JPS59184520A - Suscepter for supporting substrate crystal - Google Patents

Suscepter for supporting substrate crystal

Info

Publication number
JPS59184520A
JPS59184520A JP5886883A JP5886883A JPS59184520A JP S59184520 A JPS59184520 A JP S59184520A JP 5886883 A JP5886883 A JP 5886883A JP 5886883 A JP5886883 A JP 5886883A JP S59184520 A JPS59184520 A JP S59184520A
Authority
JP
Japan
Prior art keywords
substrate
gaas
suscepter
crystal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5886883A
Other languages
Japanese (ja)
Inventor
Kenichi Arai
新井 謙一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP5886883A priority Critical patent/JPS59184520A/en
Publication of JPS59184520A publication Critical patent/JPS59184520A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To enable formation of the epitaxial layer having highly uniform film thickness over all of the plural substrates of arbitrary forms by forming a polycrystalline thin film deposition layer consisting of the same compound as crystal of the substrate on the suscepter for supporting substrates used for vapor growth of a compound semiconductor. CONSTITUTION:A polycrystalline thin film deposition layer 20 consisting of the same compound as crystal of the substrate 16 is formed on a suscepter 17 for supporting substrate crystal used for vapor growth of a compound semiconductor. For example, when placing the GaAs substrate 16 on the suscepter 17 to perform vapor growth of GaAs crystal, a GaAs polycrystalline thin film layer 20 deposited to about 50mum of thickness on the suscepter 17. Consequently, as growing speed of GaAs crystal on the GaAs polycrystalline thin film deposition layer 20 is the same as that on the GaAs substrate 16, there is practically no gap when the substrate is placed on the suscepter. Accordingly, the epitaxial growth layer having a fixed film-thickness distribution constantly irrespective of a shape or an area of the substrate to be placed can be obtained.

Description

【発明の詳細な説明】 本発明は■−■族化合物半導体の気相成長を行う際に用
いる基板結晶(以下基板とする)を設置するサセプター
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a susceptor in which a substrate crystal (hereinafter referred to as a substrate) used for vapor phase growth of a ■-■ group compound semiconductor is installed.

近年、各種電子デバイスの需要の急激な増加と共にデバ
イス形成に必要な■−v族化合物半導体エピタキシャル
ウェハの量産が望まれ、効率良く多数の大面積基板上に
同時にエピタキシャル成長を行うには開管法気相成長が
最も適している。砒化ガリウム(GaAs)の開管法気
相成長においては、反応ガスである塩化ガリウム(Ga
CA’)  と砒素(Al1)を水素(N2)、窒素(
N2)等のキャリヤガスによって反応管内成長領域のサ
セプター上に設置された基板上に輸送し反応させエピタ
キシャル成長を行わせる。そして従来基板枚数を多くす
るために、ガス流れ方向に平行に多数枚設置する方法が
行われてきた。この際、エピタキシャルウェハを用いて
製作する半導体素子の製品歩留を高くするために、特に
エピタキシャル成長層の膜厚均一性が高いことが要求さ
れる。しかしながら従来の方法では、膜厚均一性を要求
を満足する程度に良好なものとすることは非常に困難で
あった。
In recent years, with the rapid increase in demand for various electronic devices, mass production of ■-V group compound semiconductor epitaxial wafers, which are necessary for device formation, is desired. Phase growth is most suitable. In open tube vapor phase growth of gallium arsenide (GaAs), gallium chloride (GaAs) is used as a reactive gas.
CA') and arsenic (Al1), hydrogen (N2), nitrogen (
A carrier gas such as N2) is used to transport and react onto a substrate placed on a susceptor in a growth region in a reaction tube, thereby causing epitaxial growth. Conventionally, in order to increase the number of substrates, a method has been used in which a large number of substrates are installed parallel to the gas flow direction. At this time, in order to increase the product yield of semiconductor devices manufactured using epitaxial wafers, it is particularly required that the epitaxial growth layer has high film thickness uniformity. However, with conventional methods, it has been very difficult to achieve film thickness uniformity that is good enough to satisfy the requirements.

すなわち、GaAs気相成長反応において、反応ガスG
aCA!とAs、はサセプター上に並べ置かれた基板上
をG a A s結晶を析出しながら上流から下流に輸
送されるに従い消費され、その濃度は減少していく。こ
の反応ガスの濃度の減少は成長速度の低下をもたらす。
That is, in the GaAs vapor phase growth reaction, the reaction gas G
aCA! and As are transported from upstream to downstream while precipitating GaAs crystals on the substrates placed side by side on the susceptor, they are consumed and their concentration decreases. This decrease in the concentration of reactant gas results in a decrease in the growth rate.

さらに基板のガス上流側端部から10数imの範囲では
成長速度が特に大きくなる傾向があり、その部分の膜厚
はかなり厚くなる。
Furthermore, the growth rate tends to be especially high in a range of several tens of millimeters from the gas upstream end of the substrate, and the film thickness in that region becomes considerably thick.

ところで素子製造プロセスを合理化する上で基板の形状
は円形であることが絶対条件である。従ってサセプター
上に基板を並べて設置する際必ずすき間が生じ、そのた
め上流から下流に向けての反応ガス濃度減少による成長
速度の低下とガス上流側端部で厚く成長することの両方
の現象が複雑に影響し合い、各基板上のエピタキシャル
成長層の膜厚均一性は低く、かつ膜厚分布の再現性も乏
しかった。また従来、ガス上流側にダミー基板を設置し
て伸厚均−化をはかる方法が行われてきたが円形基板に
すき間なく隣接する様にダミー基板を加工することは実
際上困難であって、すき間が生じることは避は得す、満
足出来る膜jワ均−性を得ることは出来なかった。
Incidentally, in order to rationalize the element manufacturing process, it is an absolute requirement that the shape of the substrate be circular. Therefore, when the substrates are placed side by side on the susceptor, there is always a gap, which complicates the phenomena of both a decrease in the growth rate due to a decrease in the concentration of the reactant gas from upstream to downstream, and a thick growth at the gas upstream end. Due to mutual influence, the film thickness uniformity of the epitaxially grown layer on each substrate was low, and the reproducibility of the film thickness distribution was also poor. Furthermore, conventionally, a method has been used in which a dummy substrate is installed on the gas upstream side to equalize the elongation thickness, but it is actually difficult to process the dummy substrate so that it adjoins the circular substrate without any gaps. Although the occurrence of gaps was inevitable, it was not possible to obtain a satisfactory film uniformity.

本発明の目的は上記従来法における問題点を排除し、多
数枚の円形もしくは任意形状の基板すべてに高均一な模
1−をもつエピタキシャル層を形成できる新規の基板設
置用サセプターを提供することにある。
The purpose of the present invention is to eliminate the problems of the above-mentioned conventional methods and to provide a new susceptor for mounting substrates that can form an epitaxial layer with a highly uniform pattern on all of a large number of circular or arbitrarily shaped substrates. be.

本発明によれば化合物半導体の気相成長に用いる基板設
置用サセプターにおいて、前記基板結晶と同化合物から
成る多結晶薄膜堆積層が形成されていることを特徴とす
る基板結晶設置用サセプターが得られる。
According to the present invention, there is obtained a susceptor for installing a substrate crystal used in vapor phase growth of a compound semiconductor, characterized in that a polycrystalline thin film deposited layer made of the same compound as the substrate crystal is formed. .

以下図に基づいて本発明を詳細する。The present invention will be explained in detail below based on the figures.

第1図は通常用いられている開管法横型GaAs気相成
長装置の断面図であシ、11は石英反応管、12は電気
炉、13はH2とドーピングガスの混合ガス、14は三
塩化砒素(人5C13)とH2の混合ガス、15はソー
スガリウム(Ga)、16はGaAs基板、17はサセ
プター、18はホルダーである。AsCl3の分解で生
ずるAs4とソースGa 1 sから発生するGaC4
が反応管11の成長領域のサセプター17上に設置され
たQ a A s基板16上に輸送され、エピタキシャ
ル成長反応が行われる。
Figure 1 is a cross-sectional view of a commonly used open-tube horizontal GaAs vapor phase growth apparatus, in which 11 is a quartz reaction tube, 12 is an electric furnace, 13 is a mixture of H2 and doping gas, and 14 is trichloride. A mixed gas of arsenic (5C13) and H2, 15 a source gallium (Ga), 16 a GaAs substrate, 17 a susceptor, and 18 a holder. As4 generated by the decomposition of AsCl3 and GaC4 generated from the source Ga 1 s
is transported onto the Q a As substrate 16 placed on the susceptor 17 in the growth region of the reaction tube 11, and an epitaxial growth reaction is performed.

第2図、第3図は従来の方法でGaAs基板上に形成シ
たエピタキシャル層の膜厚のバラツキを説明するための
図で、第2図はサセプター17にG a A s基板1
6とダミー基板19を設置した平面図、第3図はガス流
れ方向に沿って第2図A−A線、B−Bi、C−C線に
おけるエピタキシャル成長層の膜厚分布図である。ここ
でGaAs基板16は直径50mm、ダミ一本機19は
50X20龍の大きさ、成長条件はソースGa1s  
の温度850℃、成長領域温度750℃、AsC/3モ
ル分率3X10.)−タルH2流量41/分であシ成長
時間は30分間である。第2図に示す様に並べ置かれた
基板の間にはすき間がある。第3図から判る様K、基板
の中央に沿うB−B線においては膜厚は上流から下流に
向けてゆるやかに減少し比較的バラツキは少いが、A−
A線、C−C線においては全体的に膜厚が厚く、特に基
板上流側端部でかな勺大きい。従って1枚の基板面内に
おける膜厚バラツキは約±7チと大きい。これは上流か
ら下流に向けての反応ガス濃度減少に伴う成長速度の低
下、並びKすき間に接する基板のガス上流側端部におけ
る成長速度の増大の2つの現象に起因して生ずるもので
ある。
2 and 3 are diagrams for explaining the variations in film thickness of an epitaxial layer formed on a GaAs substrate by a conventional method.
6 and a dummy substrate 19 are installed, and FIG. 3 is a film thickness distribution diagram of the epitaxially grown layer along lines AA, B-Bi, and C-C in FIG. 2 along the gas flow direction. Here, the GaAs substrate 16 has a diameter of 50 mm, the dummy machine 19 has a size of 50 x 20 dragons, and the growth conditions are the source Ga1s.
temperature of 850°C, growth region temperature of 750°C, AsC/3 mole fraction of 3×10. ) - Tal H2 flow rate is 41/min and growth time is 30 minutes. As shown in FIG. 2, there are gaps between the substrates arranged side by side. As can be seen from Fig. 3, the film thickness gradually decreases from upstream to downstream on the line B-B along the center of the substrate, with relatively little variation;
In line A and line C-C, the film thickness is thick overall, and is particularly thick at the upstream end of the substrate. Therefore, the variation in film thickness within the plane of one substrate is as large as approximately ±7 inches. This is caused by two phenomena: a decrease in the growth rate due to a decrease in the concentration of the reactant gas from upstream to downstream, and an increase in the growth rate at the gas upstream end of the substrate in contact with the K gap.

5− 第4図、第5図は本発明によるサセプターを用いてGa
As基板上に形成したエピタキシャル層の膜厚バラツキ
を説明するための図である。第4図はサセプター17上
にGaAs基板16を設置した平面図で、図中20は約
50μmの厚さに堆積させたGaAs多結晶薄膜層であ
シ、第5図はガス流れ方向に沿りて第4図A/  A/
線、B′−B′線、C′C/線におけるエピタキシャル
成長層の膜厚分布図である。基板の大きさ、成長条件、
成長時間等は従来法の場合と同じである。第4図に示す
様にサセプター17上にはGaAs多結晶薄膜堆積層2
0が形成されており、その上にG a A s基板16
を設置しである。GaAs多結晶薄膜堆積層20へのG
aAs結晶の成長速度はGa A s基板16へのそれ
と同じであるから、本発明によるサセプター上に基板を
設置した場合実質的にすき間はないのと同等であり、従
って設置する基板の形状、面積に関係なく常に一定の膜
厚分布を有するエピタキシャル成長層が得られる。すな
わち第5図から判る様に、A′−A′線、B′−B′線
、C/  C/線共に膜6− 厚は上流から下流に向けてゆるやかに減少し、膜厚の水
準もほとんど同じである。従って1枚の基板面内におけ
る膜厚バラツキは約±2係とひじょうに少く、篩均−な
膜厚のエピタキシャル成長層が得られろ。
5- Figures 4 and 5 show Ga
FIG. 2 is a diagram for explaining variations in film thickness of an epitaxial layer formed on an As substrate. FIG. 4 is a plan view of the GaAs substrate 16 placed on the susceptor 17, in which 20 is a GaAs polycrystalline thin film layer deposited to a thickness of about 50 μm, and FIG. Figure 4 A/ A/
FIG. 3 is a film thickness distribution diagram of an epitaxially grown layer along lines B'-B' and C'C/. Substrate size, growth conditions,
The growth time etc. are the same as in the conventional method. As shown in FIG. 4, on the susceptor 17 is a GaAs polycrystal thin film deposited layer 2.
0 is formed, and a GaAs substrate 16 is formed thereon.
It is installed. G to GaAs polycrystalline thin film deposited layer 20
Since the growth rate of the aAs crystal is the same as that for the GaAs substrate 16, it is equivalent to having virtually no gaps when the substrate is placed on the susceptor according to the present invention, and therefore the shape and area of the substrate to be placed are An epitaxially grown layer having a constant film thickness distribution can be obtained regardless of the film thickness. In other words, as can be seen from Fig. 5, the thickness of the film 6- for line A'-A', line B'-B', and line C/C/ decreases gradually from upstream to downstream, and the level of film thickness also changes. Almost the same. Therefore, the variation in film thickness within the plane of one substrate is very small, about ±2 factors, and an epitaxially grown layer with a uniform film thickness can be obtained.

なおGaAs多結晶薄脇堆槓層の厚さは50μm程度あ
ればよく通常のCVD、蒸着その他の方法で容易に形成
可能であり、また不純物ドーピングしたGa A s結
晶の気相成長を行った場合、気相エツチング等の手段に
よってそれを除去することにより再生が可能であり、何
度でも使用できる。
Note that the thickness of the GaAs polycrystal thin side deposit layer only needs to be about 50 μm, and it can be easily formed by ordinary CVD, evaporation, or other methods, and it can also be formed by vapor phase growth of impurity-doped GaAs crystals. It can be regenerated by removing it by means such as , vapor phase etching, etc., and can be used any number of times.

この様に本発明によれば任意の形状、面積の多数枚の基
板上に−j均一な膜厚のエピタキシャル層を成長させる
ことができ、その効果はきわめて大きいと言える。
As described above, according to the present invention, it is possible to grow an epitaxial layer having a -j uniform thickness on a large number of substrates having arbitrary shapes and areas, and the effect can be said to be extremely large.

以上本発明サセプターを砒化ガリウム気相成長を例にと
って説明したが、他のIII−V族化合物半導体、例え
ば燐化インジウム、燐化ガリウム、砒化インジウム等に
おいても全く同様の効果が得られた。
Although the susceptor of the present invention has been described above using gallium arsenide vapor phase growth as an example, the same effects can be obtained with other III-V group compound semiconductors, such as indium phosphide, gallium phosphide, and indium arsenide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は横型G a A s気相成長装置の断面図であ
シ、11は石英反応管、12は電気炉、13はH2とド
ーピングガスの混合ガス、14はAsCJ3とH2の混
合ガス、15はソースGa、16はGaAs基板、17
はサセプター、18はホルダーである。 第2図は従来の方法によるサセプター上にGaAs基板
を設置した平面図であって19はダミー基板であり、第
3図は第2図ガス流れ方向に沿うA−AM、B−B線、
C−C線におけるエピタキシャル成長層の膜厚分布図で
ある。 第4図は本発明によるサセプター上にG a A s基
板を設置した平面図であって20はQ a A s多結
晶薄膜堆積層であり、第5図は第4図ガス流れ方向に浴
うA/A/線、BtBt線、C/C/線におけるエピタ
キシャル成長層の膜厚分布図である。 一 □− 93− 陣V/)8伸 (虞d)家軸
FIG. 1 is a cross-sectional view of a horizontal GaAs vapor phase growth apparatus, 11 is a quartz reaction tube, 12 is an electric furnace, 13 is a mixed gas of H2 and doping gas, 14 is a mixed gas of AsCJ3 and H2, 15 is a source Ga, 16 is a GaAs substrate, 17
is a susceptor, and 18 is a holder. FIG. 2 is a plan view of a GaAs substrate installed on a susceptor according to the conventional method, and 19 is a dummy substrate.
FIG. 3 is a film thickness distribution diagram of an epitaxially grown layer along the line CC. FIG. 4 is a plan view of a GaAs substrate placed on a susceptor according to the present invention, 20 is a QaAs polycrystalline thin film deposited layer, and FIG. It is a film thickness distribution diagram of the epitaxially grown layer in the A/A/ line, the BtBt line, and the C/C/ line. 1□- 93- Jin V/) 8 Shin (Go d) House axis

Claims (1)

【特許請求の範囲】[Claims] 化合物半導体の気相成長に用いる基板結晶設置用サセプ
ターにおいて、前記基板結晶と同化合物から成る多結晶
薄膜堆積層が形成されていることを特徴とする基板結晶
設置用サセプター。
A susceptor for installing a substrate crystal used in vapor phase growth of a compound semiconductor, characterized in that a polycrystalline thin film deposited layer made of the same compound as the substrate crystal is formed.
JP5886883A 1983-04-04 1983-04-04 Suscepter for supporting substrate crystal Pending JPS59184520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5886883A JPS59184520A (en) 1983-04-04 1983-04-04 Suscepter for supporting substrate crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5886883A JPS59184520A (en) 1983-04-04 1983-04-04 Suscepter for supporting substrate crystal

Publications (1)

Publication Number Publication Date
JPS59184520A true JPS59184520A (en) 1984-10-19

Family

ID=13096710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5886883A Pending JPS59184520A (en) 1983-04-04 1983-04-04 Suscepter for supporting substrate crystal

Country Status (1)

Country Link
JP (1) JPS59184520A (en)

Similar Documents

Publication Publication Date Title
KR100870507B1 (en) Deposition over mixed substrates using trisilane
EP0241204B1 (en) Method for forming crystalline deposited film
JPS6255688B2 (en)
JPH03132016A (en) Method of forming crystal
JPH10189695A (en) Vapor growth susceptor and manufacture thereof
JPH06151864A (en) Semiconductor substrate and manufacture thereof
JPS59184520A (en) Suscepter for supporting substrate crystal
JP2845464B2 (en) Compound semiconductor growth method
JP2692804B2 (en) Method of forming crystalline deposited film
JPH01132116A (en) Crystal product, preparation thereof, and semiconductor device prepared thereby
JP2020535626A (en) High growth rate deposition of III / V materials
JPS63239937A (en) Method for forming semiconductor polycrystalline film
JPH01149483A (en) Solar cell
JPH0555149A (en) Method for gaas vapor phase growth
JP3112796B2 (en) Chemical vapor deposition method
JPH01244612A (en) Method and apparatus for vapor growth of gallium arsenide
JP2982332B2 (en) Vapor growth method
JP2804959B2 (en) Method for epitaxial growth of Ш-V compound semiconductor
JP2819556B2 (en) Manufacturing method of semiconductor laser
JPH05102509A (en) Solar cell and its manufacturing method
JPH01723A (en) 3-Group V compound crystal article and method for forming the same
JPS6377112A (en) Vapor growth method
JPS62238618A (en) Semiconductor wafer
JPS6362315A (en) Formation of epitaxial layer film
JPH0590159A (en) Production of polycrystalline semiconductor film