JPS5918414A - Sunlight direction sensor - Google Patents

Sunlight direction sensor

Info

Publication number
JPS5918414A
JPS5918414A JP12858382A JP12858382A JPS5918414A JP S5918414 A JPS5918414 A JP S5918414A JP 12858382 A JP12858382 A JP 12858382A JP 12858382 A JP12858382 A JP 12858382A JP S5918414 A JPS5918414 A JP S5918414A
Authority
JP
Japan
Prior art keywords
sunlight
cylindrical body
sensor
optical sensor
optical sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12858382A
Other languages
Japanese (ja)
Other versions
JPS6323482B2 (en
Inventor
Takashi Mori
敬 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12858382A priority Critical patent/JPS5918414A/en
Publication of JPS5918414A publication Critical patent/JPS5918414A/en
Publication of JPS6323482B2 publication Critical patent/JPS6323482B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems

Abstract

PURPOSE:To make it possible to track the sunlight after it has been screened for a long time, by providing two long holes, which are extended in the opposing directions to each other on the upper walls of cabinets, and arranging optical sensors so that specific relationship of the positions with respect to the axes of the long holes are provided. CONSTITUTION:Cabinets 10 and 20 are provided at the facing side parts of a tube body 1. Long holes 11 and 12, which are extended in the opposing directions to each other, are provided on the upper walls of the cabinets. Optical sensors X5 and X6, which are extended in the horizontal direction that is perpendicular to the axes, are provided in the inner walls, which are intersected at a right angle with the axes of the holes 11 and 12. In this constitution, even though the incident angle of the sunlight with respect to optical sensors X3 and X4 of the tube body 1 is deviated by theta1 or more, the direction of the sun can be detected by the sensor X5 or X6 in the range of theta2-theta1.

Description

【発明の詳細な説明】 本発明は、太陽の方向を検出するための太陽光方向セン
サに係り、特に、太陽光エネルギーを収集する装置に搭
載し、該太陽光エネルギー収集装置全太陽の移動((正
確に追従させるのに好適な太陽光方向センサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar direction sensor for detecting the direction of the sun, and more particularly, the present invention relates to a solar direction sensor for detecting the direction of the sun. (Regarding a sunlight direction sensor suitable for accurate tracking.

近時、省エネルギ一時代を迎え、各方面で太陽光エネル
ギーの効果的利用について研究開発が行わ扛ているが、
太陽光エネルギーを効果的に利用するためには、捷ず、
太陽光エネルギーを効果的に収集することが肝要であり
、そのためには、太陽光エネルギー収集装置を太陽の移
動に追従させて常に最も効率のよい状態で太陽光エネル
ギーを収集する必要がある。
Recently, we have entered an era of energy conservation, and research and development is being carried out in various fields on the effective use of solar energy.
In order to use solar energy effectively, it is necessary to
It is important to collect solar energy effectively, and for this purpose, it is necessary to have a solar energy collection device follow the movement of the sun and always collect solar energy in the most efficient state.

本発明は、上述のごとき要請に鑑みてなされたもので、
特に、太陽光エネルギー収集装置に搭載して該太陽光エ
ネルギー収集装置を太陽の移動に自動追尾させるのに好
適な太陽光方向センサに関する。
The present invention was made in view of the above-mentioned demands, and
In particular, the present invention relates to a sunlight direction sensor that is suitable for being mounted on a solar energy collecting device and causing the solar energy collecting device to automatically track the movement of the sun.

第1図は、本発明による太陽光方向センサの全体斜視図
、第2図は、第1図の■−打線断面図、第3図は、平面
図、第4図は、第2図のIf−N線断面図で、図中、1
は角又は丸形の筒体、2は該筒体の上端部に設けられた
フランジ、X1〜X4及びXc  は光センサで、前記
フランジ2の中央部には多角形又(は円形の窓3が設け
ら扛ている。光センサX1〜X4は、Xl  とX2 
 及びX3  とX4  がそ汀ぞ扛対をなして第4図
に示すように相対向して配設さn、かつ、その内側端面
が、筒体1を太陽の方向に正確に向けた時にできるフラ
ンジ2の蔭の線と一致するように配設さ扛、光センサX
c  は低板4の上面略中央に配設さnている。従って
、筒体1が正確に太陽の方向を向いている時、換言すn
ば、太陽光がAの方向からくる時は、光センサX1〜X
4  には直達太陽光0は入射せず、間接太陽光(I)
のみが入射し、光センサXc  には、直達太陽光(2
)及び間接太陽光(I)が入射することになる。しかし
、筒体1が太陽の方向からずれ、例えば、太陽光がB方
向からくるものとすれば、光センサX1は、αの部分で
直達太陽光0を受け、全体で間接太陽光(I) を受け
、光センサX2  は間接太陽光(I)のみを受けるこ
とになる。更に詳細に説明すると、筒体1が太陽の方向
と正確に一致している時は、光センサX1  とX2 
 (又はX3  とX4)が受ける太陽光は等しく、筒
体1が太陽の方向からずnると光センサX1  とX2
  (又はX3  とX4  )に入射する太陽光が相
違するので、この差異を検出して光センサX1  とX
2  に入る太陽光が等しくなるように、換言す肚ば、
筒体1がA方向を向くように制御す扛ば、筒体1は正確
に太陽の′−向を向くようになり、従って、該太陽光方
向センサを搭載した太陽光収集装置も正確に太陽の方向
を向くことになる。しかしながら、上述のごとき太陽光
方向センサにおいては、筒体]内における間接太陽光(
I)の分布は、第5図に示すように、中央部において大
きく、外周部は小さいから、この差を補正しないと、直
達太陽光が光センサを横切る位置すなわち前記αを正確
に求めることができない。
FIG. 1 is an overall perspective view of the sunlight direction sensor according to the present invention, FIG. 2 is a cross-sectional view taken along the line -■ in FIG. 1, FIG. 3 is a plan view, and FIG. 4 is an If in FIG. In the -N line cross-sectional view, 1
2 is a square or round cylinder, 2 is a flange provided at the upper end of the cylinder, X1 to X4 and Xc are optical sensors, and the center of the flange 2 has a polygonal or The optical sensors X1 to X4 are provided with Xl and X2.
and X3 and X4 are arranged in pairs and facing each other as shown in FIG. The optical sensor X is arranged so as to match the line behind the flange 2.
c is arranged approximately at the center of the upper surface of the lower plate 4. Therefore, when the cylinder 1 is facing the direction of the sun, in other words, n
For example, when sunlight comes from direction A, optical sensors X1 to X
4 Direct sunlight 0 does not enter, indirect sunlight (I)
Direct sunlight (2
) and indirect sunlight (I) will be incident. However, if the cylindrical body 1 is shifted from the direction of the sun and, for example, sunlight comes from direction B, the optical sensor Therefore, the optical sensor X2 receives only indirect sunlight (I). To explain in more detail, when the cylinder 1 is exactly aligned with the direction of the sun, the optical sensors X1 and X2
(or X3 and
Since the sunlight incident on (or X3 and X4) is different, this difference is detected and the optical sensors
2. In other words, so that the sunlight entering is equal,
If the cylinder body 1 is controlled to face in the direction A, the cylinder body 1 will accurately face the direction of the sun, and therefore the sunlight collecting device equipped with the sunlight direction sensor will also accurately face the sun. It will be facing the direction of. However, in the sunlight direction sensor as described above, indirect sunlight (
As shown in Figure 5, the distribution of I) is large in the center and small in the outer periphery, so unless this difference is corrected, it will be impossible to accurately determine the position where direct sunlight crosses the optical sensor, that is, α. Can not.

このような欠点を解決するために、本出願人は、先に、
上述のごとき筒体内における間接太陽光の分布をも考慮
して太陽光方向センサの向きと太陽の位置とのずれを数
量として正確に検出し得るようにした太陽光方向センサ
を提案した(特願昭56−99993号)。
In order to solve these shortcomings, the applicant first
We have proposed a sunlight direction sensor that can accurately detect the deviation between the direction of the sunlight direction sensor and the position of the sun as a quantity, taking into consideration the distribution of indirect sunlight inside the cylinder as described above (patent application). (Sho 56-99993).

第1図乃至第4図に示した太陽光センサにおいて、今、
フランジ2の」二面に光センサXo  f配設したもの
と仮定し、この光センサXo  に入射する総太陽光量
eso  、直達太陽光量’(zDo  、光センサX
。の電気的出力信号kL。、該光センサの光電変換係数
をδ。(−8゜/Lo)、直達比率をβ。(Do/So
)とす扛ば、 So  −δ。Lo  ・・・・・(1)Do=β。S
o−β。δ。Lo  叫・・(2)が成立する。
In the sunlight sensor shown in FIGS. 1 to 4, now,
Assuming that the optical sensor Xof is disposed on two sides of the flange 2, the total amount of sunlight incident on the optical sensor Xo, the direct sunlight amount'(zDo, the optical sensor
. electrical output signal kL. , the photoelectric conversion coefficient of the optical sensor is δ. (-8°/Lo), direct delivery ratio is β. (Do/So
), So −δ. Lo...(1) Do=β. S
o-β. δ. Lo shout...(2) holds true.

同様に、光センサXcについては、 Sc  −δc Lc−・・(3) Dc  −βc Sc−βCδcLc  ・−(4)が
成立する。
Similarly, regarding the optical sensor Xc, Sc - δc Lc - (3) Dc - βc Sc - βC δcLc - (4) holds true.

また、光センサX1  については、該光センサX1の
全面に直達太陽光が当っている時は、S1=δ1. L
l  ・・・・・・(5)が成立する3、 この時、光センサX2  には、直達太陽光が当ってい
ないので、該光センサX2  については、S −δ2
L2−’2  ・・・・・(7)D2二〇・・・・(8
) が成立する(ただし、■2は光センサx2  に入射す
る間接太陽光量)。
Regarding the optical sensor X1, when direct sunlight hits the entire surface of the optical sensor X1, S1=δ1. L
l...(5) holds.3 At this time, since direct sunlight is not hitting the optical sensor X2, S - δ2 for the optical sensor X2
L2-'2...(7) D220...(8
) holds true (where, ■2 is the amount of indirect sunlight incident on the optical sensor x2).

ここで、今、光センサX1  の一部に太陽光が当って
いる場合、すなわち、光センサX0  の筒内光束の外
周に接する側を0とし、該光束の外周が、第2図に示す
ように、該光センサX1ヲ横切る位置の光センサX1 
 の全長に対する比率をαとした時、前記筒内光束の外
周が0〈α〈1の範囲内にある場合は、光センサX□ 
に入る総太陽光量ヲ81、その時の電気的出力信号をL
l (m■)、光電変換係数をδ1 とすれば、S、−
δ□L1が成立する。っここで、直達太陽光は該光セン
サX1  のα部分にのみ入射し、間接太陽光は該光セ
ンサX1.の全面に入射するので、 Sl  ”’ αD1+ 11  =  aDc + 
82  ”””  (9)(ただし、■1  は光セン
サX1  に入射する間接太陽光量で、これは、光セン
サX2  に入射する間接太陽光IJi12  すなわ
ち光センサX2  に入射する総太陽光量S2  に略
等しい) が成立し、第(9)式に第(4)式及び第(7)式を代
入すると、 Sl−αβCδc L c+δ2L2 ・・・ (10
)が得らnる。而して、S□−δ、L□であるから、第
(10)式は、 δI Ll  −αβCδc’Lc+δ2 L 2  
=・・(11)となる。
Here, if sunlight is currently shining on a part of the optical sensor , an optical sensor X1 at a position crossing the optical sensor X1
If the outer circumference of the in-cylinder luminous flux is within the range of 0<α<1, then the optical sensor
The total amount of sunlight entering is 81, and the electrical output signal at that time is L.
l (m■), and the photoelectric conversion coefficient is δ1, then S, -
δ□L1 holds true. Here, direct sunlight is incident only on the α portion of the photosensor X1, and indirect sunlight is incident on the photosensor X1. Since it is incident on the entire surface of , Sl ''' αD1+ 11 = aDc +
82 """ (9) (However, ■1 is the amount of indirect sunlight that enters the optical sensor X1, which is approximately equal to the amount of indirect sunlight IJi12 that enters the optical sensor equal) is established, and substituting equations (4) and (7) into equation (9), we get Sl−αβCδc L c+δ2L2 (10
) is obtained. Therefore, since S□−δ, L□, the equation (10) is: δI Ll −αβCδc′Lc+δ2 L 2
=...(11).

一方、Dc=Sc−Ic  −(12)であり、ここで
、 (ただし、■。共■1) とすれば、前記(12)式は ■2 D c = S c   −=  (14)λ となり、これより δ2L2 δCβcLc=δc L c −−・・(15)λ を得る。
On the other hand, Dc = Sc - Ic - (12), where (■. Both ■1), then the above equation (12) becomes ■2 D c = Sc - = (14) λ , from this, δ2L2 δCβcLc=δc L c --(15) λ is obtained.

この第(15)式を第0式に代入するととなり、これよ
り、 を得ることができる。
By substituting this equation (15) into the 0th equation, we can obtain the following.

ここで、筒体1の形状、大きさが定まれば、該筒体内に
入射した間接太陽光の相対的分布は一定であるから、予
め、IC及び■2  を実測して求め、λ=■2/■c
を求めておくと、該λは定数となる。
Here, once the shape and size of the cylindrical body 1 are determined, the relative distribution of indirect sunlight that has entered the cylindrical body is constant. 2/■c
If we calculate λ, then λ becomes a constant.

而して、前記δ1、δ2、δCは定数であるから、前述
のようにして、λ−I2 / Ic ’e予め求めてお
くと、各光センサの電気的出力信号のみからαすなわち
太陽光の入射方向と太陽光方向センサのずれを数置的に
正確に求めることができる。
Since δ1, δ2, and δC are constants, if λ-I2/Ic 'e is calculated in advance as described above, α, that is, the amount of sunlight can be calculated from only the electrical output signal of each optical sensor. The deviation between the incident direction and the sunlight direction sensor can be determined numerically accurately.

しかしながら、上記本出願人が先に提案した太陽光方向
センサによると、太陽が雲等によって瞬間的に遮ぎら扛
ると太陽光が瞬間的に散乱さ扛、その散乱光が筒体内の
光センサX1 〜X4  に光量的に不均一に或いは時
間差をもって入射し、その瞬間的な不均衡に太陽光収集
装置が敏感に追従して−・ンチングを起こす原因を生じ
る等の欠点があった。
However, according to the sunlight direction sensor previously proposed by the applicant, when the sun is momentarily blocked by clouds, etc., the sunlight is momentarily scattered, and the scattered light is transmitted to the optical sensor inside the cylinder. There is a drawback that the amount of light incident on X1 to X4 is non-uniform or with a time lag, and the sunlight collecting device sensitively follows this instantaneous imbalance, resulting in tingling.

第6図及び第7図は、上述のごとき欠点を解決するため
に本出願人が先に提案した太陽光方向センサの一例を示
す図で、図示のように、窓3の縁から下した垂線が光セ
ンサX□ 〜X4  の中間部(第1〜4図に示した先
行技術では端部)にくるように該光センサX□〜X4ヲ
配設するようにしたものである。すなわち、先行技術に
おいては、フランジ2の窓3の縁から下した仮想垂線と
光センサX□ 〜x4  の内側の端部を一致させるよ
うにしていたが、該光センサX□ 〜X4  の端部を
窓3の縁から下した仮想垂線に正確に一致させることは
非常に困難であり、また、光センサX1 〜X4  の
端部を正確に直線仕上げすることも非常に困難であリ、
しかも、各光センサの端部が直達光の有無を決める境界
線上にあるため、検出器の動作開始点が非常に不安定で
あったが、このようにすると、窓3の縁から下した仮想
垂線が光センサX1〜X4の任意中間位置にくるように
構成さnているので、前記先行技術におけるような不安
定材料はなくなり、単に、各センサX1 〜X4  の
幅tのみを正確に仕上げればよく、従って、非常に簡単
な構成によって正確にかつハンチング等の不安定動作を
生じることなく太陽光の方向を検出することができる。
6 and 7 are diagrams showing an example of a sunlight direction sensor previously proposed by the applicant in order to solve the above-mentioned drawbacks. As shown in the figure, a perpendicular line drawn from the edge of the window 3 The optical sensors X□ to X4 are arranged such that the light sensors X□ to X4 are located in the middle portion (the end portion in the prior art shown in FIGS. 1 to 4) of the photosensors X□ to X4. That is, in the prior art, the virtual perpendicular line drawn from the edge of the window 3 of the flange 2 was made to coincide with the inner edge of the optical sensors X□ to x4; It is very difficult to precisely match the imaginary perpendicular line drawn from the edge of the window 3, and it is also very difficult to finish the ends of the optical sensors X1 to X4 accurately in a straight line.
Furthermore, since the end of each optical sensor is on the boundary line that determines the presence or absence of direct light, the starting point of the detector operation was extremely unstable. Since the perpendicular line is arranged at an arbitrary intermediate position between the optical sensors X1 to X4, there is no unstable material as in the prior art, and only the width t of each sensor X1 to X4 can be accurately finished. Therefore, with a very simple configuration, the direction of sunlight can be detected accurately and without unstable operation such as hunting.

ただし、αは第6図に示すように窓3の縁から下した仮
想垂線が当る位置を0位置とする。また、この例におい
ては、光センサX1 〜X4  の中間位置に直達光の
有無を決める境界線がくるように構成さ扛ているので、
該境界線の移動に対して光センサの検出出力の直線性が
よくなり、しかも、直達光が当っている部分の検出出力
が予めバイアスされていることになるため、瞬間的に外
乱が入ってもそnによってあ1り大きな影響は受けない
However, as shown in FIG. 6, the 0 position of α is the position where the virtual perpendicular line drawn from the edge of the window 3 hits. In addition, in this example, the boundary line that determines the presence or absence of direct light is located at an intermediate position between the optical sensors X1 to X4, so that
The linearity of the detection output of the optical sensor with respect to the movement of the boundary line is improved, and since the detection output of the part that is directly hit by the light is biased in advance, it is possible to avoid momentary disturbances. It is not affected very much by Moson.

すなわち、N/S及び直線性がよくなり、コントロール
が非常に楽になる等の利点があった。
That is, there were advantages such as improved N/S and linearity and much easier control.

しかしながら、上記本出願人が先に提案した太陽光方向
センサにおいて、雲等によって長時間に亘って太陽光が
遮ぎら扛、その間に太陽が移動し、太陽光L1  の入
射角がθ1 以上にず扛ると、光センサX1 〜X4 
 のいずれも太陽光が当らなくなり、該太陽光方向セン
サは最早太陽の方向を検知することができなくなり、従
って、太陽光の入射角が一旦θ□ 以上にずれてしまう
と、それ以降は全く追尾機能を失ってしまう欠点があっ
た。特に、南北方向にず扛て光センサX3、X4  に
直達光が当らなくなった場合、天空光のため、上側に位
置する光センサ(一般的には北側の光センサ)に対して
下側に位置する光センサ−7(一般的には南側の光セン
サ)により多くの散乱光が入射し、そのため、南北方向
のバランスをとるのが困難であった。
However, in the sunlight direction sensor previously proposed by the applicant, the sunlight is blocked by clouds etc. for a long time, and the sun moves during that time, so that the incident angle of the sunlight L1 does not exceed θ1. When picked up, optical sensors X1 to X4
When sunlight no longer hits either of them, the sunlight direction sensor can no longer detect the direction of the sun. Therefore, once the angle of incidence of sunlight deviates by more than θ□, it will no longer be able to track the sun. The drawback was that it lost functionality. In particular, if the light sensor X3, A large amount of scattered light enters the optical sensor 7 (generally the optical sensor on the south side), which makes it difficult to maintain balance in the north-south direction.

本発明は、上述のごとき先行技術の欠点を解決するため
になさ扛たもので、第8図に示すように、例えば、前述
のごとき筒体1の相対向する側部に筐体10.20を設
け、各筐体の土壁に相互に対向する方向に延長する長穴
11 、21 i設けるとともに、該長大の軸が直交す
る内壁面に該長大の軸と直交する水平面方向に延長する
光センサx5. x6−4設けたものである。
The present invention has been made to solve the drawbacks of the prior art as described above, and as shown in FIG. Long holes 11 and 21i are provided in the earthen walls of each casing to extend in directions facing each other, and a light beam extending in a horizontal plane perpendicular to the long axis is provided on the inner wall surface perpendicular to the long axis. Sensor x5. It is equipped with x6-4.

第9図は、第8図のIX−IX線断面図、第10図は、
第8図のX−X線断面図で、このようにすると、太陽光
方向センサX3.X4に対する太陽光の入射角が01 
以上にずnてしまっても、θ2−θ1の範囲ならば、光
センサX5  又はX6  によって太陽の方向を検知
することができ、しかも、長穴にしであるため、天空光
の入射光量が少なく、両光センサX5.X6に略等しく
散乱光が入射するので、前記先行技術に比してかなり長
時間に亘って太陽光が雲によって遮ぎられてぃても、太
陽光追尾機能を失なうことなく、雲がなくなって太陽光
が入射すると直ちに太陽光追尾動作を開始する。なお、
第8図には、筐体10.20’(r−筒体1の東西側面
に取り付けた例を示したが、長穴及び光センサの位置関
係が第8図の状態にありさえず扛ば、図示位置に限定さ
れることなく、また、筒体に必ずしも取り付けることな
く、任意位置に取り付けてもよいことは容易に理解でき
よう。また、前記θ2 を更に大きくしたい場合には、
筐体10及び20の側壁に、例えば、第8図に点線1.
2 、22にて示すように、前記長穴11 、21に連
続する穴12.22i設ければよい。
FIG. 9 is a sectional view taken along the line IX-IX in FIG. 8, and FIG.
In the XX line cross-sectional view of FIG. 8, if this is done, the sunlight direction sensor X3. The incident angle of sunlight to X4 is 01
Even if the above error occurs, the direction of the sun can be detected by the optical sensor X5 or X6 within the range of θ2-θ1.Moreover, since it is located in a long hole, the amount of incident sky light is small. Both optical sensors X5. Since the scattered light is incident on X6 at approximately the same rate, even if sunlight is blocked by clouds for a considerably longer period of time than in the prior art, the sunlight tracking function will not be lost and the clouds will be able to As soon as the sun disappears and sunlight enters, it starts the sunlight tracking operation. In addition,
Fig. 8 shows an example in which the housing 10.20' (r-cylindrical body 1) is attached to the east and west sides, but if the positional relationship of the elongated hole and the optical sensor is in the state shown in Fig. , it is easy to understand that it is not limited to the illustrated position and that it may be attached at any position without necessarily being attached to the cylinder body.Furthermore, if it is desired to further increase the above-mentioned θ2,
On the side walls of the casings 10 and 20, for example, dotted lines 1.
As shown at 2 and 22, holes 12 and 22i that are continuous with the elongated holes 11 and 21 may be provided.

更に、以上には1対の筐体を使用する場合の実施例につ
いて説明したが、必ずしも1対の筐体全使用する必要は
なく、例えば、第11図に示すように、単一の筐体30
ヲ使用し、該単−の筐体30の土壁に相互に対向する方
向に延長する長穴11 、21を設けるとともに、各長
大の軸が直交する内壁面に該長大の軸が直交する水平方
向に延長して光センサX5゜X6  を設けるようにし
てよく、また、その際、筐′体30内に、第12図に点
線31にて示すように、前記長穴1.1 、21.−i
分離するための隔壁31ヲ設けてもよく、このようにす
ると、長穴11がら入射する散乱光が光センサX6  
に、また、長穴21がら入射する散乱光が光センサX5
  に影響しない。
Furthermore, although an embodiment in which a pair of casings is used has been described above, it is not always necessary to use all of the casings; for example, as shown in FIG. 11, a single casing may be used. 30
In addition to providing elongated holes 11 and 21 extending in mutually opposing directions in the earthen wall of the single casing 30, a horizontal hole in which the elongated axes intersect at right angles is provided on the inner wall surface where the elongated axes intersect perpendicularly. The optical sensors X5, X6 may be provided extending in the directions, and in this case, the elongated holes 1.1, 21. -i
A partition wall 31 may be provided for separation, and in this case, the scattered light incident through the elongated hole 11 will be directed to the optical sensor X6.
In addition, the scattered light incident through the elongated hole 21 is transmitted to the optical sensor X5.
does not affect.

以上の説明から明らかなように、本発明によると、広範
囲にわたって太陽光追尾が可能で、従って、雲天が長時
間にわたって続いた後においても直ちに太陽の方向に追
尾可能な太陽光方向センサ全提供することができる。
As is clear from the above description, the present invention provides a solar directional sensor that can track sunlight over a wide range and can immediately track the direction of the sun even after a long period of cloudy weather. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本出願人が先に提案した太陽光方向センサの
全体斜視図、第2図は、第1図の■−■細断面図(側断
面図)、第3図は平面図、第4図は、第2図のIV −
IV線断面図、第5図は、筒体1内における間接太陽光
(I)の分布図、第6図は、本出願人が先に提案した太
陽光方向センサの他の例を示す側断面図、第7図は、第
6図の平面図、第8図は、本発明による太陽光方向セン
サの一実施例を説明するための概略全体構成図、第9図
は、第8図のrX−IX線断面図、第10図は、第8図
のX−X線断面図、第11図及び第12図は、それぞn
本発明の池の実施例を説明するための平面図である。 1・・・筒体、2・・・第1のフランジ、3・・・窓、
4・・・底板、5・・・窓、6・・・第2のフランジ、
X0〜X6及びXc−光センサ、10 、20 、30
−筐体、11 、12 、21 。 22・・・長穴、31・・・隔壁。 (45,’)
FIG. 1 is an overall perspective view of the sunlight direction sensor previously proposed by the applicant, FIG. 2 is a thin sectional view (side sectional view) taken along the line ■-■ of FIG. 1, and FIG. 3 is a plan view. FIG. 4 shows the IV-
5 is a distribution diagram of indirect sunlight (I) in the cylinder 1, and FIG. 6 is a side sectional view showing another example of the sunlight direction sensor previously proposed by the applicant. 7 is a plan view of FIG. 6, FIG. 8 is a schematic overall configuration diagram for explaining an embodiment of the sunlight direction sensor according to the present invention, and FIG. 9 is a plan view of FIG. -IX sectional view, FIG. 10 is the XX sectional view of FIG. 8, and FIGS. 11 and 12 are n
FIG. 1 is a plan view for explaining an embodiment of a pond of the present invention. 1... Cylindrical body, 2... First flange, 3... Window,
4... Bottom plate, 5... Window, 6... Second flange,
X0-X6 and Xc-light sensors, 10, 20, 30
- Housing, 11, 12, 21. 22... Long hole, 31... Bulkhead. (45,')

Claims (3)

【特許請求の範囲】[Claims] (1)、筒体と、該筒体の上端部に設けられ、かつ該筒
体の内径よりも小さい多角形の窓を有する不透明体のフ
ランジと、前記筒体の下端部において該筒体の路中央部
に設けられた第1の光センサと、前記筒体の下端部に設
けらnかつその内側端面又は中間位置が前記フランジの
窓の縁から下した仮想垂線と交わる位置に対称に配設さ
れた少なくとも1対の第2及び第3の光センサとを有す
る太陽光方向センサにおいて、更に、筐体を具備し、該
筐体はその上壁に相互に対向する方向に延長する2つの
長穴を有し、かつ、該首長穴の軸が直交する内壁面に該
長大の軸と直交する水平方向に延長する光センサを有す
ることを特徴とする太陽光方向センサ。
(1) a cylindrical body; an opaque flange provided at the upper end of the cylindrical body and having a polygonal window smaller than the inner diameter of the cylindrical body; A first optical sensor provided at the center of the tube and a first optical sensor provided at the lower end of the cylindrical body and arranged symmetrically at a position where the inner end surface or intermediate position intersects with an imaginary perpendicular line drawn from the edge of the window of the flange. The sunlight direction sensor has at least one pair of second and third optical sensors provided therein, further comprising a housing, and the housing has two optical sensors extending in mutually opposing directions on an upper wall of the housing. A sunlight direction sensor comprising an elongated hole and an optical sensor extending in a horizontal direction perpendicular to the elongated axis on an inner wall surface perpendicular to the axis of the elongated hole.
(2)、前記筐体内に前記2つの長穴を分離するための
隔壁を有すること全特徴とする特許請求の範囲第(1)
項に記載の太陽光方向センサ。
(2) Claim No. (1) characterized in that the casing has a partition wall for separating the two elongated holes.
The sunlight direction sensor described in section.
(3)、筒体と、該筒体の゛上端部に設けられ、かつ該
筒体の内径よりも小さい多角形の窓を有する不透明体の
フランジと、前記筒体の下端部において該筒体の路中央
部に設けられた第1の光センサと、前記筒体の下端部に
設けら扛かつその内側端面又は中間位置が前記フランジ
の窓の縁から下した仮想垂線と交わる位置に対称に配設
された少なくとも1対の第2及び第3の光センサとを有
する太陽光方向センサにおいて、更に、1対の筐体を具
備し、各筐体をその上壁に長穴を有するとともに、該長
穴の軸が直交する内壁面に該長大の軸と直交する水平方
向に延長する光センサを有し、前記1対の筐体が前記長
穴が平行になるように配設さnていることを特徴とする
太陽光方向センサ。
(3) a cylindrical body; an opaque flange provided at the upper end of the cylindrical body and having a polygonal window smaller than the inner diameter of the cylindrical body; A first optical sensor provided at the center of the flange, and a first optical sensor provided at the lower end of the cylindrical body, the inner end surface or intermediate position of which is symmetrical to a position where it intersects with an imaginary perpendicular line drawn from the edge of the window of the flange. A sunlight direction sensor having at least one pair of second and third optical sensors disposed therein, further comprising a pair of housings, each housing having an elongated hole in its upper wall; A light sensor is provided on an inner wall surface perpendicular to the axis of the elongated hole and extends in a horizontal direction perpendicular to the elongated axis, and the pair of housings are arranged so that the elongated holes are parallel to each other. A sunlight direction sensor characterized by:
JP12858382A 1982-07-23 1982-07-23 Sunlight direction sensor Granted JPS5918414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12858382A JPS5918414A (en) 1982-07-23 1982-07-23 Sunlight direction sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12858382A JPS5918414A (en) 1982-07-23 1982-07-23 Sunlight direction sensor

Publications (2)

Publication Number Publication Date
JPS5918414A true JPS5918414A (en) 1984-01-30
JPS6323482B2 JPS6323482B2 (en) 1988-05-17

Family

ID=14988338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12858382A Granted JPS5918414A (en) 1982-07-23 1982-07-23 Sunlight direction sensor

Country Status (1)

Country Link
JP (1) JPS5918414A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311084A (en) * 1994-05-20 1995-11-28 Nippondenso Co Ltd Solar radiation sensor
JP2013045779A (en) * 2011-08-21 2013-03-04 Denso Corp Optical sensor
JP2017219340A (en) * 2016-06-03 2017-12-14 シャープ株式会社 Optical receiver and portable electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311084A (en) * 1994-05-20 1995-11-28 Nippondenso Co Ltd Solar radiation sensor
JP2013045779A (en) * 2011-08-21 2013-03-04 Denso Corp Optical sensor
JP2017219340A (en) * 2016-06-03 2017-12-14 シャープ株式会社 Optical receiver and portable electronic apparatus

Also Published As

Publication number Publication date
JPS6323482B2 (en) 1988-05-17

Similar Documents

Publication Publication Date Title
EP0064746A2 (en) Sunlight direction sensor
JPS5928616A (en) Directional photosensor
CA1291668C (en) Sunshield device
CN101852614B (en) Miniature polarized light detecting device of navigation sensor
WO1993003492A1 (en) System for determining the direction of incident optical radiation
JPS5918414A (en) Sunlight direction sensor
JPS5399970A (en) Rotating angle detector
JP2557051B2 (en) Sunlight direction sensor
JPH0245812B2 (en) TAIYOKOHOKOSENSA
JPS5915809A (en) Solar ray direction sensor
JPS581110A (en) Sunlight direction sensor
CN204495463U (en) A kind of solar energy electric transducer
CN109737922A (en) A kind of communication iron tower monitoring device and method
JPS6336441B2 (en)
CN205623024U (en) Intrusion detector shell
CA2173564A1 (en) Method of and Device for Measuring the Refractive Index of Wafers of Vitreous Material
JPS5316651A (en) Displacement detector
JPH044562B2 (en)
KR20170003777A (en) Solar angle detecting apparatus
SU1456717A1 (en) Orientation photosensor
RU2054165C1 (en) Photodetector
JPH01196509A (en) Polyhedral type satellite attitude detector
SCHUMACHER Wide angle sun sensor(consisting of cylinder, insulation and pair of detectors)[Patent]
SU1399609A1 (en) Heliostat
JPS6312908A (en) Sun position detection sensor