JPS5918409A - Device for inspecting surface of red hot material - Google Patents

Device for inspecting surface of red hot material

Info

Publication number
JPS5918409A
JPS5918409A JP12810182A JP12810182A JPS5918409A JP S5918409 A JPS5918409 A JP S5918409A JP 12810182 A JP12810182 A JP 12810182A JP 12810182 A JP12810182 A JP 12810182A JP S5918409 A JPS5918409 A JP S5918409A
Authority
JP
Japan
Prior art keywords
light
reflected light
inspected
red
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12810182A
Other languages
Japanese (ja)
Inventor
Shigeru Horii
滋 堀井
Hideo Kichise
吉瀬 英雄
Hideo Nishiyama
西山 英夫
Yoshiharu Osaki
吉晴 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12810182A priority Critical patent/JPS5918409A/en
Publication of JPS5918409A publication Critical patent/JPS5918409A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To detect the presence of flaws positively and readily, by utilizing regular reflected light which is sufficiently higher than the light reflected by the surface of a body to be inspected, and detecting the edge part of the flaw. CONSTITUTION:When parallel light is made to radiate on a body to be inspected 3 from a lighting device 1, the incident light is reflected by the surface of the body to be inspected 3. Said reflected light is inputted to a one dimensional image pickup device 2, and the surface image of the body to be inspected 3 is formed by a lens system. The reflected light, which is higher than the reflection by the surface of the body to be inspected 3, is detected based on the photoelectric output from the one dimensional image pickup device 2 by an edge detecting part 4. A flaw detecting part 5 detects the reflected light, which is lower than the level of the light reflected by the surface of the body to be inspected 3 and appears following the level of the high reflected light in a time series, based on the output of the edge detecting part 4.

Description

【発明の詳細な説明】 2 、、、、。[Detailed description of the invention] 2,,,,.

産業上の利用分野 本発明は金属光沢を持たず粗なる平面を有する赤熱物体
の割れ疵を検出する表面検査装置に関する。
INDUSTRIAL APPLICATION FIELD The present invention relates to a surface inspection device for detecting cracks in a red-hot object that does not have metallic luster and has a rough surface.

従来例の構成とその問題点 従来、相なる平面を有する赤熱物体(たとえば熱間鉄鋼
スラブ)の表面検査方式としては、赤熱物体に光を照射
してその反射光を受光部で電気信号に変換し、レベル検
出する方法が一般によく用いられている。この方式では
照明装置からの正反射成分を除去するため、光の照射方
向と受光部内に設置した検出器の光軸とに一定の角度を
なすようにするのが一般的である。しかし、粗なる平面
を有する赤熱物体(以下被検物体と呼ぶ)の表面状態に
より光電信号が大きく変化し、被検物体上の位置によっ
て光電信号レベルに差が生ずる。すなわち、第1図のa
に示すような表面の被検物体(Cなる割れ疵を有する)
を検出したとき、第1図すに示すような光電信号が得ら
れる。第1図すで被検物体の凹凸が大きいと信号レベル
が大きく変3 ページ 化し7、また表面が平でないところは信号レベルが低下
する。その結果、被検物体の表面に存在する疵第1図a
のIが前述の光電信号レベルの変動内に入り、疵の検出
ができなくなることがある。たとえば、図1bで■1の
スレッシュホールドレベルでbの光電信号を2値化する
とCのような信号が得られ疵(第1図で1vの部分)以
外の部分(第1図Cで11または1110部分)も疵と
して検出することになり、まだv2のスレッシュホール
ドレベルで検出すると疵の検出ができない。
Conventional configuration and its problems Conventionally, the surface inspection method for a red-hot object (for example, a hot steel slab) with mutually compatible planes was to irradiate the red-hot object with light and convert the reflected light into an electrical signal at the light receiving part. However, a method of level detection is generally used. In this method, in order to remove specular reflection components from the illumination device, it is common to make a certain angle between the direction of light irradiation and the optical axis of the detector installed in the light receiving section. However, the photoelectric signal changes greatly depending on the surface condition of a red-hot object (hereinafter referred to as a test object) having a rough surface, and a difference occurs in the photoelectric signal level depending on the position on the test object. That is, a in Figure 1
An object to be inspected with a surface as shown in (with cracks C)
When detected, a photoelectric signal as shown in FIG. 1 is obtained. Figure 1: If the object to be tested has large irregularities, the signal level will change significantly.3 If the surface is not flat, the signal level will decrease. As a result, the flaws existing on the surface of the object to be inspected (Fig. 1a)
I may fall within the above-mentioned fluctuation of the photoelectric signal level, making it impossible to detect flaws. For example, in Fig. 1b, if the photoelectric signal of b is binarized at the threshold level of ■1, a signal like C is obtained, and the part other than the flaw (1v part in Fig. 1) (11 or C in Fig. 1) is obtained. 1110) will also be detected as a flaw, and if it is still detected at the threshold level of v2, the flaw cannot be detected.

発明の目的 本発明は従来の上記欠点に留意し、被検物体の表面疵を
精度よく検出する装置を提供することを目的とするもの
である。
OBJECTS OF THE INVENTION The present invention takes into consideration the above-mentioned drawbacks of the conventional techniques, and aims to provide an apparatus that accurately detects surface flaws on an object to be inspected.

発明の構成 前記目的を達成するため、本発明は赤熱物体を余1方向
から照明する1方向性の照明装置と、通常C1前記照明
装置からの正反射光を受光しないように前記照明装置の
照射方向と検出光軸とをずらして配置し赤熱物体の表面
を撮像し、前記照明装置の照射方向側と反対側から走査
を開始する一次元撮像装置と、前記−次元撮像装置の光
電出力から赤熱物体からの反射よりも高い反射光を検出
するエツジ検出部と、エツジ検出部の出力をもとにして
高い反射光レベルに時系列的に連続してあられれる赤熱
物体表面からの反射光レベルよりも低い反射光を検出す
る疵検山部からなる赤熱物体表面検査装置の構成とした
ものである。
Structure of the Invention In order to achieve the above object, the present invention provides a unidirectional illumination device that illuminates a red-hot object from one direction, and a unidirectional illumination device that illuminates a red-hot object from one direction, and a unidirectional illumination device that illuminates the illumination device so as not to receive specularly reflected light from the illumination device. A one-dimensional imaging device that images the surface of a red-hot object and starts scanning from the side opposite to the irradiation direction of the illumination device, which is arranged with the direction and detection optical axis shifted; There is an edge detection section that detects reflected light that is higher than that reflected from the object, and the level of reflected light from the surface of a red-hot object, which continuously increases in time series based on the output of the edge detection section. This is a red-hot object surface inspection device consisting of a flaw inspection section that detects low reflected light.

実施例の説明 以下、本発明を実施例をもとに説明する。ただし、以下
の説明では照明装置からの照射光軸中心と一次元撮像装
置の走査線は同一平面上にあり、照射光は平行光とする
DESCRIPTION OF EXAMPLES Hereinafter, the present invention will be explained based on examples. However, in the following description, it is assumed that the center of the irradiation optical axis from the illumination device and the scanning line of the one-dimensional imaging device are on the same plane, and the irradiation light is parallel light.

本発明の構成を第2図に示す。本発明は照明装置1と、
被検物体3と、1次元撮像装置2と、エツジ検出部4と
、疵検山部5から構成する。ここで−次元撮像装置は走
査機能を有するものでリニアイメージセンサと、レンズ
系を組み合わせたものなどが利用でき、その走査方向、
すなわち、被検物体上の検出順序を照明装置1と反対側
から開6 戸神ジ 始するようにする。(第2図で矢印で示す方°向)次に
検出動作について説明する。照明装置1から被検物体3
に入射角θで平行光を照射すると、入射光は被検物体3
の表面で反射される。入射角0け一般に30°〜60°
の範囲がとられたこの反射光は被検物体3の平面垂直方
向;こ設置した一次元撮像装置3に入射しレンズ系で併
倹物体2の表面像を結像する。被検物体3の表面状態が
粗々る面であると光は被検物体30表面で拡散反射し一
次元撮像装置3からの光電信号は第3図aに示すように
不規則に変動する。この信号の変動状態は被検物体の表
面状況によるが、たとえば熱間鉄−鋼スラブの場合は+
30%程度の変動幅を示す。
The configuration of the present invention is shown in FIG. The present invention includes a lighting device 1;
It consists of an object to be inspected 3, a one-dimensional imaging device 2, an edge detection section 4, and a flaw inspection section 5. Here, the -dimensional imaging device has a scanning function, and a combination of a linear image sensor and a lens system can be used.
In other words, the order of detection on the object to be detected is such that it starts from the side opposite to the illumination device 1. (The direction shown by the arrow in FIG. 2) Next, the detection operation will be explained. From illumination device 1 to test object 3
When parallel light is irradiated onto the object at an angle of incidence θ, the incident light is
reflected from the surface of Incident angle: 0, generally 30° to 60°
This reflected light having a range of 2 is incident on a one-dimensional imaging device 3 installed in a direction perpendicular to the plane of the object 3 to be inspected, and a surface image of the object 2 is formed by a lens system. If the surface of the object 3 to be inspected is rough, the light is diffusely reflected on the surface of the object 30 to be inspected, and the photoelectric signal from the one-dimensional imaging device 3 fluctuates irregularly as shown in FIG. 3a. The fluctuation state of this signal depends on the surface condition of the object being tested, but for example, in the case of a hot iron-steel slab, +
It shows a fluctuation range of about 30%.

そこで被検物体3の表面に第1図aの1に示すような割
れ疵があると、−次元撮像装置2で検出される光電信号
は第3図すに示すように表面からの反射光の光電信号に
疵信号が重畳された状態となる。さらに疵部分からの反
射光を詳しく説明すると、被検物体表面に入射した光は
第4図のイまたけホで示されるように拡散反射されるの
に対し、6 ・ シ。
Therefore, if there is a crack on the surface of the object to be inspected 3 as shown in 1 in Fig. 1a, the photoelectric signal detected by the -dimensional imaging device 2 is a result of the reflected light from the surface as shown in Fig. 3. The flaw signal is superimposed on the photoelectric signal. Further, to explain in detail the reflected light from the flawed part, the light incident on the surface of the object to be inspected is diffusely reflected as shown by the cross-section ho in Fig. 4, whereas the light reflected from the flawed part is diffusely reflected.

疵のくぼみ部分に入射した光(第4図でハに示す)は疵
の内部で乱反射し、一部分が一次元撮像装置2に入射す
る。その結果、疵部分の信号レベルは第3図すに示すよ
うに表面からの反射光よりもわずかに低下する程度とな
る。
The light incident on the concave portion of the flaw (shown as C in FIG. 4) is diffusely reflected inside the flaw, and a portion of the light is incident on the one-dimensional imaging device 2. As a result, the signal level of the flawed portion becomes slightly lower than that of the light reflected from the surface, as shown in FIG.

一方、本発明では前述のように一次元撮像装置の走査方
向に対して、反対方向から光を照射する。
On the other hand, in the present invention, as described above, light is irradiated from the opposite direction to the scanning direction of the one-dimensional imaging device.

その結果第4図に示すように疵のエツジのうち、照射方
向側のエツジ部分からの光(第4図で口に示す)は被検
物体3の表面で反射され、その正反射成分は一次元撮像
装置2へは入射しない。しかし、照射方向と反対側のエ
ツジ面では、−次元撮像装置2へ正反射光が入射する条
件が成立する。
As a result, as shown in Fig. 4, among the edges of the flaw, the light from the edge part on the irradiation direction side (shown as the mouth in Fig. 4) is reflected by the surface of the object to be inspected 3, and its specular reflection component is primary It does not enter the original imaging device 2. However, on the edge surface on the opposite side to the irradiation direction, a condition is established for specularly reflected light to enter the -dimensional imaging device 2.

(第4図二に示す)この正反射光レベルは、被検物体3
の表面からの拡散反射光レベルにくらべ大きな値を示す
。したがって、−次元撮像装置2がら得られる光電信号
は第3図すに示すように走査方向に対し正反射状態のエ
ツジ信号にひきつづき疵信号が現われるようになる。
This specular reflection light level (shown in Figure 4-2) is
shows a larger value than the level of diffuse reflection from the surface. Therefore, as shown in FIG. 3, in the photoelectric signal obtained from the -dimensional imaging device 2, a flaw signal appears following an edge signal in a specular reflection state in the scanning direction.

次に一次元撮像装置2で検出された光電信号か7 ペー
ジ ら疵を検出し処理する方法について説明する。エツジ検
出部4および幅検出部5の具体例を第5図に示す。
Next, a method for detecting and processing flaws from the photoelectric signals detected by the one-dimensional imaging device 2 will be described. A specific example of the edge detection section 4 and width detection section 5 is shown in FIG.

エツジ検出部4は、コンパレータ4aと基準電圧v3発
生部4bとから構成する。ここで基準電圧v3発生部4
bの基準電圧■3を疵エツジ信号のみを検出するように
、被検物体3表面からの拡散反射光レベルにくらべ十分
高く設定しておく0工ツジ検出部4では一次元撮像装置
2からの信号を基準電圧■3で2値化し、その結果第3
図Cに示すように被検物体上で走査方向で疵の前方のエ
ツジ信号のみ検出される。
The edge detection section 4 includes a comparator 4a and a reference voltage v3 generation section 4b. Here, the reference voltage v3 generating section 4
The reference voltage 3 of b is set to be sufficiently high compared to the level of diffusely reflected light from the surface of the object to be inspected 3 so as to detect only the flaw edge signal. Binarize the signal using the reference voltage ■3, and as a result, the third
As shown in Figure C, only the edge signal in front of the flaw is detected on the object to be inspected in the scanning direction.

疵検用部6は、コンパレータ6aと、基準電圧■4発生
部5bと、R−Sフィリップフロップ5Cと、発振部5
θと、アンドゲート5dと、カウンタ6fと、判定基準
部6qと、コンパレータ6hから構成する。ここでR−
Sフィリップフロップはセット人力S優先形とし基準電
圧v4発生部6bの基準電圧v4は、被検物体表面から
の反射光レベルと疵部分からの反射光レベルを十分分離
できる電圧に設定する。−1だ、発振部6qの発振周波
数は、検出すべき疵の最小幅を十分開側できる値を選び
、一般的には一次元撮像装置の走査周波数と同等の周波
数とする。疵検用部6では、まず−次元撮像装置2から
の光電信号を基準電圧■4で2値化し第3図dで示す信
号が得られる。前述のように、被検物体の表面状態によ
り光電信号レベルが変化するので疵以外の信号(第3図
dV)もここでは検出される。次にR−Sフィリップ7
0ツブ5cでは、エツジ検出部4からの信号を受け、エ
ツジ信号がある場合その立ち下りエツジでR−Sフィリ
ップをセットシ、コンパレータ5aからの出力の立ち上
りエツジでリセットする。その結果、R−Sフィリップ
フロップ5Cの出力Qは、第3図eに示すように疵のエ
ツジ信号にひきつづきあられれる基準電圧v4以下の信
号すなわち疵信号のみが検出され、被検物体の表面状態
により生ずる変動(第3図dVで示す)ような疵以外の
信号は除去される0R−Sフィリップ7oツブ5Cの出
力は発振部5eからの基準クロック9ページ (第3図fで示す)とアントゲ−)6dでアンド結合さ
れ、第3図qに示すような信号が得られる。
The defect detection section 6 includes a comparator 6a, a reference voltage 4 generation section 5b, an R-S flip-flop 5C, and an oscillation section 5.
θ, an AND gate 5d, a counter 6f, a criterion section 6q, and a comparator 6h. Here R-
The S Philip flop is set manually by S priority type, and the reference voltage v4 of the reference voltage v4 generating section 6b is set to a voltage that can sufficiently separate the level of reflected light from the surface of the object to be inspected and the level of reflected light from the flawed portion. -1, the oscillation frequency of the oscillation unit 6q is selected to a value that can sufficiently open the minimum width of the flaw to be detected, and is generally set to a frequency equivalent to the scanning frequency of a one-dimensional imaging device. In the defect detection section 6, the photoelectric signal from the -dimensional imaging device 2 is first binarized using a reference voltage 4 to obtain the signal shown in FIG. 3d. As mentioned above, since the photoelectric signal level changes depending on the surface condition of the object to be inspected, signals other than flaws (dV in FIG. 3) are also detected here. Next, R-S Philip 7
The 0-tube 5c receives a signal from the edge detection section 4, and if there is an edge signal, sets the R-S Philip at the falling edge of the signal, and resets it at the rising edge of the output from the comparator 5a. As a result, as shown in FIG. 3e, the output Q of the R-S flip-flop 5C is detected as a signal below the reference voltage v4 that follows the flaw edge signal, that is, only a flaw signal, which indicates the surface condition of the object to be inspected. Signals other than flaws such as fluctuations (shown as dV in Figure 3) caused by -) 6d, and a signal as shown in FIG. 3q is obtained.

アントゲ−)5dからの出力は疵の幅を計数するカウン
タ5fに送られ、疵の幅を求める。そして、判定基準部
6qにあらかじめ設定された基準値とコンパレータ5h
で比較され疵の判定を行ない疵判定信号(第3図h)が
得られる。またカウンタ5fの内容を出力すれは疵の幅
の計測ができる。
The output from the anti-game) 5d is sent to a counter 5f that counts the width of the flaw, and the width of the flaw is determined. Then, the reference value set in advance in the judgment reference section 6q and the comparator 5h
A flaw judgment signal (Fig. 3h) is obtained. Furthermore, by outputting the contents of the counter 5f, the width of the flaw can be measured.

なお、アントゲ−)6d以後は、疵処理の目的によって
変えれば種々の機能をもたせることができる。
Note that the parts after Antogame 6d can be provided with various functions by changing them depending on the purpose of flaw treatment.

上記は割れ疵を例にとって説明したがピンホールなどく
ぼみについても同様に検出できる。
Although the above explanation took cracks as an example, depressions such as pinholes can also be detected in the same way.

さらに疵検用部5での基準電圧を第6図aに示すv5の
ように被検物体表面からの反射信号状態に応じて変化さ
せると、検出領域内に光量むらがあっても、第6図すに
示すように疵以外の信号が混入する割合は小さくなる。
Furthermore, if the reference voltage in the defect detection section 5 is changed according to the state of the reflected signal from the surface of the object to be inspected as shown in FIG. As shown in the figure, the rate at which signals other than flaws are mixed becomes small.

これは、−次元撮像装置からの光電信号に低域通過フィ
ルタを設置して、この出力を基準電圧v5として用いれ
は可能10.2.。
This can be done by installing a low-pass filter on the photoelectric signal from the -dimensional imaging device and using this output as the reference voltage v5 10.2. .

である。It is.

また、照明装置1の照射光と一次元撮像装置2の走査線
が第7図に示すように一定角ψをなしている場合、この
角度ψが小さければ」−述とほぼ同等の機能を発揮する
ことができる。照射光が平行光線と見なせる場合も同様
である。さらに−次元撮像装置への入射光軸が照明装置
の照射光軸と一致しない構成であれは同等の機能を発揮
する。
Furthermore, if the irradiation light of the illumination device 1 and the scanning line of the one-dimensional imaging device 2 form a constant angle ψ as shown in FIG. can do. The same applies when the irradiated light can be regarded as parallel light rays. Furthermore, a configuration in which the optical axis of incidence on the -dimensional imaging device does not coincide with the irradiation optical axis of the illumination device will exhibit the same function.

発明の効果 (1)被検物体表面からの反射光よりも十分高い正反射
光を利用して疵のエツジ部分を検出する構成であるので
エツジ部分の検出が容易であり、その結果として疵の存
在を容易に検出できる。
Effects of the Invention (1) The edge portion of a flaw can be easily detected because the configuration detects the edge portion of a flaw by using specularly reflected light that is sufficiently higher than the light reflected from the surface of the object to be inspected. Presence can be easily detected.

(2)  エツジ信号と疵信号とのつながり性をもとに
して疵の検出処理を行なうので、被検物体の表面状態が
変化しても疵の検出が精度よく行なえる。
(2) Since the flaw detection process is performed based on the connectivity between the edge signal and the flaw signal, flaws can be detected accurately even if the surface condition of the object to be inspected changes.

(3)疵部分の信号がエツジ信号に時間的にひきつづき
あられれる構成であるので、被検物体からの光電信号を
一時記憶する必要がなく、疵部分のみ検出が可能であり
、さらに時系列的な信号処理11 ページ が容易である。
(3) Since the signal from the flaw area is temporally followed by the edge signal, there is no need to temporarily store the photoelectric signal from the object to be inspected, and only the flaw area can be detected, and furthermore, it is possible to detect the flaw area in chronological order. Signal Processing Page 11 is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の検出力式で得られる信号状態を示す図、
第2図は本発明の基本構成図、第3図は本発明の動作を
示す図、第4図は割れ疵での光の反射状態を示す図、第
6図は信号処理の実施例を示すブロックタイヤダラム、
第6図は信号処理の他の実施例を示す信号状態の図、第
7図は照明方式の他の実施例の構成図である。 1・・・・・・照明装置、2・・・・・・−次元撮像装
置、3・・・・・・被検物体、4・・・・・・エツジ検
出部、6・・・・・・紙検出部0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 −−−−−−−−Vz −〉;L倉ろ向 第2図 /4 第3図
Figure 1 is a diagram showing the signal state obtained by the conventional detection power formula,
Fig. 2 is a basic configuration diagram of the present invention, Fig. 3 is a diagram showing the operation of the present invention, Fig. 4 is a diagram showing the state of light reflection in a crack, and Fig. 6 is a diagram showing an example of signal processing. block tire duram,
FIG. 6 is a signal state diagram showing another embodiment of signal processing, and FIG. 7 is a configuration diagram of another embodiment of the illumination method. DESCRIPTION OF SYMBOLS 1... Illumination device, 2... -dimensional imaging device, 3... Test object, 4... Edge detection section, 6...・Paper detection department 0 Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure---------Vz -〉; L warehouse direction Figure 2/4 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)赤熱物体を斜方向から照明する1方向性の照明装
置と、通常は前記照明装置からの正反射光を受光しない
ように前記照明装置の照射方向と検出光軸とをずらして
配置し赤熱物体の表面を撮像し、前記照明装置の照射方
向側と反対側から走査を開始する一次元撮像装置と、前
記−次元撮像装置の光電出力から赤熱物体表面からの反
射よりも高い反射光を検出するエツジ検出部と、エツジ
検出部の出力をもとにして高い反射光レベルに時系列的
に連続してあられれる赤熱物体表面からの反射光レベル
よりも低い反射光を検出する疵検山部から構成した赤熱
物体表面検査装置。 (2、特許請求の範囲1において、照明装置からの照射
光線と、−次元撮像装置の走査線とを同一平面上に配置
した赤熱物体表面検査装置。
(1) A unidirectional illumination device that illuminates a red-hot object from an oblique direction, and the illumination direction of the illumination device and the detection optical axis are normally arranged so as not to receive specularly reflected light from the illumination device. a one-dimensional imaging device that images the surface of a red-hot object and starts scanning from the side opposite to the irradiation direction of the illumination device; and a one-dimensional imaging device that captures reflected light higher than the reflection from the surface of the red-hot object from the photoelectric output of the -dimensional imaging device. A flaw detection method that detects reflected light that is lower than the level of reflected light from the surface of a red-hot object that continuously reaches high reflected light levels in chronological order based on the edge detection unit that detects the edge detection unit and the output of the edge detection unit. A red-hot object surface inspection device consisting of two parts. (2. A red-hot object surface inspection device according to claim 1, in which the irradiation light from the illumination device and the scanning line of the -dimensional imaging device are arranged on the same plane.
JP12810182A 1982-07-21 1982-07-21 Device for inspecting surface of red hot material Pending JPS5918409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12810182A JPS5918409A (en) 1982-07-21 1982-07-21 Device for inspecting surface of red hot material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12810182A JPS5918409A (en) 1982-07-21 1982-07-21 Device for inspecting surface of red hot material

Publications (1)

Publication Number Publication Date
JPS5918409A true JPS5918409A (en) 1984-01-30

Family

ID=14976413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12810182A Pending JPS5918409A (en) 1982-07-21 1982-07-21 Device for inspecting surface of red hot material

Country Status (1)

Country Link
JP (1) JPS5918409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149808U (en) * 1985-03-11 1986-09-16
JPS61271405A (en) * 1985-05-27 1986-12-01 Mitsubishi Metal Corp Flatness of corner part inspecting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149808U (en) * 1985-03-11 1986-09-16
JPS61271405A (en) * 1985-05-27 1986-12-01 Mitsubishi Metal Corp Flatness of corner part inspecting apparatus

Similar Documents

Publication Publication Date Title
KR850000855B1 (en) The inspection device of hurt
JPS6453139A (en) Surface nature measuring apparatus and method
AU583556B2 (en) System for automatically inspecting transparent containers for sidewall and dimensional defects
JPH01143945A (en) Detecting method for defect in tape
JP3241666B2 (en) Glass container defect inspection equipment
US3779649A (en) Method of and an electro-optical system for inspecting material
JPS5918409A (en) Device for inspecting surface of red hot material
JPS61176838A (en) Inspection of defect of transparent or semi-transparent plate-shaped body
JPH0511574B2 (en)
JPS62102145A (en) Method for detecting defect
JPS5918407A (en) Device for inspecting surface of red hot material
JPS6319793Y2 (en)
JPH01262447A (en) Periodic defect discriminating processing circuit
JP2941411B2 (en) Surface inspection equipment
JPH01253641A (en) Circuit for discriminating streak-like defect
JPS6216373B2 (en)
JPS62223654A (en) Surface defect detector
JPH06100551B2 (en) Defect detection method
JPH0627037A (en) Flaw inspecting apparatus
JPS5720650A (en) Inspecting method for annular body
JPS6216372B2 (en)
JPH04106462A (en) Defect inspector
JPS58744A (en) Inspecting method of bottle or the like
JPH0326447Y2 (en)
JPS6264935A (en) Apparatus for inspecting surface flaw