JPS59188507A - Measuring method of amount of curvature of long-sized material - Google Patents

Measuring method of amount of curvature of long-sized material

Info

Publication number
JPS59188507A
JPS59188507A JP6392683A JP6392683A JPS59188507A JP S59188507 A JPS59188507 A JP S59188507A JP 6392683 A JP6392683 A JP 6392683A JP 6392683 A JP6392683 A JP 6392683A JP S59188507 A JPS59188507 A JP S59188507A
Authority
JP
Japan
Prior art keywords
long
amount
sized material
image
projector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6392683A
Other languages
Japanese (ja)
Inventor
Akimune Sato
佐藤 明宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6392683A priority Critical patent/JPS59188507A/en
Publication of JPS59188507A publication Critical patent/JPS59188507A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2518Projection by scanning of the object
    • G01B11/2522Projection by scanning of the object the position of the object changing and being recorded

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect the amount of curvature of a long-sized material automatically and accurately by projecting slit light at right angles to the lengthwise direction of the long-sized material and shotting its reflected image by an image pickup device, and calculating the amount of displacement from the fixed position of the reflected image due to the relative movement of the long-sized material. CONSTITUTION:The slit light is projected upon the long-sized material 1a on a mount 8 from a projector 2 at right angles to the lengthwise direction of the material, and its reflected image is shot by an image pickup camera 3. The projector 2 and camera 3 are moved along the long-sized material 1a together with a carriage 4. If the long-sized material 1a is curved, the crescent reflected image is displaced by Yi like a crescent image 14 shown by an alternate long and two short dashes line according to the extent Xi of the movement. The amount of curvature of the long-sized material 1a is detected automatically and accurately by the extent of the displacement from the fixed position.

Description

【発明の詳細な説明】 本発明は長尺材の曲り量測定方法に係り、詳しくは、丸
棒、形鋼等の長尺材をその長手方向に移動させて、その
曲り量を光学的手段により自動的に検出できる検出方法
に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the amount of bending of a long material, and more specifically, by moving a long material such as a round bar or shaped steel in its longitudinal direction, and measuring the amount of bending by optical means. This relates to a detection method that allows automatic detection.

従来から、丸棒、形鋼、パイプ等の長尺材の曲りを自動
的に検出する適当な装置がなく、一般的には、作業員が
直接測定器具をあてて目視で測定が行なわれている。し
かし、目視によっては個人差が大きく、きわめて非能率
である。
Until now, there has been no suitable device to automatically detect bends in long materials such as round bars, shaped steel, pipes, etc., and workers generally measure the bends visually by directly applying measuring instruments. There is. However, visual inspection has large individual differences and is extremely inefficient.

この点から、例えば、特開昭55−47406号に記載
される如き測定方法も提案されているが、測定が複雑で
その改善が望まれている。
From this point of view, for example, a measurement method as described in Japanese Patent Laid-Open No. 55-47406 has been proposed, but the measurement is complicated and improvements are desired.

すなわち、この測定方法においては、長尺材をその長手
方向と直角方向に移送し、その移送の間に長尺材の両端
部とこの両端部間の複数位置とに対してそれぞれ2つの
方向から光線をあてると共に、その反射光を検出し、2
つの方向から上記各測定点までの距離を検出して長尺材
の曲り量を求めている。しかし、この方向では測定点の
数が多く、光線は2つの方向から支えることもあって、
測定装置や、測定自体が複雑化する。
That is, in this measurement method, a long material is transported in a direction perpendicular to its longitudinal direction, and during the transportation, measurements are taken from two directions, respectively, at both ends of the long material and at multiple positions between these two ends. At the same time as applying a light beam, detecting the reflected light, 2
The amount of bending of the long material is determined by detecting the distance from each measurement point in one direction. However, there are many measurement points in this direction, and the light beam may be supported from two directions.
Measuring devices and measurements themselves become more complex.

本発明は上記欠点の解決を目的とし、具体的には、スリ
ット光線若しくはレーザ光線を照射させて自動的に長尺
材の曲り量を正確に検出できる検出方法を提案する。
The present invention aims to solve the above-mentioned drawbacks, and specifically proposes a detection method that can automatically and accurately detect the amount of bending of a long material by irradiating it with a slit beam or a laser beam.

すなわち、本発明方法は丸棒や形鋼等の長尺材の表面に
対してその長手方向と直角に投光器からスリット光線若
しくはレーザ光線を照射すると共に、その照射光線の反
射像を撮像カメラでとらえ、前記投光器若しくは長尺材
の何れが一方を相対的に移動させるときに、撮像カメラ
において反射像の定位置からのずれ量を求めて、そのず
れ量と移動距離とがら長尺材の曲り量を演算により求め
ることを特徴とする。
That is, the method of the present invention irradiates the surface of a long material such as a round bar or shaped steel with a slit beam or laser beam from a projector at right angles to its longitudinal direction, and captures the reflected image of the irradiated beam with an imaging camera. , when either the projector or the long material moves one of them relatively, the amount of deviation of the reflected image from the fixed position is determined by the imaging camera, and the amount of bending of the long material is calculated by combining the amount of deviation and the moving distance. It is characterized by being determined by calculation.

以下、図面によって本発明方法について詳しく説明する
Hereinafter, the method of the present invention will be explained in detail with reference to the drawings.

まず、第1図は本発明方法を実施する装置の一例の配置
図であって、符号1は台枠を示、し、この台枠1の内部
には置台8を設けて置台8上に例えば、丸棒の如き長尺
材1aを載置し、台枠1上において投光器2や撮像カメ
ラ3が長尺材1aと平行に移動できるよう構成する。す
なわち、台枠1の上面を軌道とし、車輪6を介して移動
台車4を移動自在に配置し、その移動時にはモータ5を
駆動して行なう。移動台車4の下部には投光器2を取付
けて投光器2から垂直にスリット光やレーザ光が投射で
きるよう構成し、投光器2から間隔をおいて前進側に岡
像カメラ3を移動台車4の下部に取イ」け、この撮像カ
メラ3によってスリット光等の投射光線の反射像が撮像
できるよう構成する。
First, FIG. 1 is a layout diagram of an example of an apparatus for carrying out the method of the present invention, in which reference numeral 1 indicates an underframe, and a stand 8 is provided inside the underframe 1. , a long material 1a such as a round bar is placed on the underframe 1 so that a projector 2 and an imaging camera 3 can move in parallel to the long material 1a. That is, the upper surface of the underframe 1 is used as a track, and the movable trolley 4 is movably disposed via wheels 6, and the motor 5 is driven during the movement. A floodlight 2 is attached to the lower part of the movable trolley 4 so that slit light or laser light can be projected vertically from the floodlight 2, and an Oka image camera 3 is mounted on the forward side at a distance from the floodlight 2 at the bottom of the movable trolley 4. The imaging camera 3 is configured to be able to capture a reflected image of a projected light beam such as a slit light beam.

そこで、上記構成の測定装置において丸棒等の長尺材1
aの曲りを測定する場合は、長尺材1aを置台8上に置
いたあと、投光器2から長尺材1aの表面にその長手方
向と直角に、スリット状の光線をあて、その投射による
反射像を移動方向斜め上方に設置した撮像カメラ3によ
りとらえる。このようにとらえると、第3図に示す如く
、丸棒の場合は、半月状の光線の像がカメラ3の受像器
12にうつる。この場合、スリット光線を投射する代わ
りに、レーザ点光線を高速でミラーによって振って投射
したり、レンズを用いてつくった直線状のレーザ光線を
投射することもできる。このように半月状にみえる光線
の像を受像した状態のままで移動台車4と共に投光器2
ならびにカメラ3は第1図の矢印方向に長尺材1aに沿
って移動させる。この移動の間、長尺材1aに曲りがな
いと半月像13は画面の中央定位置にあり、曲りがある
ときには、2点鎖線の半月像14のように上下左右のい
ずれにかにずれる。
Therefore, in the measuring device with the above configuration, a long material such as a round bar 1
When measuring the bending of a, after placing the long material 1a on the table 8, shine a slit-shaped light beam from the projector 2 onto the surface of the long material 1a at right angles to its longitudinal direction, and measure the reflection caused by the projection. The image is captured by an imaging camera 3 installed diagonally above the direction of movement. Viewed in this way, as shown in FIG. 3, in the case of a round bar, a half-moon-shaped image of the light beam is transmitted to the image receptor 12 of the camera 3. In this case, instead of projecting a slit beam, a laser point beam can be waved at high speed by a mirror and projected, or a straight laser beam created using a lens can be projected. While receiving the half-moon-shaped image of the light beam, the projector 2 moves along with the movable trolley 4.
The camera 3 is also moved along the elongated material 1a in the direction of the arrow in FIG. During this movement, if there is no bend in the long material 1a, the half-moon image 13 is at a fixed position in the center of the screen, but if there is a bend, it shifts upward, downward, leftward, or upward, as shown by the half-moon image 14 indicated by the two-dot chain line.

従って、2点鎖線の半月像14のように上下左右のいず
れかにずれ、そのずれ量(ニー、1.′)を求め、これ
らずれ量を例えば演算機に入れて下記の通りに演算を行
なって曲り量が求められる。
Therefore, as shown in the half-moon image 14 indicated by the two-dot chain line, there is a shift in either the up, down, left or right direction, the amount of shift (knee, 1.') is determined, and these amounts of shift are put into a computer, for example, and calculated as follows. The amount of bending can be determined.

第1図において丸棒か牙だけずれると、カメラ画像には
1・−だけ見かけ上のずれを生じる。
In FIG. 1, if only the round bar or fang shifts, an apparent shift of 1.- will occur in the camera image.

カメラが、垂直に対してotoだけ傾いていると1=乱
の関係から′31が求まる。
If the camera is tilted by oto with respect to the vertical, '31 can be found from the relationship 1=disturbance.

一般的に云って、曲り量のあられし方として、第5図に
示づ如く、丸棒1aにつき曲りの絶対量11であられす
方式と、曲り勾配It/Ziであられす方式とがある。
Generally speaking, as shown in FIG. 5, there are two ways to determine the amount of bending: one is to calculate the absolute amount of bending per round bar 1a at 11, and the other is to calculate the bending gradient It/Zi.

従って、前者の如く曲り醋と絶対量11として求める場
合は、ずれ量(:cI、t+)を演算機の二乗回路に入
力し、 (5) l ! =Wの式を演算して求める。
Therefore, if you want to obtain the curve and the absolute amount 11 as in the former case, input the deviation amount (:cI, t+) to the square circuit of the calculator, and (5) l! It is determined by calculating the formula =W.

また、後者の如く、曲り勾配として求める場合は、投光
器2の移動量11を走行距離計(図示せず)から求める
と共に、上記の如く求めた曲り絶対量11の値を用い、
IH/zi=!の式を演算して求めることができる。
In addition, when determining the bending gradient as in the latter case, the movement amount 11 of the projector 2 is obtained from an odometer (not shown), and the value of the absolute bending amount 11 obtained as described above is used.
IH/zi=! It can be found by calculating the formula.

また、丸棒等の長尺材の曲りは必ずしも一方向のみでな
く、例えば、床面においたときに、床面と同じレベルで
左右方向の曲りや、上下方向の曲りがある。しかし、何
れの方向でも、丸棒を回転することによって上記の如く
曲り量が求められる。
Further, a long material such as a round bar does not necessarily bend only in one direction; for example, when placed on a floor, it may bend in the left-right direction or in the vertical direction at the same level as the floor. However, in either direction, the amount of bending can be determined by rotating the round bar as described above.

また、投光器や移動台車の移動距離を検出するときには
、移動台車6に走行位置検出装置をつけて測定すること
ができる。
Furthermore, when detecting the moving distance of the projector or the movable trolley, a travel position detection device can be attached to the movable trolley 6 for measurement.

また、長尺材と台枠1の移動フレーム7が平行でない場
合は、正規画像13は一定速度でいずれかの方向へ移動
する。第4図の曲線(イ)のように移動台車4の移動量
とずれ量が直線的に変化せず、直線(ロ)に対して偏差
(σ)が生じると、(6) これが曲りと4jす、このところから曲り量が測定でき
る。
Further, if the moving frame 7 of the elongated material and the underframe 1 are not parallel, the regular image 13 moves in either direction at a constant speed. If the amount of movement and displacement of the mobile cart 4 do not change linearly, as shown by the curve (a) in Fig. 4, and a deviation (σ) occurs with respect to the straight line (b), (6) this is a curve. The amount of bending can be measured from this point.

なお、第2図は本発明方法を実施する他の装置の配置図
で、第2図に示す場合は、第1図に示す場合と逆に投光
器2と撮像カメラ3が架台9に固定され、長尺材1aが
車輪11に支持される移動台車10上に載置されて長尺
材1aが移動自在に構成されている。この装置によって
も上記のところと同様に測定される。
Note that FIG. 2 is a layout diagram of another device for carrying out the method of the present invention, and in the case shown in FIG. 2, the projector 2 and the imaging camera 3 are fixed to the pedestal 9, contrary to the case shown in FIG. The elongated material 1a is placed on a movable cart 10 supported by wheels 11, so that the elongated material 1a is movable. This device also measures in the same way as above.

以上詳しく説明した通り、本発明によれば多数の長尺材
についての曲り量の測定の自動化ならびに高速化が可能
となり、ひいては曲りの測定を生産ラインの中に組み込
すことも可能で丸棒等の製造で能率化に大きく寄与する
ことができる。
As explained in detail above, according to the present invention, it is possible to automate and speed up the measurement of the amount of bending of a large number of long materials, and it is also possible to incorporate bending measurement into the production line. It can greatly contribute to efficiency in manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ならびに第2図は本発明方法を実施する装置の1
例の配置図、第3図は撮像カメラによって受像器に映し
だされたスリット光線の画像の一例の説明図、第4図は
測定時の移動量とずれ量との関係を示すグラフ、第5図
は曲り量のとり方の説明図である。 符号1・・・・・・台枠    1a・・・・・・長尺
材2・・・・・・投光器   3・・・・・・撮像カメ
ラ4・・・・・・移動台車  5・・・・・・駆動モー
タ6・・・・・・車輪    7・・・・・・移動フレ
ーム8・・・・・・置台    9・・・・・・架台1
0・・・・・・移動台車  11・・・・・・車輪12
・・・・・・受像器   13・・・・・・光線像14
・・・・・・光線像 特許出願人  川崎製鉄株式会社 代  理  人   弁理士  松  下  義  勝
弁護士 副 島 文 雄 第7図 □□ハ 第3図 第4図 第f図
Figures 1 and 2 show one of the apparatuses for carrying out the method of the present invention.
An example layout diagram, Figure 3 is an explanatory diagram of an example of the image of the slit beam projected onto the image receiver by the imaging camera, Figure 4 is a graph showing the relationship between the amount of movement and the amount of deviation during measurement, and Figure 5 The figure is an explanatory diagram of how to determine the amount of bending. Code 1... Underframe 1a... Long material 2... Floodlight 3... Imaging camera 4... Moving trolley 5... ... Drive motor 6 ... Wheels 7 ... Moving frame 8 ... Placement stand 9 ... Frame 1
0...Moving trolley 11...Wheel 12
... Image receptor 13 ... Ray image 14
・・・・・・Light image patent applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Yoshikatsu Matsushita Lawyer Fumi Soe Shima Figure 7 □□C Figure 3 Figure 4 Figure f

Claims (1)

【特許請求の範囲】[Claims] 丸棒や形鋼等の長尺材の表面に対してその長手方向と直
角に投光器からスリット光線若しくはレーザ光線を照射
すると共に、その照射光線の反[Glを@像カメラでと
らえ、前記投光器若しくは長尺材の何れが一方を相対的
に移動させるときに、撮像カメラにおいて反射像の定位
置からのずれ量を求めて、そのずれ醗と移動距離とから
長尺材の曲り」を演算により求めることを特徴とする長
尺材の曲り量検出方法。
The surface of a long material such as a round bar or shaped steel is irradiated with a slit beam or a laser beam from a projector perpendicular to its longitudinal direction, and the reflection of the irradiated beam [Gl is captured by an image camera, and the projector or When one of the long materials moves relative to the other, the amount of deviation of the reflected image from the fixed position is determined using the imaging camera, and the curvature of the long material is calculated from the deviation and the distance traveled. A method for detecting the amount of bending of a long material.
JP6392683A 1983-04-11 1983-04-11 Measuring method of amount of curvature of long-sized material Pending JPS59188507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6392683A JPS59188507A (en) 1983-04-11 1983-04-11 Measuring method of amount of curvature of long-sized material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6392683A JPS59188507A (en) 1983-04-11 1983-04-11 Measuring method of amount of curvature of long-sized material

Publications (1)

Publication Number Publication Date
JPS59188507A true JPS59188507A (en) 1984-10-25

Family

ID=13243430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6392683A Pending JPS59188507A (en) 1983-04-11 1983-04-11 Measuring method of amount of curvature of long-sized material

Country Status (1)

Country Link
JP (1) JPS59188507A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778274A (en) * 1985-12-10 1988-10-18 Chuo Electric Manufacturing Co., Ltd. Noncontact measuring device for cylindrical, elongated objects bent into three-dimensional shapes
US5289261A (en) * 1991-09-17 1994-02-22 Opton, Co., Ltd. Device for measuring a three-dimensional shape of an elongate member
EP0908698A2 (en) * 1997-09-16 1999-04-14 BETRIEBSFORSCHUNGSINSTITUT VDEh, INSTITUT FÜR ANGEWANDTE FORSCHUNG GmbH Device for measuring longitudinal products
JP2010038892A (en) * 2008-08-08 2010-02-18 Ihi Corp Straightness measuring implement of long cylindrical member and measurement method thereof
EP2293012A3 (en) * 2003-01-28 2012-01-25 DANIELI AUTOMATION SpA Method and device to control the torsions of long products
EP3093611A3 (en) * 2015-05-15 2017-03-08 Q-TECH S.r.l. Measuring method and device to measure the straightness error of bars and pipes
ITUA20162235A1 (en) * 2016-04-01 2017-10-01 Rde Company S R L 3D floating support system for geometric detection equipment of slender bodies
JP2020025971A (en) * 2018-08-10 2020-02-20 日清紡メカトロニクス株式会社 Long object processing method and processing device
WO2022202219A1 (en) * 2021-03-22 2022-09-29 日本製鉄株式会社 Shape inspection device for front axle beam

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778274A (en) * 1985-12-10 1988-10-18 Chuo Electric Manufacturing Co., Ltd. Noncontact measuring device for cylindrical, elongated objects bent into three-dimensional shapes
US5289261A (en) * 1991-09-17 1994-02-22 Opton, Co., Ltd. Device for measuring a three-dimensional shape of an elongate member
EP0908698A2 (en) * 1997-09-16 1999-04-14 BETRIEBSFORSCHUNGSINSTITUT VDEh, INSTITUT FÜR ANGEWANDTE FORSCHUNG GmbH Device for measuring longitudinal products
EP0908698A3 (en) * 1997-09-16 2000-10-11 BETRIEBSFORSCHUNGSINSTITUT VDEh, INSTITUT FÜR ANGEWANDTE FORSCHUNG GmbH Device for measuring longitudinal products
EP2293012A3 (en) * 2003-01-28 2012-01-25 DANIELI AUTOMATION SpA Method and device to control the torsions of long products
JP2010038892A (en) * 2008-08-08 2010-02-18 Ihi Corp Straightness measuring implement of long cylindrical member and measurement method thereof
EP3093611A3 (en) * 2015-05-15 2017-03-08 Q-TECH S.r.l. Measuring method and device to measure the straightness error of bars and pipes
ITUA20162235A1 (en) * 2016-04-01 2017-10-01 Rde Company S R L 3D floating support system for geometric detection equipment of slender bodies
WO2017168324A1 (en) * 2016-04-01 2017-10-05 Rde Company S.R.L. 3d floating support system and related geometry-detecting machine of slender articles
CN109154492A (en) * 2016-04-01 2019-01-04 Rde公司 The three-dimensional floating support system and related geometry of elongate articles detect machine
US10890440B2 (en) 2016-04-01 2021-01-12 Rde Company S.R.L. 3D floating support system and related geometry-detecting machine of slender articles
US11002532B2 (en) 2016-04-01 2021-05-11 Rde Company S.R.L. 3D floating support system and related geometry-detecting machine of slender articles
JP2020025971A (en) * 2018-08-10 2020-02-20 日清紡メカトロニクス株式会社 Long object processing method and processing device
WO2022202219A1 (en) * 2021-03-22 2022-09-29 日本製鉄株式会社 Shape inspection device for front axle beam

Similar Documents

Publication Publication Date Title
US6094269A (en) Apparatus and method for optically measuring an object surface contour
JP4260148B2 (en) Inspection vehicle for railway equipment
KR101918558B1 (en) Portable track and catenary inspection equipment using image processing apparatus, and inspection method for the same
JPS60185108A (en) Method and device for measuring body in noncontacting manner
JP2008298762A (en) Laminography inspection system and its method
JPS59188507A (en) Measuring method of amount of curvature of long-sized material
JP2006337112A (en) Method and device for correcting zero-point error in sequential three-point method
JP2019190858A (en) Laser-type long wavelength track inspection device and laser-type long wavelength track inspection method
JPS58111708A (en) Flatness measuring device
US4815857A (en) Method and apparatus for measuring an object
JPH08136254A (en) Apparatus and method for measuring irregularity of track and curvature measuring method
JP2000230816A (en) Angle measuring instrument
JP3442171B2 (en) Railway surveying equipment
JP2012154910A (en) Measuring device for measuring cross-sectional shape of tire tread surface and depth of tread groove
JP3171209B2 (en) Automatic measurement system for wear amount of pantograph slide plate
JPS5847209A (en) Device for measuring surface configuration
JP2994535B2 (en) Hot steel profile measuring device
RU2686801C1 (en) Optical measuring device
JP3065367B2 (en) Shape measurement device for structures around railway tracks
JP3331341B2 (en) Dimension measuring device for section of steel section
JP2001221620A (en) Optical scanning method for structural surface
JPH1183451A (en) Shape measuring device for tread of railroad wheel
JP3028686B2 (en) Method and apparatus for measuring bending of top surface of railroad rail
JPH0347737B2 (en)
JPH04348211A (en) Optical shape measuring method