JPS59188021A - Exhaust gas purifying device in engine - Google Patents

Exhaust gas purifying device in engine

Info

Publication number
JPS59188021A
JPS59188021A JP58062558A JP6255883A JPS59188021A JP S59188021 A JPS59188021 A JP S59188021A JP 58062558 A JP58062558 A JP 58062558A JP 6255883 A JP6255883 A JP 6255883A JP S59188021 A JPS59188021 A JP S59188021A
Authority
JP
Japan
Prior art keywords
catalyst
engine
fuel
temperature
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58062558A
Other languages
Japanese (ja)
Other versions
JPS6326251B2 (en
Inventor
Yoshinori Okino
沖野 芳則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP58062558A priority Critical patent/JPS59188021A/en
Publication of JPS59188021A publication Critical patent/JPS59188021A/en
Publication of JPS6326251B2 publication Critical patent/JPS6326251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • F01N3/222Control of additional air supply only, e.g. using by-passes or variable air pump drives using electric valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To effectively protect a catalyst from being overheated, by increasing the amount of fuel, when the temperature of the catalyst is above a predetermined value and the engine runs under a high load or at a high rotational speed, by an amount necessary for lowering the temperature of the catalyst. CONSTITUTION:A control unit 18 receives various control input data upon running of an engine 1, and computes a fuel injection pulse width T. Then, the condition whether the engine 1 runs under a high load or not, and as well the condition whether the engine runs at a high rotational speed or not are sucessively judged. When either one of both conditions is satistifed, a shut-off valve 17 is closed to cut off a secondary air fed to a catalyst 2 from a secondary air supply passage 4. Further, the condition whether the tenperature of the catalyst 2 exceeds a set temperature or not is judged, and if this condition is satisfied, the index (n) of the increment of fuel is renewed to (n+1) so that the above-mentioned injection pulse width T is renewed to T+DELTATXn to increase the injection pulse width T by DELTATXn. Further, a fuel injection valve 13 is controlled with this renewed injection pulse width.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、触媒によってエンジンの排気ガスを浄化する
排気ガス浄化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exhaust gas purification device that purifies engine exhaust gas using a catalyst.

(従来技術) よく知られているように、排気ガス浄化装置に用いられ
ている触媒は、その活性温度を越えて過度に加熱される
と、熱的劣化を生じることから、触媒温度が過度に上昇
しないように保護してやる必要がある。
(Prior art) As is well known, if a catalyst used in an exhaust gas purification device is heated excessively beyond its activation temperature, thermal deterioration will occur. We need to protect it from rising.

この保護対策の一つとして、実公昭52−38730号
公報には、触媒温度を常時監視しておき、触媒温度が設
定温度を越えて上昇したときには、排気ガスの浄化反応
に供する2次空気の供給をカットし、反応熱の発生を抑
制するようにしたものが提案されている。
As one of these protective measures, Japanese Utility Model Publication No. 52-38730 states that the catalyst temperature is constantly monitored, and when the catalyst temperature rises above the set temperature, the secondary air used for the exhaust gas purification reaction is A method has been proposed in which the supply is cut and the generation of reaction heat is suppressed.

犬スるエンジンの高負荷は高回転時においては、単に2
次空気の供給をカットするのみでは、触媒による反応熱
の発生は抑制されるものの、高温多量の排気ガスによっ
て触媒が加熱されるため、触媒温度を有効に低下させる
ことができない問題がある。
The high load of the Inusuru engine is simply 2 at high revolutions.
If only the supply of secondary air is cut, the generation of reaction heat by the catalyst is suppressed, but the catalyst is heated by a large amount of high-temperature exhaust gas, so there is a problem that the catalyst temperature cannot be effectively lowered.

一方、エンジンに供給する燃料量が触媒温度とある相関
を有し、空燃比をリッチ側に設定すると排気ガス中の余
剰酸素が減少し、触媒反応が抑制されて触媒温度が低下
することが認識されている。
On the other hand, it is recognized that the amount of fuel supplied to the engine has a certain correlation with the catalyst temperature, and when the air-fuel ratio is set to the rich side, excess oxygen in the exhaust gas decreases, suppressing the catalytic reaction and lowering the catalyst temperature. has been done.

かかる認識に基づいて、排気ガス流量が増大して触媒温
度の上昇が予想されるエンジンの高負荷、(高回転)時
には、その運転状態によって最大の出力性能を示す空燃
比よりも、リッチ側に空燃比を設定し、触媒の保護を図
るようにしたものが知られている(例えば実公昭57−
26034  号公報参照)。
Based on this recognition, when the engine is under high load (high engine speed), where the exhaust gas flow rate increases and the catalyst temperature is expected to rise, the air-fuel ratio is set to the rich side, rather than the air-fuel ratio that indicates the maximum output performance depending on the operating condition. It is known that the air-fuel ratio is set to protect the catalyst (for example, the
(See Publication No. 26034).

かかる触媒の保護を考慮して空燃比の設定を行うもので
は、個々のエンジン性能のばらつき、より具体的には、
出力にとって最適な空燃比がエンジンによってばらつく
ことを考慮すると、エンジンの高負荷(、高回転)時に
おける空燃比は一自づと実際の最適値より相当にリッチ
側に振った値に設定せざるを得す、出力性能が損われ、
燃費性能も悪化するといった問題があった。
If the air-fuel ratio is set with such catalyst protection in mind, variations in individual engine performance, more specifically,
Considering that the optimal air-fuel ratio for output varies depending on the engine, the air-fuel ratio when the engine is under high load (and high revolutions) must be set to a value that is considerably richer than the actual optimal value. is obtained, the output performance is impaired,
There was a problem that fuel efficiency also deteriorated.

(発明の目的) 本発明の目的は、高出力が要求されるエンジンの高負荷
(高回転・)運転時において、触媒の有効な保護を図り
つつ、当該運転状態における出力要求により合致した空
燃比の設定を可能にすることにある。
(Objective of the Invention) The object of the present invention is to effectively protect the catalyst during high-load (high-speed/high-speed) operation of an engine that requires high output, while achieving an air-fuel ratio that more closely matches the output requirements in the operating state. The purpose is to enable the setting of

(発明の構成) 本発明の全体構成を示す第1図にしたがって、本発明の
詳細な説明すると、本発明にかかるエンジンの排気ガス
浄化装瀘は、エンジン1の排気通路1eに介設した触媒
2の温度を検出する触媒温度検出手段3を備え、この触
媒温度検出手段3の出力を受けて、触媒温度が所定値以
上に上昇したときには、触媒2上流の排気通路1eに2
次空気供給通路4によって供給する2次空気の供給を停
止する2次空気停止手段5を設ける一方、エンジン1の
運転状態(吸入空気量、エンジン回転数、負荷等)を検
出する運転状態検出手段6と、この運転状態検出手段6
によって検出されるエンジンの運転状態に応じた量の燃
料を供給すべく例えば吸気通路11に産膜した燃料噴射
弁13の開弁時間を制御する燃料供給手段7とを備え、
触媒温度検出手段3と運転状態検出手段6との両方の出
力を受けて、触媒温度が所定値以上に上昇し、しかもエ
ンジン1が高負荷あるいは高回転で運転されている場合
には、燃料供給手段7により供給される燃料量を触媒温
度を低下させるのに必要な量たけ増加させる燃料増量手
段8を設けてなるものである。
(Structure of the Invention) The present invention will be described in detail with reference to FIG. 1 showing the overall structure of the present invention. The catalyst temperature detecting means 3 detects the temperature of the catalyst 2, and when the catalyst temperature rises to a predetermined value or more in response to the output of the catalyst temperature detecting means 3, the temperature of the exhaust passage 1e upstream of the catalyst 2 is
A secondary air stop means 5 is provided for stopping the supply of secondary air supplied by the secondary air supply passage 4, and an operating state detecting means for detecting the operating state of the engine 1 (intake air amount, engine speed, load, etc.) 6 and this operating state detection means 6
and a fuel supply means 7 for controlling the opening time of the fuel injection valve 13 deposited in the intake passage 11, for example, in order to supply an amount of fuel according to the operating state of the engine detected by the
In response to the outputs from both the catalyst temperature detection means 3 and the operating state detection means 6, if the catalyst temperature rises above a predetermined value and the engine 1 is operated at high load or high rotation, the fuel supply is stopped. A fuel increasing means 8 is provided for increasing the amount of fuel supplied by the means 7 by an amount necessary to lower the catalyst temperature.

(発明の効果) ハ 上昇を抑制するため、過剰の燃料を供給する必要がなく
、燃料の増量を最小限に抑制できるので燃費の改善を図
ることができ、空燃比を出力性能にとって有利な値に設
定できるうえ、触媒温度の過度の上昇を確実に防出する
ことができ、触媒の保護を良好に図ることができるので
ある。
(Effects of the invention) In order to suppress the increase in C, there is no need to supply excess fuel, and the increase in fuel can be minimized, making it possible to improve fuel efficiency and setting the air-fuel ratio to a value that is advantageous for output performance. In addition, it is possible to reliably prevent the catalyst temperature from rising excessively, and the catalyst can be well protected.

(実施例) 以下、添付の第2図および第3図にしたがって本発明の
実施νりについて具体的に説明する。
(Example) Hereinafter, implementation of the present invention will be specifically described with reference to the attached FIGS. 2 and 3.

実施例の全体構成を示す第2図に示すように、エンジン
1の吸気通路11には、上流から順に、エアクリーナ1
0.吸気通路11からエンジン1に吸入される吸入空気
量を検出するエアフローメータ11.アクセルペダル(
図示せず)に連動し負荷に応じて開閉される絞り弁12
および燃料噴射弁13が設けられ、ピストンIPが下降
するエンジン1の吸気行程において、吸気バルブ14が
開作動されると、空気および燃料噴射弁13によって噴
射された燃料を燃焼室IC内に吸入する。
As shown in FIG. 2 showing the overall configuration of the embodiment, air cleaners 1 are installed in the intake passage 11 of the engine 1 in order from upstream.
0. An air flow meter 11 that detects the amount of intake air taken into the engine 1 from the intake passage 11. Accelerator pedal(
Throttle valve 12 that opens and closes according to the load in conjunction with the
and a fuel injection valve 13 are provided, and when the intake valve 14 is opened during the intake stroke of the engine 1 when the piston IP descends, air and fuel injected by the fuel injection valve 13 are sucked into the combustion chamber IC. .

また、エンジン1の排気通路1eには、3元触媒2aと
未燃成分浄化用の触媒2bとを両者の間に2次空気導入
空間2Cを隔ててケーシング2d内に支持した触媒2を
介設し、排気バルブ15が開かれる排気行程において排
出されてくる排気ガスをまず3元触媒2aによって、次
いで未燃成分浄化用触媒2bによって浄化する。
Further, in the exhaust passage 1e of the engine 1, a catalyst 2 is interposed, in which a three-way catalyst 2a and a catalyst 2b for purifying unburned components are supported in a casing 2d with a secondary air introduction space 2C between them. The exhaust gas discharged during the exhaust stroke when the exhaust valve 15 is opened is first purified by the three-way catalyst 2a and then by the unburnt component purifying catalyst 2b.

さらに、上記触媒2に対しては、エアクリーナ10とエ
アフローメータ11との間の吸気通路11に上流端4a
か開口し、雅翅矛yが触媒2の前記2次空気導入空間2
’Cに下流端4bが開口した2次空気供給通路4を設け
、この2次空気供給通路4の途中には、エンジン1の出
力軸(図示せず)により駆動されるエアポンプ16を設
け、さらにエアポンプ16の下流には、2次空気供給通
路4を開閉する電磁作動の開閉弁17を設けている。
Further, for the catalyst 2, an upstream end 4a is provided at the intake passage 11 between the air cleaner 10 and the air flow meter 11.
is opened and the secondary air introduction space 2 of the catalyst 2 is opened.
A secondary air supply passage 4 with an open downstream end 4b is provided at 'C, and an air pump 16 driven by an output shaft (not shown) of the engine 1 is provided in the middle of this secondary air supply passage 4. An electromagnetically actuated on-off valve 17 for opening and closing the secondary air supply passage 4 is provided downstream of the air pump 16.

上記燃料噴射弁13の燃料噴射量および2次空気供給通
路4を開閉する開閉弁17の作動の制御は、予じめ所定
のプログラムを組込んだマイクロコンピュータよりなる
コントロールユニット18によって行なう。なお、マイ
クロコンピュータは、主ニマイクロプロセッサ(中央演
算装置)と、メモリ(記憶装置)と、インターフェース
(入出力信号処理回路)とから構成されている。
The amount of fuel injected by the fuel injection valve 13 and the operation of the on-off valve 17 for opening and closing the secondary air supply passage 4 are controlled by a control unit 18 consisting of a microcomputer into which a predetermined program has been installed. Note that a microcomputer is composed of a main microprocessor (central processing unit), a memory (storage device), and an interface (input/output signal processing circuit).

は によって検出されるエンジン回転数、エアフローメータ
11によって検出される吸入空気量、吸気通路11の絞
り弁12の下流に臨設した負圧センサ20によって検出
される吸気負圧(エンジン負荷)、さらに、空燃比のフ
ィードバック制御のため排気通路1eの触媒2の上流に
臨設した02セの出口近傍に設置した温度センサ22に
よって検△ 出される触媒温度を制御入力として読込み、基本的には
、第3図に示すフローチャートにしたがって、燃料噴射
弁13および開閉弁17を電子制御する。
The engine speed detected by the engine speed, the intake air amount detected by the air flow meter 11, the intake negative pressure (engine load) detected by the negative pressure sensor 20 installed downstream of the throttle valve 12 in the intake passage 11, and For feedback control of the air-fuel ratio, the catalyst temperature detected by the temperature sensor 22 installed near the outlet of the 02-cell installed upstream of the catalyst 2 in the exhaust passage 1e is read as a control input. The fuel injection valve 13 and the on-off valve 17 are electronically controlled according to the flowchart shown in FIG.

Ja下、第3図にしたかって、コントロールユニット1
8が実行するフローチャートについて説明スル。なお、
第3図中、81〜516は、フローチャートの各ステッ
プを示す。
As shown in Figure 3 below, control unit 1
The flowchart executed by Step 8 will be explained. In addition,
In FIG. 3, 81 to 516 indicate each step of the flowchart.

この制御は、エンジンlの1回転ごとに実行される。This control is executed every rotation of the engine l.

才ず、Slでは、制御入力データとして、吸入空気量、
エンジン回転数、吸気負圧、空燃比を読込み、これらデ
ータによって定まるその時点てのエンジン1の運転状態
から、S2において燃料噴射弁13の1回当りの開弁時
間を与える噴射パルス幅Tを演算する。この噴射パルス
幅Tの演算は、従来公知のマツプ制御等種々の手法によ
って行なうことができる。次に、S3では温度センサ2
2によって検出される触媒温度θを読込み、以上で必要
な制御入力データの読込みを完了する。
In the SL, the intake air amount,
The engine speed, intake negative pressure, and air-fuel ratio are read, and from the operating state of the engine 1 at that point determined by these data, the injection pulse width T that gives the opening time of the fuel injection valve 13 per time is calculated in S2. do. This calculation of the injection pulse width T can be performed by various methods such as map control which are conventionally known. Next, in S3, temperature sensor 2
The catalyst temperature θ detected by step 2 is read, and reading of the necessary control input data is thus completed.

次いで、S4において、予め所定の高負荷に対応させて
設定した負圧値aより吸気負圧が低夕いか否か(高負荷
運転時か否か)を判定し、55では予め所定の高回転に
対応させて設定したエンジン回転数すよりエンジン回転
数が高いか否か(高回転運転時か否か)を判定し、高負
荷運転時かあるいは高回転運転時であるときには、S6
において開閉弁17に2次空気カットイL号を出力して
2次空気供給通路4を閉じ、触媒2に供給する2次空気
をカットする。
Next, in S4, it is determined whether the intake negative pressure is lower than the negative pressure value a previously set corresponding to a predetermined high load (whether or not it is during high load operation), and in 55, it is determined whether the intake negative pressure is lower than the negative pressure value a previously set corresponding to a predetermined high load. It is determined whether the engine rotation speed is higher than the engine rotation speed set corresponding to the engine rotation speed (whether or not it is during high-speed operation), and if it is during high-load operation or high-speed operation, S6
In this step, a secondary air cutoff signal L is output to the on-off valve 17 to close the secondary air supply passage 4 and cut off the secondary air supplied to the catalyst 2.

次に、S7では、エンジン1の運転状態のいかんに拘ら
ず、換言ずれは、2次空気の供給をカットするエンジン
1の高回転、高負荷運転時以外においても、触媒温度θ
か予め設定した触媒温度Cより低いか否かを判定し、触
媒温度θが設定温度Cより低い触媒2の正常時には、S
8において、炉(料増量の指標nを零にセットし、燃料
の増量を行なわずに、516において、S3で求めた噴
射パルス幅Tのまま、燃料噴射弁13の一回の燃料噴射
を行なう。
Next, in S7, regardless of the operating state of the engine 1, the shift in other words is caused by the catalyst temperature θ
It is determined whether or not the catalyst temperature θ is lower than a preset catalyst temperature C, and when the catalyst 2 is normal and the catalyst temperature
At step 8, the index n for increasing the amount of fuel in the furnace is set to zero, and without increasing the amount of fuel, at step 516, one fuel injection is performed by the fuel injection valve 13 with the injection pulse width T obtained at step S3. .

一方、触媒温度θが設定温度Cを越えて高くなっている
触媒2の異常時には、触媒2の温度上昇がいかなる原因
によって生じたかを判定するため、ますS9で吸気負圧
が設定値3より低いか否か(高負荷か否か)を、次いで
510でエンジン回転数が設定値す以上か否か(高回転
か否か)を夫々判定し、高負荷運転時でも高回転運転時
でもないときには、触媒2の温度上昇が17夙勿ダレ該
/ば失火によるものと推定されるので、Sllで燃料増
量の指標nを零にセットし、S12で2次空気カット信
号を開閉弁17に出力して、2次空気の供給だけを停止
する。即ち、ケ7ブメfY失火か生じている運転状態で
は、燃料を増量すると、ざらに1y7F;#?失火が生
ずるため、燃料の増量は行なわずに、2次空気の供給を
停止し、触媒反応を抑制することによって触媒温度の低
下を図るようにしている。
On the other hand, when the catalyst temperature θ is higher than the set temperature C and there is an abnormality in the catalyst 2, the intake negative pressure is lower than the set value 3 in step S9 in order to determine the cause of the temperature rise in the catalyst 2. Then, in step 510, it is determined whether the engine rotation speed is higher than a set value (high rotation or not). Since the temperature rise of the catalyst 2 is estimated to be due to a misfire, the fuel increase index n is set to zero at Sll, and a secondary air cut signal is output to the on-off valve 17 at S12. Then, only the secondary air supply is stopped. In other words, in an operating state where a misfire occurs, increasing the amount of fuel will roughly result in 1y7F;#? Since a misfire occurs, the supply of secondary air is stopped without increasing the amount of fuel, and the catalyst temperature is lowered by suppressing the catalytic reaction.

一方、エンジン1が高負荷あるいは高回転で運転されて
いるときには、513において、燃料増量の指標nをn
+1に更新し、S2で運転状態に応じて演算した噴射パ
ルス幅T(この値はエンジン出力にとって最適値として
算出されている。)をT+ΔT x nに更新して、Δ
T x nたけ噴射パルス幅を増加する。それ以前にお
いて指標nが零にセットされている場合には、噴射ノ々
ルス幅はまずΔTたけ増加され、次回以降2ΔT、3Δ
T。
On the other hand, when the engine 1 is operated at high load or high rotation, in 513, the fuel increase index n is set to n.
+1, and the injection pulse width T calculated according to the operating condition in S2 (this value is calculated as the optimum value for the engine output) is updated to T + ΔT x n, and Δ
Increase the injection pulse width by T x n. If the index n is set to zero before then, the injection nodal width is first increased by ΔT, and from the next time onwards, it increases by 2ΔT, then 3ΔT.
T.

・・・といったように順次段階的に増加される。この増
分ΔTは、比較的小さな値に予め設定しておき、急激な
燃料増量を回避するとともに、エンジン出力の最適値を
与える燃料噴射量にてきるたけ近い値で、触媒温度を低
下させることができる燃料量を求めることができるよう
にしている。噴射パルス幅ノ更新の後(T−T+ΔT 
x n )は、514において、更新後の噴射パルス幅
Tが、エンジン1の失火を考慮して予め設定した上限値
αToを越えていないか否かを判定し、上限値αTOを
越えていないときには、516において、更新した噴射
パルス幅Tを燃料噴射弁13に出力して、−回の燃料噴
射を行なう。この燃料の高負荷、高回喚時における増量
は、触媒温度θが設定値C以下に低下するまで段階的に
行なわれ(S13参照)、燃料の増量が上限値αTOに
達すると、sisで噴射パルス幅TをΔTたけ減少させ
て(T、−T −ΔT)、燃料噴射を行なう。そして次
回の制御ループでは、513で7丁たけ噴射パルス幅T
が増加されることから、触媒温度が低下しないときには
、噴射パルス幅は上限値αTOより僅かに小さな値に固
定されることとなる。
...and so on, and so on. This increment ΔT is set in advance to a relatively small value to avoid a sudden increase in fuel amount and to reduce the catalyst temperature at a value as close as possible to the fuel injection amount that provides the optimum engine output. It is possible to determine the amount of fuel that can be produced. After updating the injection pulse width (T-T+ΔT
x n ) determines in 514 whether or not the updated injection pulse width T does not exceed an upper limit value αTo that is preset in consideration of a misfire in the engine 1, and if it does not exceed the upper limit value αTO, , 516, the updated injection pulse width T is output to the fuel injection valve 13 to perform -times of fuel injection. This increase in fuel amount during high load and high recovery is performed in stages until the catalyst temperature θ falls below the set value C (see S13), and when the increase in fuel amount reaches the upper limit value αTO, the fuel is injected at sis. The pulse width T is decreased by ΔT (T, -T - ΔT), and fuel injection is performed. Then, in the next control loop, at 513, the injection pulse width T
is increased, so when the catalyst temperature does not decrease, the injection pulse width is fixed at a value slightly smaller than the upper limit value αTO.

以上のように、この実′JMf11では、触媒温度θを
監視しながら、触媒温度θが設定値Cを越えたときには
、エンジン1の運転状態に対応して出力にとって最適な
空燃比から出発して、段階的に少しずつ空燃比をリッチ
側に振っていくので、触媒温度を低下させるのに有効な
空燃比を出力ベストの空燃比にできるたけ近いところで
見い出すことかでき、それ以上の過剰な燃料の増量を回
避することができる。
As described above, in this actual 'JMf11, while monitoring the catalyst temperature θ, when the catalyst temperature θ exceeds the set value C, the system starts from the air-fuel ratio that is optimal for the output according to the operating state of the engine 1. Since the air-fuel ratio is gradually shifted toward the rich side, it is possible to find the air-fuel ratio that is effective for lowering the catalyst temperature as close as possible to the air-fuel ratio with the best output, and to avoid excess fuel. It is possible to avoid an increase in the amount of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す説明図、第2図は本発明の
実施Mを示す全体構成図、第3図は実雄例における制御
フローを示すチャート図である。 1・・・エンジン、11・・・吸気通路、1e・・・排
気通路、2・・・触媒、3・・・触媒温度検出手段、4
・・・2次空気供給通路、5・・・2次空気停止手段、
6・・・運転状態検出手段、7・・・燃料供給手段、8
・・燃料増量手段。 特 許 出 願 人   東洋工業株式会社代  理 
 人 弁理士 前出 葆ほか2名第1図
FIG. 1 is an explanatory diagram showing the configuration of the present invention, FIG. 2 is an overall configuration diagram showing an implementation M of the present invention, and FIG. 3 is a chart diagram showing a control flow in an actual example. DESCRIPTION OF SYMBOLS 1... Engine, 11... Intake passage, 1e... Exhaust passage, 2... Catalyst, 3... Catalyst temperature detection means, 4
...Secondary air supply passage, 5...Secondary air stop means,
6... Operating state detection means, 7... Fuel supply means, 8
...Fuel increase means. Patent applicant: Toyo Kogyo Co., Ltd. Agent
Person Patent attorney: Mr. Hajime and 2 others Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)  エンジンの排気通路に設けた触媒の温度を検
出する触媒温度検出手段と、 エンジンの運転状態を検出する運転状態検出手段と、 上記触媒温度検出手段の出力を入力し上記触媒温度が所
定値以上の場合、触媒上流の排気通路に供給する2次空
気の供給を停止する2次空気停止手段と 上記運転状態検出手段の出力を入力してエンジンの運転
状態に応じた量の燃料を供給する燃料供給手段と、 上記触媒温度検出手段と上記運転状態検出手段との出力
を入力して、上記触媒の温度が所定値以上の場合で、か
つエンジンが高負荷あるいは高回転にある場合は、上記
燃料供給手段により供給される燃料量を触媒温度を低下
させるのに必要な量だけ増加させる燃料増量手段とを設
けたことを特徴とするエンジンの排気ガス浄化装置。
(1) Catalyst temperature detection means for detecting the temperature of the catalyst provided in the exhaust passage of the engine; Operating state detection means for detecting the operating state of the engine; and the output of the catalyst temperature detection means is inputted so that the catalyst temperature is set to a predetermined value. If the value exceeds the value, input the output of the secondary air stop means that stops the supply of secondary air to the exhaust passage upstream of the catalyst and the operating state detection means, and supply the amount of fuel according to the operating state of the engine. inputting the outputs of the catalyst temperature detecting means and the operating state detecting means, and when the temperature of the catalyst is above a predetermined value and the engine is under high load or high rotation, An exhaust gas purification device for an engine, comprising: a fuel increasing means for increasing the amount of fuel supplied by the fuel supplying means by an amount necessary to lower the catalyst temperature.
JP58062558A 1983-04-08 1983-04-08 Exhaust gas purifying device in engine Granted JPS59188021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58062558A JPS59188021A (en) 1983-04-08 1983-04-08 Exhaust gas purifying device in engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062558A JPS59188021A (en) 1983-04-08 1983-04-08 Exhaust gas purifying device in engine

Publications (2)

Publication Number Publication Date
JPS59188021A true JPS59188021A (en) 1984-10-25
JPS6326251B2 JPS6326251B2 (en) 1988-05-28

Family

ID=13203718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062558A Granted JPS59188021A (en) 1983-04-08 1983-04-08 Exhaust gas purifying device in engine

Country Status (1)

Country Link
JP (1) JPS59188021A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323134A (en) * 1993-05-14 1994-11-22 Mazda Motor Corp Protecting device for engine
JPH08165941A (en) * 1994-12-14 1996-06-25 Honda Motor Co Ltd Internal combustion engine control device for vehicle
JPH0996234A (en) * 1995-09-30 1997-04-08 Suzuki Motor Corp Acceleration time control device for internal combustion engine
JPH10205375A (en) * 1997-01-24 1998-08-04 Honda Motor Co Ltd Fuel supply control device for internal combustion engine
EP1531250A2 (en) * 2003-11-12 2005-05-18 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and fuel injection control method for internal combustion engine
JP2017180342A (en) * 2016-03-31 2017-10-05 マツダ株式会社 Exhaust device of engine
WO2019012927A1 (en) * 2017-07-14 2019-01-17 愛三工業株式会社 Evaporated fuel processing device and control device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323134A (en) * 1993-05-14 1994-11-22 Mazda Motor Corp Protecting device for engine
JPH08165941A (en) * 1994-12-14 1996-06-25 Honda Motor Co Ltd Internal combustion engine control device for vehicle
JPH0996234A (en) * 1995-09-30 1997-04-08 Suzuki Motor Corp Acceleration time control device for internal combustion engine
JPH10205375A (en) * 1997-01-24 1998-08-04 Honda Motor Co Ltd Fuel supply control device for internal combustion engine
EP1531250A2 (en) * 2003-11-12 2005-05-18 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and fuel injection control method for internal combustion engine
EP1531263A2 (en) 2003-11-12 2005-05-18 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and fuel injection control method for internal combustion engine
EP1531263A3 (en) * 2003-11-12 2007-01-17 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and fuel injection control method for internal combustion engine
EP1531250A3 (en) * 2003-11-12 2007-01-24 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and fuel injection control method for internal combustion engine
US7249454B2 (en) 2003-11-12 2007-07-31 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and fuel injection control method for internal combustion engine
KR100745845B1 (en) 2003-11-12 2007-08-02 도요다 지도샤 가부시끼가이샤 Fuel injection control apparatus and fuel injection control method for internal combustion engine
KR100745846B1 (en) 2003-11-12 2007-08-02 도요다 지도샤 가부시끼가이샤 Fuel injection control apparatus and fuel injection control method for internal combustion engine
US7269941B2 (en) 2003-11-12 2007-09-18 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus and fuel injection control method for internal combustion engine
CN100379963C (en) * 2003-11-12 2008-04-09 丰田自动车株式会社 Fuel injection control apparatus and fuel injection control method for internal combustion engine
EP2014899A1 (en) * 2003-11-12 2009-01-14 Toyota Jidosha Kabusiki Kaisha Fuel injection control apparatus and fuel injection control method for internal combustion engine
JP2017180342A (en) * 2016-03-31 2017-10-05 マツダ株式会社 Exhaust device of engine
WO2019012927A1 (en) * 2017-07-14 2019-01-17 愛三工業株式会社 Evaporated fuel processing device and control device
JP2019019746A (en) * 2017-07-14 2019-02-07 愛三工業株式会社 Evaporated fuel treatment device and control device
CN110892144A (en) * 2017-07-14 2020-03-17 爱三工业株式会社 Evaporated fuel processing apparatus and control apparatus
CN110892144B (en) * 2017-07-14 2021-12-10 爱三工业株式会社 Evaporated fuel processing apparatus and control apparatus
US11365694B2 (en) 2017-07-14 2022-06-21 Aisan Kogyo Kabushiki Kaisha Evaporated fuel processing device and control device

Also Published As

Publication number Publication date
JPS6326251B2 (en) 1988-05-28

Similar Documents

Publication Publication Date Title
JPH1047048A (en) Emission control device for internal combustion engine
JP2002303182A (en) Device and method for closed loop control for interrupting regeneration of particulate filter of diesel engine
KR20030022043A (en) Exhaust emission control device for engine
JPS59188021A (en) Exhaust gas purifying device in engine
JPH04109045A (en) Air-fuel ratio control method for internal combustion engine and device therefor
JP2817852B2 (en) Exhaust control device for engine with catalyst
JPH0565699B2 (en)
JPS6318122A (en) Secondary air supplying device for engine
JPH0763045A (en) Exhaust emission controlling catalytic degradation diagnoser of internal combustion engine
JP2012122411A (en) Control apparatus for internal combustion engine
JP3899510B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP5832145B2 (en) Fuel supply device for internal combustion engine
JP2005201092A (en) Supercharge system for internal combustion engine
JPH0772514B2 (en) Secondary air introduction abnormality detection device
JPH07247916A (en) Exhaust reflux control device of diesel engine
JPS58210311A (en) Exhaust gas purifier
JPH068615B2 (en) Safety device for internal combustion engine with supercharger
JP2002047971A (en) Engine controller
JPS63124847A (en) Abnormality detecting method for exhaust gas concentration detecting system for internal combustion engine
JPH041437A (en) Fuel injection quantity controller for internal combustion engine
JPH0612178Y2 (en) Secondary air supply controller for multi-cylinder internal combustion engine
KR100300710B1 (en) Method for controlling exhaust gas recycling system for free accelerator smoke test mode
JP2743477B2 (en) Engine electromagnetic valve control device
JP3195036B2 (en) Engine secondary air control device
JP2530640B2 (en) Control device for fuel injection engine