JP2012154910A - Measuring device for measuring cross-sectional shape of tire tread surface and depth of tread groove - Google Patents

Measuring device for measuring cross-sectional shape of tire tread surface and depth of tread groove Download PDF

Info

Publication number
JP2012154910A
JP2012154910A JP2011027820A JP2011027820A JP2012154910A JP 2012154910 A JP2012154910 A JP 2012154910A JP 2011027820 A JP2011027820 A JP 2011027820A JP 2011027820 A JP2011027820 A JP 2011027820A JP 2012154910 A JP2012154910 A JP 2012154910A
Authority
JP
Japan
Prior art keywords
tread surface
tread
digital camera
light source
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011027820A
Other languages
Japanese (ja)
Inventor
Yasushi Seki
簡 関
Kenichi Uchino
賢一 内野
Hitoshi Yamamoto
仁至 山本
Junzo Kanematsu
順三 兼松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SYSTEM CONSULTANTS KK
Original Assignee
SYSTEM CONSULTANTS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SYSTEM CONSULTANTS KK filed Critical SYSTEM CONSULTANTS KK
Priority to JP2011027820A priority Critical patent/JP2012154910A/en
Publication of JP2012154910A publication Critical patent/JP2012154910A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for quickly measuring a cross-sectional shape of a tread surface of a tire and a depth of a tread groove in a non-contact state.SOLUTION: The device of the present invention measures a cross-sectional shape of a tread surface of a tire, and measures a depth of a tread groove based on a measurement result. The device comprises: a guide mechanism juxtaposed near the tread surface of the tire in a width direction; a light source unit for irradiating the tread surface with single light; a digital camera for photographing a reflected bright spot of the single light; a control unit for photographing the reflected bright spot while moving the light source unit and the digital camera along the guide mechanism; and means for measuring the cross-sectional shape of the tread surface and the depth of the tread groove, based on photographed image data.

Description

発明の詳細な説明Detailed Description of the Invention

発明の属する分野Field of Invention

本発明はタイヤのトレッド面の断面形状とトレッド溝の深さを計測する測定装置に関し、詳しくはトレッド面の断面形状とトレッド溝の深さを非接触で容易に測定できるタイヤトレッド面断面形状ならびにトレッド溝深さ測定装置に関する。The present invention relates to a measuring device for measuring a cross-sectional shape of a tread surface of a tire and a depth of a tread groove, and more specifically, a cross-sectional shape of a tire tread surface that can easily measure the cross-sectional shape of the tread surface and the depth of the tread groove without contact, and The present invention relates to a tread groove depth measuring device.

一般にタイヤトレッド面の溝は比較的溝幅が狭く深いため、深度ゲージ等による物理的な接触方式が多く採られている。これは溝形状が一様でなくうねりを伴ったパターンなど多様であり、数mmから10数mmの高低差を十分な精度で計測するには一番確実かつ簡便な方式であることに起因する。ただ、接触方式はプローブの挿入角度や溝底部の接触点の状態、ゲージの読み取り誤差などの要因により測定誤差を生じやすく、さらにゴムなどの弾性体では接触による変形誤差を生じる可能性も高い。また通常は一度に1点しか測定できないため、数多くの計測点を効率よく計測するには時間と工数を要する。さらにトレッド面の断面形状を計測することは深度ゲージでは不可能である。Generally, since the groove on the tire tread surface is relatively narrow and deep, a physical contact method using a depth gauge or the like is often employed. This is because the groove shape is not uniform and there are various patterns such as waviness, and this is because it is the most reliable and simple method for measuring a height difference of several mm to several tens of mm with sufficient accuracy. . However, the contact method is likely to cause measurement errors due to factors such as the probe insertion angle, the contact point at the bottom of the groove, and gauge reading errors. Further, an elastic body such as rubber is likely to cause deformation errors due to contact. In addition, since usually only one point can be measured at a time, it takes time and man-hours to efficiently measure a large number of measurement points. Furthermore, it is impossible to measure the cross-sectional shape of the tread surface with a depth gauge.

また、従来知られている非接触方式による測定装置は、トレッド溝に限らずトレッド断面形状の計測は可能であるが大型の装置であり専用の設置場所を必要とした。そのためタイヤを車両に装着した状態で計測することが難しいか、可能であっても車両を測定装置の設置場所に移動させるなど準備作業が必要で簡単に計測を行うことが困難であった。In addition, the conventionally known non-contact type measuring device is not limited to the tread groove, but can measure the cross-sectional shape of the tread, but is a large device and requires a dedicated installation place. Therefore, it is difficult to measure with the tire mounted on the vehicle, or even if possible, it is difficult to perform measurement easily because preparation work such as moving the vehicle to the installation location of the measuring device is necessary.

発明が解決しようとする課題Problems to be solved by the invention

本発明は、タイヤのトレッド面の断面形状とトレッド溝の深さを、作業者の経験や操作方法あるいはタイヤの状態によらず測定精度が高く、なおかつ比較的容易に計測できることを目的としている。An object of the present invention is to measure the cross-sectional shape of a tread surface of a tire and the depth of a tread groove with high measurement accuracy and relatively easily regardless of the operator's experience, operation method, or tire state.

課題を解決するための手段Means for solving the problem

請求項1記載の発明は、タイヤトレッド面の断面形状を計測する装置であり、タイヤトレッド面の幅方向にガイド機構を近接並置させることにより、ガイド機構の軸線を計測基線として計測基線に沿って移動する光源装置とデジタルカメラ、ならびに光源装置とデジタルカメラを移動させる制御装置を備えている事を特徴とするタイヤトレッド断面形状とトレッド溝の深さ測定装置である。The invention according to claim 1 is an apparatus for measuring the cross-sectional shape of the tire tread surface, and by placing the guide mechanisms close to each other in the width direction of the tire tread surface, the axis of the guide mechanism is taken as the measurement baseline along the measurement baseline. A tire tread cross-sectional shape and a tread groove depth measuring device including a moving light source device and a digital camera, and a control device for moving the light source device and the digital camera.

請求項2記載の発明は、請求項1の制御装置を介して光源装置とデジタルカメラを計測基線に沿って移動させながら反射輝点の撮影を行い、撮影された画像データと光源装置ならびにデジタルカメラの位置情報とを関連させて一群の解析データとして蓄積し、蓄積された解析データからタイヤトレッド面の形状を図式表示できる情報に変換するとともに、トレッド溝の深さを測定する処理を備えていることを特徴とするタイヤトレッド断面形状とトレッド溝の深さ測定方法である。According to a second aspect of the present invention, a reflected bright spot is photographed while moving the light source device and the digital camera along the measurement baseline via the control device of the first aspect, and the photographed image data, the light source device, and the digital camera are photographed. And a process for measuring the depth of the tread groove while converting the accumulated analysis data into information that can be graphically displayed as a shape and displaying the shape of the tire tread surface. A tire tread cross-sectional shape and a tread groove depth measuring method.

作用Action

この発明によれば、タイヤトレッド面の断面形状を計測しトレッド溝の深さを測定する際、ガイド機構をその軸線がタイヤトレッド面の幅方向と略並行になるように近接させて、光源装置とデジタルカメラとを物理的に特定の位置関係に保ちながら光源装置をガイド機構に沿って移動させ、一定量を移動する毎に反射輝点を撮影する。この一定の移動量は要求される測定分解能によってきまり、例えば0.1mmの要求測定分解能であれば移動量が0.1mmにつき少なくとも1枚以上の撮影をおこなう。According to the present invention, when measuring the cross-sectional shape of the tire tread surface and measuring the depth of the tread groove, the guide mechanism is brought close to the axis of the tire tread surface so as to be substantially parallel to the width direction of the tire tread surface. The light source device is moved along the guide mechanism while physically maintaining a specific positional relationship between the digital camera and the digital camera, and a reflected bright spot is photographed every time a certain amount is moved. This fixed amount of movement is determined by the required measurement resolution. For example, if the required measurement resolution is 0.1 mm, at least one image is taken for each movement amount of 0.1 mm.

光源装置とデジタルカメラはともにガイド機構に沿って移動するため、光源装置とデジタルカメラはガイド機構を介してタイヤトレッド面との対向面間を一定に保ちながら移動することになり、移動軸を基準としてトレッド面上の反射輝点と撮影された画像データ上の反射輝点像との間には光源装置とデジタルカメラの位置を変数とする一定の関係式が成立する。Since both the light source device and the digital camera move along the guide mechanism, the light source device and the digital camera move through the guide mechanism while maintaining a constant distance between the opposed surfaces of the tire tread surface and the movement axis as a reference. As a result, a certain relational expression is established between the reflected bright spot on the tread surface and the reflected bright spot image on the captured image data, with the positions of the light source device and the digital camera as variables.

反射輝点を撮影したときの光源装置とデジタルカメラの位置情報は測定開始点からの移動量から特定でき、撮影した画像データと各装置の位置情報を一群とする計測データとして出力する。The position information of the light source device and the digital camera when the reflected bright spot is photographed can be specified from the amount of movement from the measurement start point, and the photographed image data and the position information of each device are output as measurement data as a group.

出力された計測データより、画像データ上のデジタルカメラの光軸中心を原点とした反射輝点の座標データ、光源装置とデジタルカメラの物理的位置関係ならびに光源装置の撮影時の位置情報から、前述の移動軸を基準とする反射輝点を発生したタイヤトレッド面の座標に変換する。From the output measurement data, from the coordinate data of the reflected bright spot with the origin of the optical axis center of the digital camera on the image data, the physical positional relationship between the light source device and the digital camera, and the positional information at the time of shooting of the light source device, Are converted into coordinates of the tire tread surface on which the reflected bright spot is generated with reference to the movement axis.

変換された計測データは、基準軸を横座標軸としたトレッド面の断面形状を十分な密度でサンプル抽出した実寸値であり、その計測データの座標値を計測制御装置に接続した表示モニターにプロットしてトレッド面の断面形状を図示し、計測データのうちトレッド溝の頂部と底部のデータを用いて演算することでトレッド溝の深さを算出する。The converted measurement data is the actual size value obtained by sampling the cross-sectional shape of the tread surface with sufficient density, with the reference axis as the abscissa axis, and the coordinate value of the measurement data is plotted on the display monitor connected to the measurement controller. Then, the cross-sectional shape of the tread surface is illustrated, and the tread groove depth is calculated by calculating using the data of the top and bottom of the tread groove in the measurement data.

発明の実施形態Embodiment of the Invention

以下、本発明の実施の一形態を図面に基づき説明する。図−1は、請求項1にあるガイド機構11と光源装置12とデジタルカメラ13と駆動サーボモーター14とラックギア送り装置Gと移動架台15と移動架台台座Tにより構成される移動機構の構成を示す。図−1(a)においてガイド機構11は、ガイド支持棒11aとガイドレール11bの両端をバックパネル11cにより固定された構造で構成されている。レーザーダイオードを用いた光源装置12とデジタルカメラ13は照射光の中心を通る照射光軸とデジタルカメラ13の焦点を通り撮像面に垂直な撮影光軸が同一平面上になるよう移動架台15に固定されている。移動架台15は移動架台台座Tを介してガイドレール11bに接続されており、同じく移動架台15に架装された駆動サーボモーター14とラックギア送り装置Gにより移動機構を構成する。本実施例では1つの移動架台15に光源装置12ならびにデジタルカメラ13を固定することで移動機構を共用しているが、光源装置12とデジタルカメラ13にそれぞれ移動機構を設けて作用させることもできる。移動架台15は計測エリアWの両端にある計測エリア検出センサー16により決まる計測エリアWの一端から他端まで駆動サーボモーター14により位置決めをしながら移動する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a moving mechanism constituted by the guide mechanism 11, the light source device 12, the digital camera 13, the drive servo motor 14, the rack gear feeder G, the movable frame 15, and the movable frame base T according to claim 1. . In FIG. 1A, the guide mechanism 11 has a structure in which both ends of a guide support bar 11a and a guide rail 11b are fixed by a back panel 11c. The light source device 12 using a laser diode and the digital camera 13 are fixed to the movable base 15 so that the irradiation optical axis passing through the center of the irradiation light and the photographing optical axis passing through the focal point of the digital camera 13 and perpendicular to the imaging surface are on the same plane. Has been. The movable gantry 15 is connected to the guide rail 11b via the movable gantry pedestal T, and the driving servo motor 14 and the rack gear feeder G mounted on the movable gantry 15 constitute a moving mechanism. In this embodiment, the moving mechanism is shared by fixing the light source device 12 and the digital camera 13 to one moving gantry 15, but the moving mechanism can be provided to the light source device 12 and the digital camera 13, respectively. . The movable gantry 15 moves while being positioned by the drive servo motor 14 from one end to the other end of the measurement area W determined by the measurement area detection sensors 16 at both ends of the measurement area W.

本実施形態では移動架台15がガイドレール11bに沿って移動するが、移動架台15に固定された光源装置12とデジタルカメラ13の物理的な位置関係は、移動架台15がガイドレール11bのどの位置にあっても変化しないため、撮影した反射輝点はすべての画像データにおいて撮影光軸を中心にしてガイド機構11の軸線を水平軸とする垂直方向にのみ移動した位置に写ることになる。In the present embodiment, the movable gantry 15 moves along the guide rail 11b. The physical positional relationship between the light source device 12 and the digital camera 13 fixed to the movable gantry 15 depends on the position of the movable gantry 15 on the guide rail 11b. In this case, the captured reflected bright spot appears in all image data at a position that is moved only in the vertical direction with the axis of the guide mechanism 11 as the horizontal axis about the imaging optical axis.

図−2は、光源装置12とデジタルカメラ13と駆動サーボモーター14を制御する計測制御装置21の機能ブロックを示す。光源装置12の点滅制御、デジタルカメラ13の画像撮影と撮影した画像データの出力要求制御、駆動サーボモーター14を介して特定の位置に移動架台15を移動させる移動制御、撮影した画像データから断面形状を測定してトレッド溝の深さを計測する処理を行う。FIG. 2 shows functional blocks of the measurement control device 21 that controls the light source device 12, the digital camera 13, and the drive servo motor 14. Control of blinking of the light source device 12, image capturing of the digital camera 13 and output request control of the captured image data, movement control of moving the moving base 15 to a specific position via the drive servo motor 14, and cross-sectional shape from the captured image data To measure the depth of the tread groove.

図−3は、請求項2にある計測制御装置21で実行する処理手順を示す。以下この手順に従って動作詳細を示す。計測制御装置21に対してキーボード入力213に接続されたキーボードから処理の開始指令を入力すると処理が起動される。最初の移動指令S1において計測制御装置21はモーター制御出力216から駆動サーボモーター14に移動指令を出して移動架台15を計測開始位置である計測エリアWの一方端まで移動させる。計測制御装置21は移動位置確認処理S2において計測エリア検出センサー16により移動架台15が計測開始位置に移動したことを検知して最初の移動指令S1が完了したことを確認する。FIG. 3 shows a processing procedure executed by the measurement control device 21 according to claim 2. Details of the operation will be described below in accordance with this procedure. When a process start command is input to the measurement control device 21 from a keyboard connected to the keyboard input 213, the process is started. In the first movement command S1, the measurement control device 21 issues a movement command from the motor control output 216 to the drive servo motor 14 to move the movable base 15 to one end of the measurement area W that is the measurement start position. In the movement position confirmation process S2, the measurement control device 21 detects that the movement base 15 has moved to the measurement start position by the measurement area detection sensor 16, and confirms that the first movement command S1 has been completed.

計測制御装置21は移動架台15が計測開始位置にあることを確認したら移動架台15の位置を位置情報データとして記憶し、撮影指令S3において光源制御出力214から光源装置12に点灯指令を出したのちカメラ制御出力215からデジタルカメラ13にシャッター指令と撮影した画像データ出力指令を出す。その後計測データ取得S4において撮影した画像データがデジタルカメラ13から画像データ入力212に入力転送されるのを待つ。After confirming that the movable gantry 15 is at the measurement start position, the measurement control device 21 stores the position of the movable gantry 15 as position information data, and issues a lighting command to the light source device 12 from the light source control output 214 in the photographing command S3. A shutter command and a photographed image data output command are issued from the camera control output 215 to the digital camera 13. Thereafter, it waits for the image data captured in the measurement data acquisition S4 to be input and transferred from the digital camera 13 to the image data input 212.

前述の点灯指令を受けた光源装置12はレーザービームを点灯させる。シャッター指令と画像データ出力指令を受けたデジタルカメラ13は反射輝点を撮影したのち撮影した画像データを計測制御装置21に出力する。The light source device 12 that has received the above-described lighting command turns on the laser beam. Upon receiving the shutter command and the image data output command, the digital camera 13 captures the reflected bright spot and outputs the captured image data to the measurement control device 21.

計測制御装置21は画像データ入力212を経由してデジタルカメラ13から画像データを受け取った後、画像データと記憶している移動架台15の位置情報データとを一群の計測データとして関連付けする。After receiving the image data from the digital camera 13 via the image data input 212, the measurement control device 21 associates the image data with the stored position information data of the movable platform 15 as a group of measurement data.

座標変換/補正処理S5において後述する測定データの変換処理を行う。画像データ上の反射輝点は前述のように撮影光軸を中心としてガイド機構11を水平軸とする垂直方向にのみ移動した位置座標となるため、移動架台15の位置情報データを水平方向の位置座標とすることでタイヤトレッド面上移動架台15の位置における高さ方向のデータに座標変換する。また前述の画像データ上の垂直方向の位置座標値は、光源光軸と撮影光軸の交差する偏角により真値に対して視差を生じる。視差による真値と測定値との差分を偏角から求める補正処理を施して垂直方向の真値を求める。In the coordinate conversion / correction processing S5, measurement data conversion processing described later is performed. As described above, the reflected bright spot on the image data is a position coordinate that is moved only in the vertical direction with the guide mechanism 11 as the horizontal axis, with the photographing optical axis as the center, and thus the position information data of the movable gantry 15 is used as the horizontal position. By using the coordinates, the coordinates are converted into data in the height direction at the position of the moving frame 15 on the tire tread surface. Further, the vertical position coordinate value on the above-described image data produces a parallax with respect to the true value due to the angle of deviation of the light source optical axis and the photographing optical axis. Correction processing for obtaining a difference between the true value due to the parallax and the measured value from the declination is performed to obtain the true value in the vertical direction.

また本実施形態と異なる形態として光源装置12とデジタルカメラ13にそれぞれ移動機構を設けて作用させた場合は、光源装置12とデジタルカメラ13とに垂直方向の視差だけでなく移動機構の移動方向に対応する水平方向の視差を生じるため、前述の垂直方向の視差に対する補正処理と水平方向の視差に対する補正処理を施すことで真値を求める。Further, when the light source device 12 and the digital camera 13 are each provided with a moving mechanism as a form different from the present embodiment, the light source device 12 and the digital camera 13 are not only affected by the vertical parallax but also in the moving direction of the moving mechanism. In order to generate the corresponding horizontal parallax, the true value is obtained by performing the correction process for the vertical parallax and the correction process for the horizontal parallax.

計測制御装置21は座標変換/補正処理S5を終えたら、データ蓄積保存S6において変換処理を施した計測データを記憶部202に蓄積保存する。After finishing the coordinate conversion / correction process S5, the measurement control device 21 stores and stores the measurement data subjected to the conversion process in the data storage and storage S6 in the storage unit 202.

計測制御装置21は、計測エリア内判定S7において受け取った計測データが計測エリアW内のデータかどうかを判定する。計測エリアWの範囲内であったら移動指令S1で次の撮影地点へ移動架台15を移動させる。以下、移動架台15が計測エリアWの外側に移動するまで移動指令S1から計測エリア内判定S7までを繰り返す。The measurement control device 21 determines whether the measurement data received in the measurement area determination S <b> 7 is data in the measurement area W. If it is within the range of the measurement area W, the moving base 15 is moved to the next photographing point by the movement command S1. Hereinafter, the movement command S1 to the determination in the measurement area S7 are repeated until the movable gantry 15 moves outside the measurement area W.

計測制御装置21は計測エリア内判定S7において移動架台15が計測エリアWの外側に移動したことを検知するとトレッド断面の測定を完了したと判定し、溝の深さ計測・表示S8において予め与えられたトレッド溝の深さを計測する条件に基づき記憶部202に蓄積された計測データからトレッド溝の深さを求めるとともに、表示モニター出力218に接続された表示モニターにガイド機構11を水平軸とするタイヤのトレッド断面形状としてグラフ表示とともにトレッド溝の深さを表示して計測処理を終了する。The measurement control device 21 determines that the measurement of the tread cross section has been completed when detecting that the movable platform 15 has moved outside the measurement area W in the determination S7 within the measurement area, and is given in advance in the groove depth measurement / display S8. The tread groove depth is obtained from the measurement data stored in the storage unit 202 based on the condition for measuring the tread groove depth, and the guide mechanism 11 is set on the display monitor connected to the display monitor output 218 as the horizontal axis. The tread groove depth is displayed together with the graph display as the tread cross-sectional shape of the tire, and the measurement process is terminated.

発明の効果The invention's effect

本発明は、タイヤトレッド面の幅方向にガイド機構を近接並置するだけで計測できるため、タイヤ毎に異なるタイヤ外径やトレッド幅であっても、測定装置とタイヤトレッド面との測定間隔を一定にして高精度に計測することができる。Since the present invention can be measured by simply juxtaposing the guide mechanism in the width direction of the tire tread surface, the measurement interval between the measuring device and the tire tread surface is constant even when the tire outer diameter and the tread width are different for each tire. Can be measured with high accuracy.

また、タイヤが路面に接地した接地状態でもリフトアップされた非接地状態であっても、あるいはタイヤを車両に装着した状態でも装着しない状態でも計測できる。このため、大型の測定装置を設置して計測するための場所を必要とせず、タイヤの設置状態の制約を受けないため計測作業が容易になる。Further, the measurement can be performed even when the tire is in contact with the road surface or in a lifted-up non-contact state, or when the tire is mounted on the vehicle or not. For this reason, a place for installing and measuring a large-sized measuring device is not required, and measurement work is facilitated because the installation state of the tire is not restricted.

本発明装置の実施例における装置構成Apparatus configuration in an embodiment of the apparatus of the present invention 計測制御装置機能ブロック図Measurement controller functional block diagram 計測制御装置の処理フロー図Process flow diagram of measurement control device

11:ガイド機構
11a:ガイド機構を構成するガイド支持棒
11b:ガイド機構を構成するガイドレール
11c:ガイド機構を構成するバックパネル
12:光源装置
13:デジタルカメラ
14:駆動サーボモーター
15:移動架台
16:計測エリア検出センサー
21:計測制御装置
G:ラックギア送り装置
T:移動架台台座
S:タイヤ
W:計測エリア
11: Guide mechanism 11a: Guide support bar 11b constituting the guide mechanism: Guide rail 11c constituting the guide mechanism: Back panel 12 constituting the guide mechanism: Light source device 13: Digital camera 14: Drive servo motor 15: Moving stand 16 : Measurement area detection sensor 21: Measurement control device G: Rack gear feeder T: Moving base pedestal S: Tire W: Measurement area

Claims (2)

タイヤのトレッド面近くに並置するためのガイド機構と、トレッド面を照射する単一光を発生する光源装置と、光源装置をガイド機構に沿って所定の位置に移動させる移動機構と、単一光がトレッド面で発生する反射輝点を撮影するデジタルカメラと、デジタルカメラを反射輝点の撮影可能範囲となる所定の位置に移動させる移動機構と、光源装置とデジタルカメラと移動機構を制御する計測制御装置を備えたことを特徴とするタイヤトレッドの断面形状ならびにトレッド溝深さ測定装置。A guide mechanism for juxtaposition near the tread surface of the tire, a light source device that generates a single light that irradiates the tread surface, a moving mechanism that moves the light source device to a predetermined position along the guide mechanism, and a single light A digital camera that shoots the reflected bright spot generated on the tread surface, a moving mechanism that moves the digital camera to a predetermined position within the reflected bright spot shooting range, and a measurement that controls the light source device, the digital camera, and the moving mechanism A cross-sectional shape of a tire tread and a tread groove depth measuring device including a control device. 請求項1の装置を用いて、反射輝点を撮影した画像データと光源装置ならびにデジタルカメラの位置情報を対応させた解析データを蓄積し、蓄積された解析データからトレッド面の形状を求めて、得られたトレッド面形状からトレッド溝の深さを求める方法。Using the apparatus of claim 1, the analysis data in which the image data obtained by photographing the reflected bright spot and the light source device and the positional information of the digital camera are associated is accumulated, and the shape of the tread surface is obtained from the accumulated analysis data, A method for obtaining the depth of the tread groove from the obtained tread surface shape.
JP2011027820A 2011-01-25 2011-01-25 Measuring device for measuring cross-sectional shape of tire tread surface and depth of tread groove Pending JP2012154910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011027820A JP2012154910A (en) 2011-01-25 2011-01-25 Measuring device for measuring cross-sectional shape of tire tread surface and depth of tread groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011027820A JP2012154910A (en) 2011-01-25 2011-01-25 Measuring device for measuring cross-sectional shape of tire tread surface and depth of tread groove

Publications (1)

Publication Number Publication Date
JP2012154910A true JP2012154910A (en) 2012-08-16

Family

ID=46836764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011027820A Pending JP2012154910A (en) 2011-01-25 2011-01-25 Measuring device for measuring cross-sectional shape of tire tread surface and depth of tread groove

Country Status (1)

Country Link
JP (1) JP2012154910A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041082A1 (en) * 2013-09-18 2015-03-26 株式会社シーパーツ Tire management system, tire data collecting device, and tire data collecting method
JP2019073036A (en) * 2017-10-12 2019-05-16 中央海産株式会社 Acquisition device of tire profile information
CN110108225A (en) * 2018-02-01 2019-08-09 原相科技股份有限公司 Body surface management method and body surface management system
CN117073981A (en) * 2023-10-16 2023-11-17 中国飞机强度研究所 Device and method for measuring optical movement of section of aircraft tire

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041082A1 (en) * 2013-09-18 2015-03-26 株式会社シーパーツ Tire management system, tire data collecting device, and tire data collecting method
JPWO2015041082A1 (en) * 2013-09-18 2017-03-02 株式会社シーパーツ Tire management system, tire data collection device, and tire data collection method.
JP2019073036A (en) * 2017-10-12 2019-05-16 中央海産株式会社 Acquisition device of tire profile information
CN110108225A (en) * 2018-02-01 2019-08-09 原相科技股份有限公司 Body surface management method and body surface management system
US11453259B2 (en) 2018-02-01 2022-09-27 Pixart Imaging Inc. Object surface managing method and object surface managing system
US11932062B2 (en) 2018-02-01 2024-03-19 Pixart Imaging Inc. Object surface managing method and object surface managing system
CN117073981A (en) * 2023-10-16 2023-11-17 中国飞机强度研究所 Device and method for measuring optical movement of section of aircraft tire
CN117073981B (en) * 2023-10-16 2024-01-09 中国飞机强度研究所 Device and method for measuring optical movement of section of aircraft tire

Similar Documents

Publication Publication Date Title
CN107860331B (en) Shape measuring device, shape measuring method, and structure manufacturing method
JP4857369B2 (en) Turnout inspection device
TWI623724B (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
JP4939304B2 (en) Method and apparatus for measuring film thickness of transparent film
KR101854366B1 (en) 3D-image measuring method
JP2013164272A (en) Inner diameter measuring apparatus and inner diameter measuring method
US20110085177A1 (en) Offset amount calibrating method and surface profile measuring machine
US9067283B2 (en) Machining method
CN111141767A (en) X-ray CT apparatus for measurement and CT reconstruction method using the same
CN106289086B (en) A kind of double camera measurement method for apart from Accurate Calibration between optical indicia point
JP2012154910A (en) Measuring device for measuring cross-sectional shape of tire tread surface and depth of tread groove
CN110836641A (en) Detection method and detection equipment for three-dimensional size of part special-shaped surface microstructure
CN111272111A (en) Eccentricity detection method and eccentricity detection device for lens
JP2015116916A (en) Inspection device for position of utility pole in front of vehicle
JP2011220794A (en) Calibration jig and imaging apparatus calibration method using the same
KR20080111653A (en) 3d measuring apparatus for camera using measurment probe of origin correction
CN211262128U (en) Detection equipment for three-dimensional size of part special-shaped surface microstructure
CN110618138B (en) Method for detecting defects in display screen by using equal-thickness interference principle
JP5702634B2 (en) Camera resolution automatic measurement method, automatic adjustment method, and image inspection method and apparatus
CN109520440A (en) The measuring device and method of stretch reducing machine pass
JP4778855B2 (en) Optical measuring device
JP2014156038A (en) Method and device for measuring gap between mold pieces of tire molding mold
JP7276050B2 (en) Spectacle frame shape measuring device and lens processing device
JP3670627B2 (en) Method and apparatus for measuring dimension of minute shape portion
CN113280866B (en) Automatic overhauling system and method for tunnel