JPS59183804A - Gas permselective composite membrane and its manufacture - Google Patents

Gas permselective composite membrane and its manufacture

Info

Publication number
JPS59183804A
JPS59183804A JP58059572A JP5957283A JPS59183804A JP S59183804 A JPS59183804 A JP S59183804A JP 58059572 A JP58059572 A JP 58059572A JP 5957283 A JP5957283 A JP 5957283A JP S59183804 A JPS59183804 A JP S59183804A
Authority
JP
Japan
Prior art keywords
composite membrane
membrane
gas
structural formula
selectively permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58059572A
Other languages
Japanese (ja)
Other versions
JPS6254049B2 (en
Inventor
Katsuya Yamada
克弥 山田
Shigeru Asako
茂 浅古
Koichi Okita
晃一 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58059572A priority Critical patent/JPS59183804A/en
Publication of JPS59183804A publication Critical patent/JPS59183804A/en
Publication of JPS6254049B2 publication Critical patent/JPS6254049B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • B01D71/643Polyether-imides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane

Abstract

PURPOSE:To form a gas permselective composite membrane excellent in mechanical characteristics, cost effectiveness, and heat resistance, by combining a polyether-imide as a base material and a silicone compound as a composite component. CONSTITUTION:Polyether-imide of formula I is obtained by polycondensation of phenoxyphenylcarboxylic anhydride with phenylenediamine. A silicone compound of fomula II, where X is an organic group having at least one aromatic ring on its main chain or side chain, is obtained by polycondensation of an organosiloxane with an organic compound having at least one aromatic ring on its main chain or side chain. The polyether-imide is made into a membrane structure with asymmetrical pore diameters and the thin film of the silicone compound having a great gas permeability is laminated on one side having a dense and average pore diameter of the membrane, or further a glow discharge plasma-polymerized thin film is deposited thereon.

Description

【発明の詳細な説明】 (技術分野) 本発明は、ガス選択透過性複合膜およびその製造方法に
関し、更に詳しくは、ポリエーテルイミド非対称孔径膜
を支持体としてシリコシ化合物が積層されているか、又
はさらにその上にオルガノシラン化合物のプラズマ重合
薄膜が堆積されているガス選択透過性複合膜およびその
製造方法に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to a gas-selective permselective composite membrane and a method for producing the same, and more specifically, the present invention relates to a gas-selective permselective composite membrane and a method for producing the same, and more specifically, a polyetherimide asymmetric pore membrane is used as a support and a silicone compound is laminated thereon, or Furthermore, the present invention relates to a gas-selective permselective composite membrane on which a plasma-polymerized thin film of an organosilane compound is deposited, and a method for manufacturing the same.

(従来技術とその問題点) 近年、流体混合物の分離、′)#4製を、蒸留、深冷等
の相変化を伴うエネルギー多消費プロ士スに代えて、選
択透過性膜により行なうことが積極的に検討されている
(Prior art and its problems) In recent years, it has become possible to separate fluid mixtures using selectively permeable membranes instead of energy-consuming processes that involve phase changes such as distillation and deep cooling. It is being actively considered.

流体混合物の膜分離、精製プロセスのうち、工業的規模
で実用化されているのは、海水の淡水化、工場廃水の処
理などの液体−液体分離お工び液体一固体分離が主であ
って、気体−気体の分離についてはほとんどなされてい
ない。ガスの膜分離が実用化され難い理由としては、選
択透過性が小さいこと、即ち特定の気体を選択的に通し
、他の気体をほとんど通さないという膜がないため、高
純度の特定気体を得るためには膜分離を何回も繰り返す
多段方式を必要とし、従って装置が大型になること、ガ
スの透過性が小さいため、大量のガスを処理し難いこと
の二点が主としてあげられる。
Among membrane separation and purification processes for fluid mixtures, the ones that have been put into practical use on an industrial scale are mainly liquid-liquid separation and liquid-solid separation, such as in seawater desalination and industrial wastewater treatment. , little work has been done on gas-gas separation. The reason why membrane separation of gases is difficult to put into practical use is that the permselectivity is low, that is, there is no membrane that selectively passes a specific gas and hardly allows other gases to pass through, making it difficult to obtain a specific gas with high purity. This requires a multi-stage system in which membrane separation is repeated many times, resulting in large equipment, and the low gas permeability makes it difficult to process large amounts of gas.

特にガス選択性を大きくするとガス透過性が悪くなり、
ガス透過性を大きくすると選択透過性が低下する傾向に
あり、この、関係を満足に改善することができなかった
In particular, when gas selectivity is increased, gas permeability worsens.
When the gas permeability is increased, the permselectivity tends to decrease, and this relationship has not been able to be improved satisfactorily.

これまで満足しうる膜を得るための製膜方法としては、
高分子溶液のキャスティング工程として検討され、表面
の活性スキン層の厚みを極力薄くした非対称j漢を追求
する方法、活性スキン層に相当する超薄膜を独立に製造
して他の多孔性支持体へ複合化しようとする方法等が代
表的である。これらはガス透過性を改善する一つの正攻
法ではあるが、必ずしも一般的な実際的な手法を提供し
ているとはいえない。これは、市販の高分子重合体ある
いは共重合体だけでは選択透過性、透過性、耐熱性、耐
薬品性、強度等のうち、少なくとも一つで特徴を有する
と同時に、他の性質の少なくとも一つでは欠点を有して
おり、全ての物性を満足した高分子重合体の構造を一義
的に決めることができないためである。
Until now, the film forming methods to obtain a satisfactory film are as follows:
A method of pursuing an asymmetrical structure in which the thickness of the active skin layer on the surface is made as thin as possible, which has been studied as a casting process for polymer solutions, and an ultra-thin film corresponding to the active skin layer is manufactured independently and applied to other porous supports. A typical example is a method that attempts to create a composite. Although these are legitimate methods for improving gas permeability, they cannot necessarily be said to provide general practical methods. This is because commercially available polymers or copolymers alone have characteristics in at least one of permselectivity, permeability, heat resistance, chemical resistance, strength, etc., and at the same time at least one of the other properties. This is because the structure of a high molecular weight polymer that satisfies all physical properties cannot be uniquely determined.

この様な中でも近年機械特性、耐熱性に富み、かつ製造
コストの安価なものの開発が特に望まれているが、その
代表的なものとしてポリスルホンが検討されている。し
かし機械特性、耐熱性において充分なところまでにはな
っていない。
Among these, in recent years, there has been a particular desire to develop a material that has excellent mechanical properties and heat resistance and is inexpensive to manufacture, and polysulfone is being considered as a typical example. However, the mechanical properties and heat resistance have not reached a sufficient level.

さらに、非対称膜にゴム系の溶液を塗布加硫する方、法
も検討されているが、加硫に伴う工程の繁雑さや、再現
性の低下、加熱に要するエネルギーコストなどの諸問題
点を有している。
Furthermore, methods of coating and vulcanizing rubber-based solutions on asymmetric membranes have been studied, but they have various problems such as the complexity of the vulcanization process, reduced reproducibility, and energy costs required for heating. are doing.

(発明の構成) 本発明者は機械特性、コスト的にもまた耐熱性にも秀れ
たものとしてポリスルホンとは違ったポリエーテルイミ
ドを素材とし、さらには複合化素材として用いるゴム系
の材料にかえ、機械特性、製膜性、耐熱性にも秀れ、か
つ加硫工程を必要としないシリコン化合物を複合化素材
とすることにより、この目的に一歩前進できることを見
い出した。ポリエーテルイミドはフェノオキシフェニー
ルジカルボン酸無水物とフェニレンジアミンとの縮合重
合によって得られ、その代表的な構造式は次式で表わさ
れる繰返し構造単位を持つものである。
(Structure of the Invention) The present inventor has developed polyetherimide, which is different from polysulfone, as a material that has excellent mechanical properties, cost, and heat resistance, and has further developed a rubber-based material to be used as a composite material. On the contrary, we have discovered that we can take a step forward toward this goal by using a silicon compound as a composite material, which has excellent mechanical properties, film-forming properties, and heat resistance, and does not require a vulcanization process. Polyetherimide is obtained by condensation polymerization of phenoxyphenyl dicarboxylic anhydride and phenylene diamine, and its typical structural formula has repeating structural units represented by the following formula.

一方、シリコン化合物はオルガノシロキサンと、主鎖も
しくは側鎖に少なくとも1個の芳香環を有する有機物と
の縮合重合によって得られ、その構造式は次式で表わさ
れる繰返し構造単位を持つものである。
On the other hand, a silicon compound is obtained by condensation polymerization of an organosiloxane and an organic substance having at least one aromatic ring in the main chain or side chain, and has a repeating structural unit represented by the following formula.

RyR;1価の官能基 m r n i自然数 さらに本発明のもう一つの特徴は、ガスの選択透過性は
比較的大きいものの透過性の低いポリエーテルイミドを
非対称孔径膜構造となし、その非対称性を利用して緻密
な平均孔径を有する片側表面にガス透過性の大きいシリ
コン化合物の薄膜を積層するか、又はさらにその上にグ
ロー放電によるプラズマ重合薄膜を堆積させた構造とす
ることシこある。
RyR: monovalent functional group m r n i natural number Another feature of the present invention is that polyetherimide, which has a relatively high gas permselectivity but a low permeability, has an asymmetric pore membrane structure, and its asymmetry Alternatively, a thin film of a silicon compound with high gas permeability may be laminated on one surface having a dense average pore size using the method, or a thin film polymerized by glow discharge may be further deposited thereon.

ポリエーテルイミドは耐熱性、耐薬品′訃、弓虫度等に
おいても非常に秀れて0るものの、ガス透過性が不足す
ることが決定的な欠点であった。この様な欠点を克服す
るため、本発明者らは、非対称孔径膜のポリエーテルイ
ミドにシリコン化合物力)らなるガス透過性の大きい重
合体薄膜を積層するか、更に選択透過性の大きい複合膜
を得るにシよ、ポリエーテルイミドにシリコン化合物の
重合体薄膜を積層した後に、グロー放電下のプラズマ重
合法で重合薄膜を堆積させる方法を採用することKより
、1μ以下の極薄厚の)罠を処理して高5)透過性を維
持できると同時に、重合に用psる累月自体としてもガ
ス選択透過性の大きい素材を広り1範囲から自由に選べ
ることを見い出した。
Although polyetherimide has excellent heat resistance, chemical resistance, and architivity, it has a decisive drawback of insufficient gas permeability. In order to overcome these drawbacks, the present inventors either laminated a thin polymer film with high gas permeability made of a silicon compound on polyetherimide of an asymmetric pore size membrane, or created a composite membrane with even higher permselectivity. In order to obtain ultra-thin traps (less than 1 μm), we adopted a method of laminating a polymer thin film of a silicon compound on polyetherimide and then depositing the polymer thin film using a plasma polymerization method under glow discharge. It has been found that it is possible to maintain high permeability by processing 5), and at the same time, it is possible to freely select from a wide range of materials with high gas selective permeability as the material itself used for polymerization.

本発明の他の一つの特徴は、ポリエーテルイミド非対称
孔径膜の緻密な平均孔径を有する片側表面にガス透過性
の大きい重合体薄膜を積層する際にその素材としてシリ
コ、ン化合物を選択することにより、機械特性、耐熱性
を充分に満たす上にゴム系材料において必須となる架橋
剤の添加や、混合、加熱加硫といった繁雑かつ、膜性能
を左右し、性能の均一性を欠く可能性の多い工程を省く
ことが可能となったことにある。
Another feature of the present invention is that a silicone compound is selected as the material when laminating a highly gas permeable polymer thin film on one surface of a polyetherimide asymmetric pore size membrane having a dense average pore size. In addition to satisfying mechanical properties and heat resistance, the addition of cross-linking agents, which are essential for rubber materials, and the complicated processes of mixing and heat vulcanization, which affect membrane performance and can lead to lack of uniformity in performance, are required. This makes it possible to eliminate many steps.

本発明で用いるポリエーテルイミドは、で示される繰り
返し単位からなる重合体であって、2 + 2 b+s
〔4(3,4−ジカルボキシフぷり2オ]キシ)フェニ
ール〕プロパン無水物トメタフエニレンジアミンとの縮
合反応によって得られる、勿論カルボキシとフェノオキ
シの位置はa + 3’ ; 4 t4、/ ; 31
4./あるいはこれらの混合物であっても良<、マたプ
ロパンは−C(CHa)2−の構造が最も好ましいもの
であるが、その他の pg −CHg−CHg−CH21−、−CH2−CH−テあ
ッテモ良く、更にはプロパン以外の−CnH21のうち
n=1〜8の範囲でもかまわない。
The polyetherimide used in the present invention is a polymer consisting of repeating units represented by 2 + 2 b+s
[4(3,4-dicarboxyphpuri-2o]oxy)phenyl]propane anhydride obtained by condensation reaction with tometaphenylenediamine, of course the carboxy and phenoxy positions are a + 3'; 4 t4, /; 31
4. / or a mixture thereof. Propane has the most preferred structure of -C(CHa)2-, but other pg -CHg-CHg-CH21-, -CH2-CH-te It is good to have a good atmosphere, and n=1 to 8 among -CnH21 other than propane may also be used.

これらのポリエーテルイミドはトリクロロエチレン等の
塩素系溶媒、ジメチルホルムアミド等のアミド系溶媒N
−メチル2ピロリドン等の環状含窒素系溶媒に溶解する
。また環状エーテルのテトラヒドロフラン、ジオキサン
等もかなりの溶解性を示すので溶解度の大きい第1溶媒
に沸点の低い第二溶媒を添加することも出来る。また多
価アルコール、無機塩等を添加剤として溶解性の太きい
、第一溶媒に添加して非対称孔径膜の孔径を変えること
も出来る。これらの添加剤を膨潤剤と呼ぶこともある。
These polyetherimides can be used in chlorine-based solvents such as trichlorethylene, amide-based solvents such as dimethylformamide, etc.
-Solubility in cyclic nitrogen-containing solvents such as methyl 2-pyrrolidone. Further, since cyclic ethers such as tetrahydrofuran and dioxane exhibit considerable solubility, it is also possible to add a second solvent with a low boiling point to the first solvent with high solubility. Further, the pore diameter of the asymmetric pore membrane can be changed by adding polyhydric alcohol, inorganic salt, etc. as an additive to the first solvent having a large solubility. These additives are sometimes called swelling agents.

次にこれらの溶液をドクターナイフを用いて支持板上ν
て均一流延し、流延したのち非溶媒通常は水中に浸漬し
てゲル化させるかあるいは流延した溶液中の溶媒を一部
蒸発させたのちにゲル化させることによりポリエーテル
イミドの非対称孔径膜を得る。勿論管状ノズルによる中
空体をつくることも出来る。
Next, use a doctor knife to spread these solutions onto the support plate.
The asymmetric pore size of polyetherimide is achieved by uniformly casting the polyetherimide and then gelling it by immersing it in a non-solvent, usually water, or by partially evaporating the solvent in the cast solution and then gelling it. Obtain a membrane. Of course, it is also possible to create a hollow body using a tubular nozzle.

溶液濃度、溶媒の種類、添加剤の量などにより非対称孔
径膜の特性は影響をうけ、一般的に濃度が大きい程ガス
の選択透過性が大きくなるが、ガスの透過性は低下して
くる。また添加剤の量が増る程ガスの透過性は大きくな
るが、ガス選択透過性は低下する。たとへば平均孔径が
0.001μ 以下の時はそのままガス選択透過性を示
すが、充分に安定した選択透過性を得7J、 Irと、
はむずかしく0.01μ以上になると選択透過性がなく
なってしまうことがある。
The properties of an asymmetric pore membrane are affected by the concentration of the solution, the type of solvent, the amount of additives, etc. Generally, the higher the concentration, the higher the selective gas permeability, but the lower the gas permeability. Furthermore, as the amount of additive increases, gas permeability increases, but gas selective permeability decreases. For example, when the average pore diameter is 0.001μ or less, it shows gas selective permselectivity as it is, but sufficiently stable permselective properties can be obtained with 7J, Ir, etc.
However, if the thickness exceeds 0.01μ, selective permeability may be lost.

そこで別種の重合体溶液の含浸やさらにその上にプラズ
マ重合によって薄膜を積層することで安定した選択透過
性を有する膜を得ることが出来る。
Therefore, a membrane having stable permselectivity can be obtained by impregnating a different type of polymer solution and further laminating a thin film thereon by plasma polymerization.

孔径範囲が(11μから0.5μ 範囲では重合体塗布
厚みや濃度を増して幾分厚膜とする必要があるが、それ
でもガスの選択透過性を示すように積層することが可能
である。しかし0.5μを越えた孔径範囲になるとガス
透過性の大きい重合体j良を形成させるのが困難になっ
てくる。
When the pore size ranges from 11μ to 0.5μ, it is necessary to increase the coating thickness and concentration of the polymer to make a somewhat thicker film, but it is still possible to laminate the film so that it exhibits gas selective permeability. When the pore diameter range exceeds 0.5μ, it becomes difficult to form a polymer having high gas permeability.

本発明で用いるシリコン化合物は、構造式;Rx;主鎖
もしくは側鎖に少な R・R′;1価の官能基 rrl+ni自然数 で示される繰り返し単位からなる重合体であって、Xは
例えば、 ものであっても良い。
The silicon compound used in the present invention is a polymer consisting of repeating units represented by the structural formula; It may be.

R9R′は例えば−HI  GH3+べD 、 −CH
= CH2。
R9R' is, for example, -HI GH3+BeD, -CH
= CH2.

−CH= CH−CH,、−C:CHなどがあげられる
。もちろんこれ以外のものであってもよい。
Examples include -CH=CH-CH, -C:CH, and the like. Of course, it may be other than this.

こレラのシリコン化合物はジクロルメタン、クロロホル
ム、四塩化炭素1、トリクレン等の塩素系溶媒、ジメチ
ルアセトアミド等のアミド系溶媒、テトラヒドロフラン
等の環状エーテル、ベンゼン、トルエン等の芳香族炭化
水素、メチルエチルケトン、アセトン等のケトン類に溶
解する。また、Nメチル−2ピロリドン等の環状含窒素
系溶媒にも溶解性を示すので、溶解度の大きい溶媒と溶
解度の小さい溶媒を混合して用いることもできる。
The silicon compounds used in this product include dichloromethane, chloroform, carbon 1 chloride, chlorine solvents such as trichlene, amide solvents such as dimethylacetamide, cyclic ethers such as tetrahydrofuran, aromatic hydrocarbons such as benzene and toluene, methyl ethyl ketone, acetone, etc. Soluble in ketones. Furthermore, since it exhibits solubility in cyclic nitrogen-containing solvents such as N-methyl-2-pyrrolidone, a solvent with high solubility and a solvent with low solubility can be mixed and used.

溶液濃度、溶媒の種類、溶媒の組合せなどにより溶液の
粘度を調整し、非対称孔径膜の孔への浸入の度合いや、
実質的な膜厚をかえることもできる。
The viscosity of the solution is adjusted by adjusting the concentration of the solution, the type of solvent, the combination of solvents, etc., and the degree of penetration into the pores of the asymmetric pore membrane can be adjusted.
The actual film thickness can also be changed.

ここで重要な点は、このようなシリコン化合物を用いる
ことにより、ゴム系材料において必須となる素練り、架
橋剤の添加・混合、加硫、2次加硫といった工程を省く
ことが可能とな°す、性能の均一性、再現性を太rjJ
に向上できたことにある。
The important point here is that by using such silicon compounds, it is possible to omit the steps such as mastication, addition and mixing of cross-linking agents, vulcanization, and secondary vulcanization, which are essential for rubber-based materials. ° Improve uniformity and reproducibility of performance
This is because we were able to improve.

なぜならば、シリコンゴム系材料の溶液を用いる製膜に
おいて必須となる素練り、架橋剤の添加・混合、加硫、
2次加硫といった工程に精密な制御が非常に困難な要素
が含まれているからである。
This is because mastication, addition and mixing of crosslinking agents, vulcanization, and
This is because the process of secondary vulcanization includes elements that are extremely difficult to control precisely.

以下にそれを説明する。This will be explained below.

通常、シリコンゴムにおいては、ゴムコンパウンドの強
度保持のために混入された充填剤が経時的に架、橋して
いくために起こる可塑もどりといわれる現象が起こる。
Normally, in silicone rubber, a phenomenon called plasticity recovery occurs due to the filler mixed in to maintain the strength of the rubber compound cross-linking over time.

可塑もどりを起こしたゴムは、溶媒への溶解性が著しく
低下し、製膜性に悪影響を及ぼす。このため、再び可塑
化するために行うのが素練りである。しかしながら素練
りの過剰は分子鎖の切断を招くことがあり、しかも素練
りの最適な条件は定量的には把握されていないのが現状
である。
Rubber that has undergone plastic recovery has significantly reduced solubility in solvents, which has a negative impact on film-forming properties. For this reason, mastication is performed to plasticize it again. However, excessive mastication may lead to molecular chain scission, and at present, the optimal conditions for mastication have not been quantitatively understood.

次に、加硫剤は溶液濃度、塗布厚み等によっても最適添
加量が異なり、未加硫、過加硫状態を招く場合がある。
Next, the optimum amount of the vulcanizing agent to be added varies depending on the solution concentration, coating thickness, etc., which may lead to unvulcanized or overvulcanized states.

加硫剤が膜中に残存する場合は、膜の劣化を促進する原
因となる。そこで膜中に残存する加硫剤を除去するため
に、2次加硫を行なうことが必要になる。2次加硫は、
一般に加硫(1次加硫)以上の温度で、長時間を要する
ので、生産能率やエネルギーコストの面でも大きな負担
となる上、過剰になれば熱劣化を起こす・ことになる。
If the vulcanizing agent remains in the film, it will cause accelerated deterioration of the film. Therefore, in order to remove the vulcanizing agent remaining in the film, it is necessary to perform secondary vulcanization. Secondary vulcanization is
Generally, vulcanization (primary vulcanization) is performed at a temperature higher than that of vulcanization (primary vulcanization) and takes a long time, which imposes a large burden on production efficiency and energy costs.

次に、プラズマ重合させるモノマーについて説明する。Next, the monomer to be plasma polymerized will be explained.

種々のモノマー、たとえばエチレンやアセチレンがグロ
ー放電された雰囲気中でプラズマ重合することが知られ
ているが、本発明の目的には、有機シラン化合物が好ま
しく用いられる。
Although it is known that various monomers, such as ethylene and acetylene, undergo plasma polymerization in a glow discharge atmosphere, organosilane compounds are preferably used for the purposes of the present invention.

有機シラン化合物としては、たとえばテトラメチルシラ
ン、ヘキサメチルジシラザン、メチルジクロロシラン、
メチルトリクロロシラン、等のシランが挙げられる。さ
らに、不飽和結合を有する有機シラン化合物、たとえば
トリメチルビニルシラン、ジメチルビニルクロロシラン
、ビニルトリクロロシラン、メチルビニルジクロロシラ
ン、メチルトリビニルシラン、アリルトリメチルシラン
、エチニールトリメチルシラン等がより好ましく用いら
れる。
Examples of organic silane compounds include tetramethylsilane, hexamethyldisilazane, methyldichlorosilane,
Examples include silanes such as methyltrichlorosilane. Furthermore, organic silane compounds having unsaturated bonds, such as trimethylvinylsilane, dimethylvinylchlorosilane, vinyltrichlorosilane, methylvinyldichlorosilane, methyltrivinylsilane, allyltrimethylsilane, and ethynyltrimethylsilane, are more preferably used.

ガス選択透過性膜としては、素材そのものの特性が秀れ
ているのみならず、その透過性を支配する41ケ成要素
は可及的に薄くなければならない。この理由は次の通り
である。素材特性の評価は、ガス透過係数の単位 P = cm8− tx/cmz ・sec−crrL
Hgを用いて表され、これは素材14m厚さに換算した
ものである。一方、複合膜においては素材の厚みそのも
のの透過速度 Q−crn8/crrL2+SeC弓咀gの単位で表わ
されており、lOμと1μの膜厚では、透過係数は同じ
値であっても、透過速度は10倍の差が生じる。従って
、実際に必要な特性は透過速度であり、膜の厚さである
For a gas selectively permeable membrane, not only must the material itself have excellent properties, but the 41 components that govern its permeability must be as thin as possible. The reason for this is as follows. Evaluation of material properties is performed using the unit of gas permeability coefficient: P = cm8-tx/cmz ・sec-crrL
It is expressed using Hg, which is converted into a material thickness of 14 m. On the other hand, in the case of a composite membrane, the permeation rate is expressed in the unit of Q-crn8/crrL2+SeC g due to the thickness of the material itself, and for membrane thicknesses of lOμ and 1μ, even though the permeation coefficient is the same value, the permeation rate is There is a difference of 10 times. Therefore, the properties that are actually required are the permeation rate and the membrane thickness.

本発明では、前記した孔径範囲のポリエーテルイミドの
非対称孔径膜を乾燥した後、緻密層表面にシリコン化合
物を積層するか、又はさらにその上にプラズマ重合層を
1μ以下、好ましくは0.8μ以下の厚さ堆積する。た
とえば系内を5 torr  以下、好ましくは2 t
orr  以下の減圧とし、系に非重合性ガスと重合性
ガスの混合ガスを導入し、所定の出力、たとえば5〜5
00W、好ましくは約20Wで系中に高周波によるグロ
ー放電を行うと重合性ガスがプラズマ重合し1、ポリエ
ーテルイミドの非対称孔径膜の緻密層表面に積層してい
るシリコン化合物上に薄膜として堆積する。この薄膜の
厚みは、グロー放電時間の長さまたは重合性ガスの流f
ilにほぼ比例して増加するので、任意の厚み、たとえ
ば1μまたは0.3μの厚みに調節することができる。
In the present invention, after drying the asymmetric pore size membrane of polyetherimide having the pore size range described above, a silicon compound is laminated on the surface of the dense layer, or a plasma polymerized layer is further applied thereon to 1μ or less, preferably 0.8μ or less. Deposit thickness. For example, the pressure within the system is 5 torr or less, preferably 2 t.
The pressure is reduced below orr, a mixed gas of non-polymerizable gas and polymerizable gas is introduced into the system, and a predetermined output, e.g.
When a high-frequency glow discharge is applied to the system at 00 W, preferably about 20 W, the polymerizable gas undergoes plasma polymerization (1) and is deposited as a thin film on the silicon compound layered on the surface of the dense layer of the polyetherimide asymmetric pore membrane. . The thickness of this thin film depends on the length of the glow discharge time or the flow rate f of the polymerizable gas.
Since the thickness increases approximately in proportion to il, the thickness can be adjusted to any desired thickness, for example, 1μ or 0.3μ.

また、グロー放電時の出力の増減によっても堆積厚みが
増減するが、これらの造膜条件は、この分野の技術に習
熟している者にとって容易に最適化できる範囲である。
The deposition thickness also increases or decreases depending on the increase or decrease in the output during glow discharge, but these film forming conditions are within a range that can be easily optimized by those familiar with the technology in this field.

いずれにしても、本発明では欠陥のない均一重合膜を上
記厚みで堆積させることが必要である。
In any case, in the present invention, it is necessary to deposit a defect-free uniform polymer film with the above-mentioned thickness.

重合性ガスの一つの選択基準は、プラズマ重合薄膜が厚
さ1μまたは03μ以下という極薄層であるからガス分
離しようとする混合ガスの一方の成分を可及的に透過さ
せないということである。この基準を満すためには、エ
チレン、スチレン等の一般のプラズマ重合性モノマーで
あってもよいが、好ましい一群は、前述の有機シラン化
合物であり、就中、二重結合または三重結合という不飽
和型官能基を有するものがより好ましい。
One criterion for selecting the polymerizable gas is that the plasma-polymerized thin film is an extremely thin layer with a thickness of 1 μm or 0.3 μm or less, so that one component of the gas mixture to be separated is as impermeable as possible. In order to meet this criterion, general plasma-polymerizable monomers such as ethylene and styrene may be used, but a preferred group is the above-mentioned organosilane compounds, especially those containing double or triple bonds. Those having a saturated functional group are more preferred.

以下には本発明を実施例によって更に説明する。The present invention will be further explained below by way of examples.

実施例T−1 ポリエーテルイミド・ウルテム(ULTEM i GE
社製)20重量%をNメチル2ピロリドン80重量%に
溶解させて、ドープ液を調製した。このドープ液を平滑
なガラス板上にドクターナイフで厚さ300μに流延し
、ガラス板ごと蒸留水中に浸漬し、膜が凝固剥離した後
、2時間水洗し、4・5℃にて2時間通風乾燥して厚さ
約170μの非対称孔径)漢を得た。
Example T-1 Polyetherimide Ultem (ULTEM i GE)
A dope solution was prepared by dissolving 20% by weight of N-methyl 2-pyrrolidone in 80% by weight of N-methyl 2-pyrrolidone. This dope solution was cast onto a smooth glass plate with a doctor knife to a thickness of 300 μm, and the glass plate was immersed in distilled water. After the film solidified and peeled off, it was washed with water for 2 hours, and then heated at 4.5°C for 2 hours. After drying through ventilation, a sheet with an asymmetric pore diameter of approximately 170 μm in thickness was obtained.

この上うにして得られたポリエーテルイミド非対称孔径
膜に、ポリジメチルシロキサン−ビスフェノールAカー
ボネートブロックコポリマー(ps。
The polyetherimide asymmetric pore membrane thus obtained was coated with polydimethylsiloxane-bisphenol A carbonate block copolymer (ps).

99;チッソ(株)製)20重量%をベンゼン80重量
%に溶解せしめた溶液を厚さ約100μに塗布し、常温
にて溶媒を蒸発乾燥した。
A solution prepared by dissolving 20% by weight of 99 (manufactured by Chisso Corporation) in 80% by weight of benzene was applied to a thickness of about 100 μm, and the solvent was evaporated and dried at room temperature.

得られた複合膜のガス透過特性を評価したところ、酸素
透過速度QO2= 4.l’x 10−6cm87cm
”、”5ec−z Hg酸素・窒素選択透過性α02/
N2=5.1  であった。
When the gas permeation characteristics of the obtained composite membrane were evaluated, the oxygen permeation rate QO2 = 4. l'x 10-6cm87cm
”,”5ec-z Hg oxygen/nitrogen selective perms α02/
N2=5.1.

実施例−2 実施例−1と全く同様にして得られた複合膜に、トリメ
チルビニルシランを流速2.0 cm3/min  で
系内に導入しなからLOWの出力で30分間反応容器中
にグロー放電を行ない、複合膜の最外表面にプラズマ重
合膜を堆積させた。この様にして得られた3層複合膜の
ガス透過特性を評価したところQ02=7.0X10−
7cIna/z2・S6(−ffi)(gα02/Ng
=7.9  であった。
Example 2 A composite membrane obtained in exactly the same manner as in Example 1 was subjected to glow discharge in a reaction vessel for 30 minutes at LOW power after trimethylvinylsilane was introduced into the system at a flow rate of 2.0 cm3/min. A plasma polymerized film was deposited on the outermost surface of the composite film. When the gas permeation properties of the three-layer composite membrane obtained in this way were evaluated, Q02=7.0X10-
7cIna/z2・S6(-ffi)(gα02/Ng
=7.9.

実施例−3 ポリエーテルイミド非対称孔径膜に、ポリジメチルシロ
キサン−ビスフェノールAカーボネートブロックコポリ
マー 重量%を四塩化炭素99重型彫に溶解せしめた溶
液をディッピング法にて塗布し、120°C/4.0分
熱風加硫した。得られた複合膜のガス透過特性を評価し
たところ、QO2=:4..2X 10−6cm1l 
/cml Se(−Cm)(gαOR/N2’=6.5
であった。
Example 3 A solution prepared by dissolving polydimethylsiloxane-bisphenol A carbonate block copolymer (wt%) in 99% carbon tetrachloride was coated on a polyetherimide asymmetric pore membrane by a dipping method, and heated at 120°C/4.0°C. Vulcanized with hot air. When the gas permeation characteristics of the obtained composite membrane were evaluated, QO2=:4. .. 2X 10-6cm1l
/cml Se(-Cm)(gαOR/N2'=6.5
Met.

実施例−4 実施例−3と全く同様にして得た複合膜にトリメチルビ
ニルシランを流速0.7 c7n8 /mi n  で
系内に導入しながら20Wの出力で30分間反応容器中
にグロー放電を行ない、複合膜の最外表面にプラズマ重
合膜を堆積させた。
Example-4 A composite membrane obtained in exactly the same manner as in Example-3 was subjected to glow discharge in a reaction vessel for 30 minutes at an output of 20 W while trimethylvinylsilane was introduced into the system at a flow rate of 0.7 c7n8/min. , a plasma polymerized film was deposited on the outermost surface of the composite film.

この様にして得られた8層複合膜のガス透過特性を評価
したところ、 QO2=8,7 X 10−7mj /cmi sec
−CmHgα02/N2 = 7.8であった。
When the gas permeation characteristics of the 8-layer composite membrane obtained in this way were evaluated, it was found that QO2 = 8.7 x 10-7 mj / cmi sec
-CmHgα02/N2 = 7.8.

(発明の効果) 機械特性、コスト、耐熱性に秀れたポリエーテルイミド
を支持体の素材とし、機械特性、製膜性、耐熱性に秀れ
、かつ加硫工程を必要としないシリコン化合物を複合化
素材とすることにより、機械特性、耐熱性に秀れた膜を
安定、均一に製造することが可能となり、製造工程の簡
略化コスト低減も可能となった。
(Effects of the invention) Polyetherimide, which has excellent mechanical properties, cost, and heat resistance, is used as the material for the support, and a silicon compound that has excellent mechanical properties, film formability, and heat resistance, and does not require a vulcanization process, is used as the material for the support. By using a composite material, it has become possible to stably and uniformly manufacture a film with excellent mechanical properties and heat resistance, and it has also become possible to simplify the manufacturing process and reduce costs.

さらにグロー放電下のプラズマ重合法を用いることによ
り1μ以下の極薄層の膜を処理して高い透過性を維持す
ると同時に高選択性を与える素材の選択の巾を広げるこ
とも可能となった。
Furthermore, by using the plasma polymerization method under glow discharge, it has become possible to process ultrathin membranes of 1 μm or less to maintain high permeability and at the same time expand the range of selection of materials that provide high selectivity.

代理人 弁理士  上 代 哲 司::11.;j=”
手続補正帯 昭和58年5 月(9日 特許庁長官 若 杉 和 夫   殿 1、事件の表示 昭和58年特許願 第59572  号2 発明の名称 ガス選択透過性複合膜およびその製造方法3、補正をす
る者 事件との関係   特許出願人 住所    大阪市東区北浜5丁目15番地名称(21
3)住友電、気工業株式会社社長 用上哲部 4代理人 住所     大阪市此花区島屋1丁目1番3号住友電
気工業株式会社内 (電話 大阪4.6l−1031) 氏名(7881)弁理士 上代哲司 6補正の対象 明細書中発明の詳細な説明の欄 7補正の内容 (1)明細書第20責第14行目 「チツリ」を1チツソ」と訂正 (2)明細書第21頁第12行口 「重量%」を「1重量%」と訂正 (3)明細書第21頁第14・行1」 「120°C/4・0 分熱風加硫」を「40°C/1
5分温風乾燥」と訂正 手続補正帯 昭和59年1月7λ日 特許庁畏官若杉和夫  殿 1、事件の表示 昭和58年特許願 第 59572  号2 発明の名
称 ガス選択透過性複合膜およびその製造方法3、補正をす
る者 事件との関係   特許出願人 住所    大阪市東区北浜5丁目15番地名称(21
3)住友電気工業株式会社 社長 用上哲部 4・代理人 住所     大阪市此花区島屋1丁目1番3号住友電
気工業株式会社内 (電話 大阪461−1031) 6神正の対象 明細書中発明の詳細な説明の欄 78補正の内容 (1)関細書第8貫第11行目 「・・・耐熱性」の後に「、耐プラズマ性」を挿入(2
)明細書第11頁第5行目と第6行目の間に以下の文章
を挿入 「又、耐プラズマ性を有することによシ、プラズマ重合
薄膜をより安定に堆積させて、高い選択性の膜を得るこ
とが可能になったことも」二げられる。」(3)明細書
第15頁第7行目と第8行目の間に以下の文章を挿入 伸 「ただし、溶媒もしくはa合溶媒は、玄持ヰの強度を大
きく低下させないものであることを選択の規準の1つに
しなければならない。」 (4)明細書筒16頁最F行 「・・φ起こすことになる。」の後に[又、素練りや、
加硫剤の添加を要しないものとしてよく用いられる2液
性シリコンゴムについても、前述の一般のシリコンゴム
に比べて大巾な改善はなされているものの、混合や加硫
といった工程は依然必須であり、本発明で用いるシリコ
ン化合物に比べると、性能の均一性、再現性、エネルギ
ーコストの面でも不利である。」を挿入 (5)明細書第22頁第11行目
Agent Patent Attorney Tetsu Tsukasa::11. ;j=”
Procedural amendment May 9, 1982 Kazuo Wakasugi, Commissioner of the Japan Patent Office, 1, Indication of the case, Patent Application No. 59572, 1988, 2 Name of the invention: Gas selectively permeable composite membrane and its manufacturing method 3, Amendment. Relationship with the case of the person who filed the patent application Address of the patent applicant 5-15 Kitahama, Higashi-ku, Osaka Name (21
3) President of Sumitomo Electric, Ki Kogyo Co., Ltd. Tetsubu Yojo 4 Agent address: Within Sumitomo Electric Industries Co., Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka (telephone: Osaka 4.6l-1031) Name (7881) Patent attorney Tetsushi Kamidai 6. Contents of the amendment in Detailed Description of the Invention Column 7 in the specification (1) Corrected “chituri” in line 14 of section 20 of the specification to “1 chitsuso” (2) Page 21 of the specification "Weight%" at the beginning of line 12 was corrected to "1% by weight." (3) Specification, page 21, line 14, "120°C/4.0 minutes hot air vulcanization" was changed to "40°C/1
5 minutes warm air drying” and correction procedure amendment date January 7, 1980 Kazuo Wakasugi, Official of the Japan Patent Office 1. Indication of the case 1982 Patent Application No. 59572 2 Title of the invention Gas selectively permeable composite membrane and its Manufacturing method 3, relationship with the case of the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (21
3) President of Sumitomo Electric Industries, Ltd. Tetsubu 4/Agent Address: Within Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka (telephone: 461-1031 Osaka) 6 Inventions in the Subject Specification of Kashimasa Detailed explanation column 78 Contents of amendment (1) Insertion of ", plasma resistance" after "...heat resistance" in the 11th line of the 8th volume of the Kansai Specifications (2)
) Insert the following sentence between lines 5 and 6 of page 11 of the specification: ``Also, by having plasma resistance, plasma polymerized thin films can be deposited more stably and with high selectivity. It is also said that it has become possible to obtain a film of (3) Insert the following sentence between lines 7 and 8 on page 15 of the specification: ``However, the solvent or a-mixture solvent must not significantly reduce the strength of the genpoki. must be one of the criteria for selection.'' (4) After the last line F of page 16 of the specification cylinder, ``... will cause φ to occur.'' [Also, mastication,
Although two-component silicone rubber, which is often used as a product that does not require the addition of a vulcanizing agent, has been significantly improved compared to the general silicone rubber mentioned above, processes such as mixing and vulcanization are still required. However, compared to the silicon compound used in the present invention, it is disadvantageous in terms of uniformity of performance, reproducibility, and energy cost. ” (5) Page 22, line 11 of the specification

Claims (8)

【特許請求の範囲】[Claims] (1)少なくとも2層からなる複合膜が、下記(4)に
示される非対称孔径膜に、下記(B)に示される重合体
薄膜が積層された構造からなることを特徴とするガス選
択透過性複合膜。 (A)緻密層の平均孔径が0.5μ以下で、該緻密層の
平均厚みが10μ以下であり、主として、構造式; で示される繰り返し単位を有するポリエーテルイミドか
らなる非対称孔径膜。 (B)構造式; R′     する有機基 RyR’;1価の官能基 ffl + n i自然数 で示されるシリコン化合物からなる重合体薄膜。
(1) Gas selective permeability characterized in that the composite membrane consisting of at least two layers has a structure in which the asymmetric pore size membrane shown in (4) below is laminated with the polymer thin film shown in (B) below. Composite membrane. (A) An asymmetric pore membrane comprising a polyetherimide having a dense layer having an average pore diameter of 0.5 μm or less, an average thickness of the dense layer of 10 μm or less, and mainly having repeating units represented by the structural formula: (B) A polymer thin film made of a silicon compound represented by the structural formula; R': an organic group RyR'; a monovalent functional group ffl + n i natural numbers;
(2)少なくとも2層からなる複合膜に、少なくとも1
個の2型詰合又は3型詰合を含むオルガノシラン化合物
がグロー放電によりプラズマ重合されて堆積されている
ことを特徴とする特許請求の範囲第1項記載のガス選択
透過性複合膜。
(2) At least one
2. The gas selectively permeable composite membrane according to claim 1, wherein an organosilane compound containing type 2 or type 3 packing is deposited by plasma polymerization by glow discharge.
(3)オルガノシラン化合物が、 構造式;Rn5iX4−n n、1〜4 R; CH2=CH−、cH=c−。 CH2= CH−CH2−’ X i Hr C1* CHB r CH3CH2−で
示される化合物であることを特徴とする特許請求の範囲
第2項記載のガス選択透過性複合膜。
(3) The organosilane compound has the following structural formula: Rn5iX4-nn, 1-4 R; CH2=CH-, cH=c-. The gas selectively permeable composite membrane according to claim 2, which is a compound represented by CH2=CH-CH2-'XiHrC1*CHBrCH3CH2-.
(4)構造式; RXi主鎖もしくは側鎖に少な R,R’、1価の官能基 m・n;自然数 で示されるシリコン化合物が、ポリジメチルシロキサン
−ビスフェノールへカーホネー1−フロックコポリマー
、ポリジメチルシロキサン−αメチルスチレンブロック
コポリマーの中から選ばれたことを特徴とする特許請求
の範囲第1項記載のガス選択透過性複合膜。
(4) Structural formula; RXi Main chain or side chain has few R, R', monovalent functional group m/n; silicon compound represented by a natural number is converted into polydimethylsiloxane-bisphenol, carbonate 1-floc copolymer, polydimethyl The gas selectively permeable composite membrane according to claim 1, characterized in that it is selected from among siloxane-α-methylstyrene block copolymers.
(5)構造式; で示される繰返し単位から成るポリエーテルイミドと、
溶剤および必要があれば膨潤剤を含んで成る溶液を製J
i%し凝固剤と接触させ、溶剤を除去し、乾燥させて非
対称孔径膜を得、該非対称孔径膜の)畝密層に、構造式
; %式% X;主鎖もしくは側鎖に少なくとも1つ以」二の芳香環
を有する有機基 R,R’ ;−1価の官能基 m、n’;自然数 で示されるシリコン化合物と溶剤を含んで成る溶液を塗
布し、乾燥させることを特徴とする特許請求の範囲第1
項記載のガス選択透過性複合膜の製造方法。
(5) Structural formula: A polyetherimide consisting of a repeating unit represented by;
Prepare a solution containing a solvent and, if necessary, a swelling agent.
i%, contacted with a coagulant, removed the solvent, and dried to obtain an asymmetric pore membrane, in which the ridged layer of the asymmetric pore membrane had a structural formula; Organic groups R, R' having two aromatic rings; -monovalent functional groups m, n'; A solution containing a silicon compound represented by a natural number and a solvent is applied and dried. Claim 1
A method for producing a gas selectively permeable composite membrane as described in .
(6)少なくとも1個の2重結合又は3重結合を含むオ
ルガノシラン化合物をモノマー蒸気として5torr 
 以下の雰囲気に供給しながらグロー放電させ、少なく
とも2層からなる複合膜にプラズマ重合源ttaを堆積
させることを特徴とする特許請求の範囲第5項記載のガ
ス選択透過性複合膜の製造方法。
(6) Organosilane compound containing at least one double bond or triple bond as monomer vapor at 5 torr
6. The method for producing a gas selectively permeable composite membrane according to claim 5, wherein the plasma polymerization source tta is deposited on the composite membrane consisting of at least two layers by causing glow discharge while supplying the following atmosphere.
(7)構造式; Rn−5i −X4−1n;1〜・1
・ R;  CHg=CH−、CH三C−。 CH2= CH−CH2−。 X;、H+ C1r CJ?8 +CH3−cHz l
で示されるオルガノシラン化合物を七ツマー蒸気として
プラズマ重合することを特徴とする特許請求の範囲第6
項記載のガス選択透過性複合膜の製造方法。
(7) Structural formula; Rn-5i -X4-1n; 1 to 1
- R; CHg=CH-, CH3C-. CH2=CH-CH2-. X;, H+ C1r CJ? 8 +CH3-cHz l
Claim 6, characterized in that the organosilane compound represented by
A method for producing a gas selectively permeable composite membrane as described in .
(8)ポリジメチルシロキサン−ビスフェノールAカー
ボネートブロックコポリマーもしくはポリジメチルシロ
キサン−αメチルスチレンブロックコポリマーと、溶剤
とを含んで成る溶液を、非対称孔径膜緻密層に塗布し、
乾燥させることを特徴とする特許請求の範囲第5項記載
のガス選択透過性複合膜の製造方法。
(8) applying a solution comprising a polydimethylsiloxane-bisphenol A carbonate block copolymer or a polydimethylsiloxane-α-methylstyrene block copolymer and a solvent to the asymmetric pore membrane dense layer;
6. The method for producing a gas selectively permeable composite membrane according to claim 5, which comprises drying the membrane.
JP58059572A 1983-04-04 1983-04-04 Gas permselective composite membrane and its manufacture Granted JPS59183804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58059572A JPS59183804A (en) 1983-04-04 1983-04-04 Gas permselective composite membrane and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58059572A JPS59183804A (en) 1983-04-04 1983-04-04 Gas permselective composite membrane and its manufacture

Publications (2)

Publication Number Publication Date
JPS59183804A true JPS59183804A (en) 1984-10-19
JPS6254049B2 JPS6254049B2 (en) 1987-11-13

Family

ID=13117081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58059572A Granted JPS59183804A (en) 1983-04-04 1983-04-04 Gas permselective composite membrane and its manufacture

Country Status (1)

Country Link
JP (1) JPS59183804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225705A (en) * 1983-06-07 1984-12-18 Nitto Electric Ind Co Ltd Composite membrane and preparation thereof
JPS6094106A (en) * 1983-10-27 1985-05-27 Nitto Electric Ind Co Ltd Manufacture of compound membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225705A (en) * 1983-06-07 1984-12-18 Nitto Electric Ind Co Ltd Composite membrane and preparation thereof
JPH0323208B2 (en) * 1983-06-07 1991-03-28 Nitto Denko Corp
JPS6094106A (en) * 1983-10-27 1985-05-27 Nitto Electric Ind Co Ltd Manufacture of compound membrane
JPH0317533B2 (en) * 1983-10-27 1991-03-08 Nitto Denko Corp

Also Published As

Publication number Publication date
JPS6254049B2 (en) 1987-11-13

Similar Documents

Publication Publication Date Title
US4832713A (en) Gas-selectively permeable membrane and method of forming said membrane
US4689267A (en) Composite hollow fiber
JPS58180205A (en) Composite membrane having selective permeability to gas and its production
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPS62152507A (en) Porous hollow yarn composite membrane and its preparation
JPS59183804A (en) Gas permselective composite membrane and its manufacture
EP0112134B1 (en) Gas-selectively permeable membrane and method of forming said membrane
JPS6271503A (en) Porous hollow yarn composite membrane and its production
JPS59127603A (en) Gas permselective membrane and preparation thereof
JPH051049B2 (en)
JPS59115738A (en) Selective gas-permeable membrane and its manufacture
JPS61149226A (en) Gas permselective composite membrane and preparation thereof
JPS61103521A (en) Selective permeable compound film for gas and its preparation
JPS586207A (en) Production of gas permselective composite membrane
JPS59183805A (en) Gas permselective composite membrane and its manufacture
JPH038808B2 (en)
JPS59105807A (en) Gas permselective membrane and preparation thereof
JPS6297625A (en) Gas permselective membrane and its preparation
JPS59127602A (en) Gas permselective membrane and preparation thereof
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPS6391123A (en) Porous hollow yarn composite membrane and its production
JPH0698284B2 (en) Porous hollow fiber composite membrane and method for producing the same
JPS596904A (en) Composite membrane with gas selective permeability and preparation thereof
JPS59225704A (en) Gas permselective composite membrane and preparation thereof
JPS61149210A (en) Preparation of gas permselective composite membrane