型多結晶又はタン
グステンブロンズ型多結晶をプリズム化し、光伝播方向
に直角に電界を生じる電極を設けたことを特徴とする光
偏向素子であり、好ましくは、ペレプスヵイト酒多結晶
が、PLZTであり、またタングステンブロンズ塵多結
晶がPBLNである。
The optical deflection element of the present invention is an optical deflection element characterized in that a prism is formed from a Pedapsky polycrystal or a tungsten bronze polycrystal, and is provided with an electrode that generates an electric field perpendicular to the light propagation direction. , the perebskite liquor polycrystal is PLZT, and the tungsten bronze dust polycrystal is PBLN.

本発明による光偏向素子は偏向角度が印加電界によって
大きく変わり、従来のα2度程度から1度以上にするこ
とができ、また偏向角度の選択が可能になる。
In the optical deflection element according to the present invention, the deflection angle changes greatly depending on the applied electric field, and can be increased from about 2 degrees in the conventional case to 1 degree or more, and the deflection angle can be selected.

〔発明の構成〕[Structure of the invention]

第1図は本発明のプリズム化した光偏向素子を示す〇図
中1は電気光学効果により屈折率が大きく変わるPLZ
Tであり、2はその上下表面に、スパッタリング等で形
成された薄膜電極である。PLZT光偏向材料は目的に
応じた角度をなす入射面4及び出射面5を有する。電極
2.3の間には固定または可変直流電源6が接続されて
いる。
Figure 1 shows a prism-shaped light deflection element of the present invention. 1 in the figure shows a PLZ whose refractive index changes greatly due to the electro-optic effect.
T, and 2 are thin film electrodes formed on the upper and lower surfaces thereof by sputtering or the like. The PLZT light deflection material has an entrance surface 4 and an exit surface 5 that form an angle depending on the purpose. A fixed or variable DC power supply 6 is connected between the electrodes 2.3.

今、光Aが入射すると、光偏向材料1は電極2.3間に
印加された電圧の大きさに応じて屈折率を変化し、光の
伝播方向を変化させる。偏向角度は偏光によって違う。
Now, when the light A is incident, the optical deflection material 1 changes its refractive index according to the magnitude of the voltage applied between the electrodes 2 and 3, and changes the propagation direction of the light. The deflection angle differs depending on the polarization.

PLZ〒偏向材料は垂直儂光が入射光のとき偏向角度を
1度以上も変化させることが分った。これは従来の偏向
素子では考えられないことである。この点については後
で詳しく述べる。
It has been found that the PLZ deflection material changes the deflection angle by more than 1 degree when the incident light is perpendicular. This is inconceivable with conventional deflection elements. This point will be discussed in detail later.

で表わされるペロブスカイト構造の多結晶体である・こ
のうち、本発明の目的には、電気光学効果による屈折率
の変化が大きく、また光透過率の高いものが望まれる。
A polycrystalline material having a perovskite structure represented by: Among these, for the purpose of the present invention, a material having a large change in refractive index due to the electro-optic effect and a high light transmittance is desired.

本発明者は上記化学式中のxllを様々に変えて試みた
ところ、La/Zr/Ti (11子比が7〜14/3
0〜70770〜30.より好ましくは大体9/657
55のときにこれらの条件が最も良く満足されつること
を見出した0このようなPLZTは屈折率及び−次又は
二次電気光学係数のいずれも大きいため偏向角度の変化
も大きくなる。
The present inventor tried variously changing xll in the above chemical formula, and found that La/Zr/Ti (eleven ratio is 7 to 14/3
0-70770-30. More preferably around 9/657
It has been found that these conditions are best satisfied when the PLZT has a diameter of 55%.Since such PLZT has a large refractive index and a large -order or second-order electro-optic coefficient, the change in the deflection angle is also large.

一次電気光学効果によって屈折率が変化する場合として
は、La/Zr/Tiが、それぞれ、8/65755.
8 / 40 / 6 G 、 12 / 40 / 
60 sl 4150/70が代表的である。
In the case where the refractive index changes due to the primary electro-optic effect, La/Zr/Ti has a value of 8/65755.
8/40/6G, 12/40/
60 sl 4150/70 is typical.

さらに二次電気光学効果によって屈折率が変化する場合
としては、La/Zr/Tiが、9765155.10
/45155.11/65/15が代表的である。
Furthermore, as a case where the refractive index changes due to the secondary electro-optic effect, La/Zr/Ti is 9765155.10
/45155.11/65/15 is typical.

また、タングステンブロンズ型としては、(pb。Moreover, as a tungsten bronze type, (pb.

Ba、La)Nb20.、(Pb、K)Nb、04、(
Sr、Ba)Nb20.  等がある。
Ba, La) Nb20. , (Pb,K)Nb,04,(
Sr, Ba) Nb20. etc.

さらに%PBLNkついては、一般k ((Pb+Ba)、、La2/sY) Nb2O,で表
わされ、Pb/La/Baの比率は、100〜40/4
〜2010〜60とするのが代表的である。
Furthermore, %PBLNk is generally expressed as ((Pb+Ba), La2/sY) Nb2O, and the ratio of Pb/La/Ba is 100 to 40/4.
~2010~60 is typical.

以下で本発明を具体例PLZT(9/65/35)によ
って説明するに先立って、電気光学効果による光偏向の
原理を説明しておく。第2図のように頂角αのプリズム
の入射面#1に入射角θ11で入射した光が、屈折角θ
、で屈折したとする。屈折した光は、出射面#2に入射
角θ12で入射し、屈折して出射面#2の法線に対して
0゜の角度をなす方向に出てゆく。第1図のプリズムの
上下面に電極をつけ、電圧をかけると、横型電気光学効
果により屈折率が変化する。この屈折率の変化なΔnで
表せば、スネル法則によりΔnによる偏向角の変化は で表わされることがわかる。ここで、n、は電圧をかけ
る前の屈折率である。
Before explaining the present invention below using a specific example of PLZT (9/65/35), the principle of light deflection based on the electro-optic effect will be explained. As shown in FIG.
Suppose that it is refracted at ,. The refracted light enters the exit surface #2 at an incident angle θ12, is refracted, and exits in a direction forming an angle of 0° with respect to the normal to the exit surface #2. When electrodes are attached to the top and bottom surfaces of the prism shown in Figure 1 and a voltage is applied, the refractive index changes due to the lateral electro-optic effect. If this change in refractive index is expressed as Δn, it can be seen that according to Snell's law, the change in deflection angle due to Δn is expressed as Δn. Here, n is the refractive index before applying a voltage.

一方、屈折率の変化ハJl[’?、: P L Z T
(9/65/35)の対称性(m S m )から、上
下面に電圧を加えるとZ方向の電界によるカー効果によ
り、屈折率楕円体は第3図のようになる。従って、Δn
は二次電気光学係数R5jを用いて で与えられる。
On the other hand, the change in refractive index Jl['? ,: P L Z T
Due to the (9/65/35) symmetry (m S m ), when a voltage is applied to the upper and lower surfaces, the Kerr effect due to the electric field in the Z direction causes the refractive index ellipsoid to become as shown in FIG. 3. Therefore, Δn
is given by using the second-order electro-optic coefficient R5j.

一次電気光学効果によるΔnは、 で与えられる。Δn due to the first-order electro-optic effect is is given by

従って、no が大きく且つ係数Rss又はR1,若し
くはr。又はr、sが大きいことが必要である。
Therefore, no is large and the coefficient Rss or R1 or r. Or it is necessary that r and s are large.

次に本発明の具体例を示す。Next, specific examples of the present invention will be shown.

〔実施例〕〔Example〕

第4図に示す構成で実験を行った。図中1は本発明のP
LZT光偏向材料で、厚さ1諺、等辺7鱈の直角二等辺
三角形のPLZT(9/45155)であり、第1図の
ものと同様な金スパッター形の電極構造を有する。光源
としてHe −Neレーザ7を用い、波長6528人の
光を直線偏光子8(その向きにより垂直偏光及び水平偏
光とする)を介し【プリズム形PLZT光偏向素子へ入
射させ、印加電圧を0〜1000Vの範囲で変化させな
がら偏向角度を測定した。
An experiment was conducted using the configuration shown in FIG. 1 in the figure is P of the present invention.
The LZT optical deflection material is PLZT (9/45155) in the form of a right-angled isosceles triangle with a thickness of 1 inch and 7 sides of equal sides, and has a gold sputtered electrode structure similar to that in FIG. A He-Ne laser 7 is used as a light source, and light with a wavelength of 6528 is incident on a prism-type PLZT optical deflection element via a linear polarizer 8 (depending on its orientation, it becomes vertically polarized light or horizontally polarized light), and the applied voltage is set to 0 to The deflection angle was measured while changing it within a range of 1000V.

第5図に垂直偏光と水平偏光の場合の偏向角の変化を、
電極に加支た電圧に対して示した。第5図かられかるよ
うに偏光面により、Δθo k正負が現れる。また、当
然ながら’ Rss l > I Rls Iであるこ
とにより、垂直偏光の場合の方が偏向角が大きいことが
わかる。垂直偏光に対する曲線赫行から分るように、■
当り900v程度で実に約1度以上光を振らせることが
できた。これを従来の約12°に比べると格段の改良に
なっていることが分る。
Figure 5 shows the change in deflection angle for vertically polarized light and horizontally polarized light.
It is shown against the voltage applied to the electrode. As can be seen from FIG. 5, Δθo k becomes positive or negative depending on the plane of polarization. Also, as a matter of course, since ' Rss l > I Rls I, it can be seen that the deflection angle is larger in the case of vertically polarized light. As can be seen from the curve curve for vertically polarized light, ■
I was able to make the light sway more than 1 degree at about 900v per hit. Comparing this to the conventional angle of about 12 degrees, it can be seen that this is a significant improvement.

以上のように、本発明のプリズム型光偏向素子は大きい
屈折角を有するだけでなく、電界によって大きく偏向角
を従来技術の高電圧(約5000v)で120から低電
圧(900v)で1°以上に変動するものであるから、
光偏向を利用した各種装置に広く応用することができる
As described above, the prism type optical deflection element of the present invention not only has a large refraction angle, but also has a large deflection angle due to the electric field, from 120 degrees at high voltage (approximately 5000V) in the prior art to 1 degree or more at low voltage (900V). Since it fluctuates to
It can be widely applied to various devices that utilize optical deflection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光偏向素子の斜視図、第2図はプリズ
ムと光の関係を示す図、第5図は屈折率の電気光学効果
を示す図、第4図は偏向角度の測定装置を示す概念図、
及び第5図は印加電圧と水平及び垂直偏光の偏向角度の
関係を示すグラフで第3図 ア 第4図 ア
Figure 1 is a perspective view of the optical deflection element of the present invention, Figure 2 is a diagram showing the relationship between a prism and light, Figure 5 is a diagram showing the electro-optic effect of refractive index, and Figure 4 is a deflection angle measuring device. A conceptual diagram showing
and Figure 5 are graphs showing the relationship between the applied voltage and the deflection angle of horizontal and vertical polarized light.

Claims (3)

【特許請求の範囲】[Claims] (1)ペロブスカイト型多結晶又はタングステンブロン
ズ型多結晶をプリズム化し、光伝播方向に直角に電界を
生じる電極を設けたことを特徴とする光偏向素子。
(1) An optical deflection element characterized in that a perovskite polycrystal or a tungsten bronze polycrystal is formed into a prism and provided with an electrode that generates an electric field perpendicular to the light propagation direction.
(2)ペロブスカイト型多結晶が、PLZTであること
を特徴とする特許請求の範囲第1項記載の光偏向素子。
(2) The light deflection element according to claim 1, wherein the perovskite polycrystal is PLZT.
(3)タングステンブロンズ型多結晶が、PBLNであ
ることを特徴とする特許請求の範囲第1項記載の光偏向
素子。
(3) The optical deflection element according to claim 1, wherein the tungsten bronze polycrystal is PBLN.
JP11209185A 1985-05-27 1985-05-27 Light deflecting element Pending JPS61270736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11209185A JPS61270736A (en) 1985-05-27 1985-05-27 Light deflecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11209185A JPS61270736A (en) 1985-05-27 1985-05-27 Light deflecting element

Publications (1)

Publication Number Publication Date
JPS61270736A true JPS61270736A (en) 1986-12-01

Family

ID=14577878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11209185A Pending JPS61270736A (en) 1985-05-27 1985-05-27 Light deflecting element

Country Status (1)

Country Link
JP (1) JPS61270736A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003652A1 (en) * 2002-06-28 2004-01-08 Fujitsu Limited Reflection type variable light polariscope and optical device using the polariscope
US6999169B2 (en) 2002-01-10 2006-02-14 Yokogawa Electric Corporation Spectrometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918931A (en) * 1982-07-23 1984-01-31 Matsushita Electric Ind Co Ltd Optical deflecting element
JPS5918932A (en) * 1982-07-23 1984-01-31 Matsushita Electric Ind Co Ltd Optical deflecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918931A (en) * 1982-07-23 1984-01-31 Matsushita Electric Ind Co Ltd Optical deflecting element
JPS5918932A (en) * 1982-07-23 1984-01-31 Matsushita Electric Ind Co Ltd Optical deflecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999169B2 (en) 2002-01-10 2006-02-14 Yokogawa Electric Corporation Spectrometer
WO2004003652A1 (en) * 2002-06-28 2004-01-08 Fujitsu Limited Reflection type variable light polariscope and optical device using the polariscope
US7280718B2 (en) 2002-06-28 2007-10-09 Fujitsu Limited Reflective adjustable optical deflector and optical device employing the same

Similar Documents

Publication Publication Date Title
Yamada et al. Electric‐field induced cylindrical lens, switching and deflection devices composed of the inverted domains in LiNbO3 crystals
US4786147A (en) Nematic liquid cell weakly doped by a chiral solute and of the type having electrically controlled birefringence
GB2068137A (en) Voltage and electric field measuring device
JPH10512058A (en) Insensitive liquid crystal cell
CA2057596A1 (en) Waveguide type optical device
Meadows et al. Electro‐optic switching using total internal reflection by a ferroelectric liquid crystal
US3458247A (en) Electro-optic prism beam deflection apparatus
US4497542A (en) Apparatus for minimizing beam collimation sensitivity in optical instruments including liquid crystal cells
JPS61270736A (en) Light deflecting element
US3485553A (en) Electro-optic light beam deflector
US4240710A (en) Holding plate for a twisted nematic alignment field effect mode (TNFEM) liquid crystal display
Nose et al. Optical properties of a hybrid-aligned liquid crystal microlens
JP2000137109A (en) Reflection preventive device using diffraction grating
JPS61264325A (en) Optical deflecting element
US3433553A (en) Light depolarizer
US10816871B1 (en) Fast spatial light switches and their fabrication
US3295912A (en) Light deflection device
GB1243253A (en) Improvements in or relating to light beam deflectors
JPH06208142A (en) Liquid crystal light deflecting element
JPH11149002A (en) Prism sheet
JPH06130352A (en) Liquid crystal light refracting element
US3460883A (en) Total internal reflection deflector
US5724116A (en) Liquid crystal panel with memory function
Ewbank et al. Linear electro‐optic effect in tellurium dioxide
US3506335A (en) Light deflecting device