JPS59182940A - Aluminum alloy for welded structure - Google Patents

Aluminum alloy for welded structure

Info

Publication number
JPS59182940A
JPS59182940A JP5698983A JP5698983A JPS59182940A JP S59182940 A JPS59182940 A JP S59182940A JP 5698983 A JP5698983 A JP 5698983A JP 5698983 A JP5698983 A JP 5698983A JP S59182940 A JPS59182940 A JP S59182940A
Authority
JP
Japan
Prior art keywords
weight
less
alloy
compounds
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5698983A
Other languages
Japanese (ja)
Other versions
JPS6242986B2 (en
Inventor
Kenzo Okada
岡田 健三
Mamoru Matsuo
守 松尾
Sotaro Sekida
宗太郎 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUKAI ALUM KK
Sky Aluminium Co Ltd
Original Assignee
SUKAI ALUM KK
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUKAI ALUM KK, Sky Aluminium Co Ltd filed Critical SUKAI ALUM KK
Priority to JP5698983A priority Critical patent/JPS59182940A/en
Publication of JPS59182940A publication Critical patent/JPS59182940A/en
Publication of JPS6242986B2 publication Critical patent/JPS6242986B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To develop an Al-Mg alloy for welded structure having a cryogenic characteristic by decreasing the content of Mn, Fe and Si in a specifically composed Al-Mg alloy and limiting the distributed quantity and size of an eutectic compd. CONSTITUTION:An alloy contains 4-5.5wt% Mg, 0.4-0.80wt% Mn, 0.05- 0.35wt% Cr and 0.005-0.2wt% Ti and has limited contents of Mg, Fe and Si which are the essential components of an eutectic alloy. The total of the contents of Mn and Fe therein is limited to <=0.80wt% and the content of Fe alone is limited to <=0.20wt% and the content of Si as an impurity to <=0.10wt%. The distributed quantity of the eutectic alloy of Al-Fe-Mn and Al-Mg-Si is decreased and the eutectic mixture is fined and dispersed, by which the Al alloy for welded structure having an excellent mechanical characteristic at an extra low temp. and suitable as a raw material for the member to be used for transportation and storage of LNG is obtd.

Description

【発明の詳細な説明】 この発明は液化天然ガス(以下LNGと記す)の輸送用
あるいは貯蔵用のタンクなどの溶接構造物に使用される
AQ −111基のアルミニウム合金に関し、特に極低
温特性の優れたAQ −Mll基溶接構造用アルミニウ
ム合金を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an AQ-111 aluminum alloy used for welded structures such as tanks for transporting or storing liquefied natural gas (hereinafter referred to as LNG), and particularly relates to an aluminum alloy with cryogenic properties. The present invention provides an excellent aluminum alloy for AQ-Mll based welded structures.

周知のように^Q−■基合金、特にJIS5083系合
金は溶接性、耐食性、低温特性などが優れ、安定した特
性を有するため、LNG輸送船用タンク、LNG貯蔵用
タンク、そのほか各種車両や船舶等の溶接構造物に広く
使用されている。最近ではこのような溶接構造物はます
ます大型化される傾向にあり、そのため溶接構造物に使
用される^Q−Ut+基合金材料としても厚肉のものが
要求されるようになり、例えばモス型LNGタンカーに
積載される球形タンクの赤道部には厚さ2001I1m
前後の厚板が使用されるようになっている。
As is well known, ^Q-■ based alloys, especially JIS5083 series alloys, have excellent weldability, corrosion resistance, low-temperature properties, etc., and have stable properties, so they are used for LNG transport ship tanks, LNG storage tanks, and various other vehicles and ships. Widely used in welded structures. Recently, such welded structures tend to become larger and larger, and as a result, thicker materials are required for the ^Q-Ut+ base alloy materials used in welded structures, such as moss. The equatorial part of the spherical tank loaded on a type LNG tanker has a thickness of 2001I1m.
Front and rear planks are now used.

ところで上述のようなLNG用の球形タンクの赤道部用
の厚肉材料としては、その構造上、素材の板厚方向の機
械的特性、すなわち延性、靭性、疲労特性が重視され、
特に極低温のLNGを収容する関係から、極低温におけ
るこれらの機械的特性が優れていることが要求される。
By the way, as a thick-walled material for the equatorial portion of a spherical tank for LNG as described above, due to its structure, emphasis is placed on the mechanical properties of the material in the thickness direction, that is, ductility, toughness, and fatigue properties.
In particular, since it accommodates cryogenic LNG, it is required that these mechanical properties be excellent at cryogenic temperatures.

この発明は現材料以上に極低温での板厚方向の機械的特
性が充分でしかもその安定性が高いAi!−Mll系の
溶接構造用アルミニウム合金を提供することを目的とす
るものである。
This invention has Ai! which has sufficient mechanical properties in the thickness direction at extremely low temperatures and is more stable than the current material! The object of the present invention is to provide an Mll-based aluminum alloy for welded structures.

本発明者等は上述の目的を達成すべく、八f! −)J
O系合金、特にJIS5083系のAl!−M(1−u
n系合金の厚板における極低温での板厚方向の機械的特
性を改善するべく種々実験・検討を行なったところ、こ
の種の合金の板厚方向の極低温での機械的特性には、内
部に晶出した第2相化合物が大きな影響を及ぼすことが
判明した。すなわち、前述のような厚肉の板材の製造、
特に大型構造物用の大寸法でしかも厚肉板材の製造にお
いては厚肉かつ大型の鋳塊が必要とされる。しかるにこ
の種の合金の鋳塊鋳造に広く使用されているDC鋳造法
においては鋳塊の肉厚が増すにつれて凝固時の冷却速度
が低下して、鋳塊の内部組織が粗大化し、晶出化合物も
粗大化する傾向がある。特にJIS5083系合金にお
いては八Q −Fe −kin系の共晶化合物および八
〇  IJil  Si系の共晶化合物が厚さ方向中央
部を挾む両側の部分、より正確には板厚をtとして厚さ
中央部を挾む両側t/8の位置近傍(すなわち表皮から
3t/8の位置近傍)で粗大化する傾向があり、このよ
うな粗大晶出物は板厚80+++m程度以上の厚板の場
合圧延においても充分に微細化、分散されない。またこ
のような晶出化合物は粒界近傍に分布する。したがって
粒界が脆化する極低温においては化合物による切欠き効
果でクラックの生成が促進されて粒界に沿って伝播する
ため破壊のエネルギーの低下を招き易い。特に板厚方向
の破壊では粒界が強く関与するため、極低温における強
度、延性、靭性は室温と比較して前述のような晶出化合
物の分布の影響を受は易い。実際に板厚方向の破断の位
置も化合物分布が粗大な領域、すなわち表皮から3t/
8の位置近傍に集中することが確認されている。一方疲
労クラックの伝播においても応力拡大係数の変動量ΔK
が高い領域では、主クラックと化合物で生成した微細ク
ラックとの連結によりクラックの伝播が促進されるため
、やはり化合物分布の影響は無視できない。
In order to achieve the above-mentioned purpose, the present inventors have 8f! −)J
O-based alloys, especially JIS5083-based Al! -M(1-u
We conducted various experiments and studies to improve the mechanical properties of thick plates of n-based alloys in the thickness direction at extremely low temperatures. It was found that the second phase compound crystallized inside had a great effect. In other words, the production of thick plate materials as mentioned above,
In particular, thick and large ingots are required in the production of large and thick plate materials for large structures. However, in the DC casting method that is widely used for casting ingots of this type of alloy, as the wall thickness of the ingot increases, the cooling rate during solidification decreases, the internal structure of the ingot becomes coarser, and crystallized compounds It also tends to become coarser. In particular, in JIS 5083 series alloys, 8Q -Fe -kin series eutectic compounds and 80 IJil Si series eutectic compounds are used in the parts on both sides sandwiching the central part in the thickness direction, more precisely, when the plate thickness is t, the thickness is There is a tendency for coarse crystallization to become coarse near the position of t/8 on both sides of the center (i.e., near the position of 3t/8 from the skin), and such coarse crystallized substances tend to become coarse in the case of plates with a thickness of approximately 80 + + + m or more. Even during rolling, it is not sufficiently refined and dispersed. Further, such crystallized compounds are distributed near grain boundaries. Therefore, at extremely low temperatures where the grain boundaries become brittle, crack formation is promoted by the notch effect of the compound and propagates along the grain boundaries, which tends to cause a decrease in fracture energy. In particular, since grain boundaries are strongly involved in fracture in the thickness direction, strength, ductility, and toughness at extremely low temperatures are more easily affected by the distribution of crystallized compounds as described above than at room temperature. In fact, the location of the fracture in the thickness direction is also an area where the compound distribution is coarse, that is, 3t/3t from the skin.
It has been confirmed that they are concentrated near position 8. On the other hand, in the propagation of fatigue cracks, the amount of variation in stress intensity factor ΔK
In the region where the γ is high, crack propagation is promoted by the connection between the main crack and the fine cracks generated by the compound, so the influence of the compound distribution cannot be ignored.

したがって極低温における板厚方向の機械的特性を向上
、安定化させるためには、素材中の晶出化合物の分布数
を減らすこと、および晶出化合物−3= の微細化、分散化を図ることが望ましいが、厚板の場合
には総圧延率で制約があるため、前述のように微細化、
分散化を圧延以降の工程で図ることは困難である。そこ
で本発明者等は素材の組成面から共晶化合物の主要成分
である1」n、FeXSiの量を制限することにより晶
出化合物の分布量、大きさを抑制することを考え、さら
に詳細な研究を重ねた結果、FeおよびMnの合計量を
0.80重量%未満、[e単独を0.20重量%未満、
Siを0.10%未満に抑制することによって極低温に
おける機械的特性を向上させ得ることを見出し、この発
明をなすに至ったのである。
Therefore, in order to improve and stabilize the mechanical properties in the thickness direction at extremely low temperatures, it is necessary to reduce the number of crystallized compounds distributed in the material, and to make the crystallized compounds -3= finer and more dispersed. However, in the case of thick plates, there is a restriction on the total rolling rate, so as mentioned above, refinement,
It is difficult to achieve dispersion in processes after rolling. Therefore, the present inventors considered suppressing the distribution amount and size of the crystallized compound by limiting the amount of 1"n, FeXSi, which is the main component of the eutectic compound, from the viewpoint of the composition of the material. As a result of repeated research, the total amount of Fe and Mn was less than 0.80% by weight, [e alone was less than 0.20% by weight,
It was discovered that mechanical properties at extremely low temperatures can be improved by suppressing Si to less than 0.10%, and this invention was achieved.

したがってこの発明の溶接構造用アルミニウム合金は、
1114〜5.5重量%、Ijn O,4〜0.80重
量%、Qj 0.05〜0.35重暴%、−0,005
〜0.2重量%を含有しかつ残部不可避的不純物および
八Qよりなるアルミニウム合金において、funと不可
避的不純物としてのFeとの合計量を0.80重量%未
満、Feの単独量を0.20重量%未満、不可避的不純
物としてのSiを0.10重量%未満にそれぞれ抑制し
4− たことを特徴とするものである。
Therefore, the aluminum alloy for welded structures of this invention is
1114-5.5% by weight, Ijn O, 4-0.80% by weight, Qj 0.05-0.35% by weight, -0,005
In an aluminum alloy containing ~0.2% by weight and the remainder consisting of unavoidable impurities and 8Q, the total amount of fun and Fe as unavoidable impurities is less than 0.80% by weight, and the individual amount of Fe is 0.2% by weight. It is characterized by suppressing Si as an unavoidable impurity to less than 20% by weight and less than 0.10% by weight.

以下この発明をさらに詳細に説明する。This invention will be explained in more detail below.

まず合金の成分限定理由について説明する。First, the reason for limiting the alloy components will be explained.

unはこの発明で対象とする5083系合金に必須の成
分であって、強度向上およびFeによる耐食性低下防止
に役立つが、0.40 !I%未満では充分な強度が得
られない。しかしながらUnが0.80重量%を越えれ
ば化合物の粗大化が顕著となるから、0.40〜0.8
0重開気の範囲とする。
Un is an essential component of the 5083 series alloy targeted by this invention, and is useful for improving strength and preventing a decrease in corrosion resistance due to Fe, but 0.40! If it is less than I%, sufficient strength cannot be obtained. However, if Un exceeds 0.80% by weight, the coarsening of the compound will become noticeable, so 0.40 to 0.8
The range is 0-fold open air.

Siはこの種の合金に通常は不可避的不純物として含ま
れるものであるが、その含有量が0.10 m愉%以上
となればIjl12Siの晶出化合物が多くなって材料
の均一性の面で好ましくなく、特に極低温での板厚方向
の機械的特性の安定化および向上を図る上で好ましくな
く、したがって0.10臣ft%未満に限定した。
Si is normally included as an unavoidable impurity in this type of alloy, but if its content exceeds 0.10 mμ%, the amount of Ijl12Si crystallized compounds increases, causing problems in terms of material uniformity. It is not preferable, especially in terms of stabilizing and improving the mechanical properties in the thickness direction at extremely low temperatures, and therefore is limited to less than 0.10 ft%.

Feはkinと八Q −re−勧n系の化合物を形成す
る。この化合物はこの発明で対象とする系の合金の第2
相化合物の大半を占めるため、Mnff1とのバランス
を考慮してその門を制御する必要がある。本発明者等は
詳細な実験の結果、[eの単独量を0.20 重量%未
満に抑制すると同時に「eと)4nの合計量を0.80
重量%未満に抑制することによって第2相化合物の晶出
量およびその大きさを、これらが極低温における板厚方
向の機械的特性に悪影響を及ぼさない程度に制御し得る
ことを見出した。したがって「eを0.20重量%未満
、Fe + unの合計量を0.80重母%未満に制限
した。
Fe forms a compound of the 8Q-re-kin type with kin. This compound is the second alloy of the system targeted by this invention.
Since it occupies most of the phase compounds, it is necessary to control its gate by considering the balance with Mnff1. As a result of detailed experiments, the present inventors found that while suppressing the individual amount of e to less than 0.20% by weight, the total amount of e and 4n was reduced to 0.80% by weight.
It has been found that by suppressing the amount of crystallization of the second phase compound to less than % by weight, the amount and size of the second phase compound can be controlled to the extent that they do not adversely affect the mechanical properties in the thickness direction at extremely low temperatures. Therefore, "e was limited to less than 0.20% by weight, and the total amount of Fe + un was limited to less than 0.80% by weight.

このほかの成分は従来の5083系の合金とほぼ同(シ
である。すなわちvgは5083系合金に必須の成分で
あって加工効果による強度向上の役割を果たすが、4.
0重量%未満では充分な強度が得られず、一方4.81
ifi%を越えれば加工性が著しく低下するから、4.
0〜4.8重量%とする。またOrはMnと同様に強度
向上および耐食性低下防止に役立つが、0.05重量%
未満ではそれらの効果が期待できず、一方0.35重量
%を越えれば延性を損うから、0.05〜0.35重量
%とする。Tiは鋳塊組織の微細化及び晶出化合物の微
細化、分散化に寄与するが、o、oos重量%未満では
その効果が期待できず、一方0.2重量%を越えればコ
スト面から、また鋳造性の面から好ましくないから、0
.005〜0.20重量%とした。さらにこの発明の合
金においては不可避的不純物として、前述の如くFe、
Sia′)ほか、Cuが含まれることがある。Cuは可
及的に少ないことが望ましいが、0.15 重量%まで
は許容される。Cuが0.15重量%を越えれば耐食性
が害される。
The other components are almost the same as those of conventional 5083 series alloys. In other words, VG is an essential component of 5083 series alloys and plays a role in improving strength through processing effects, but 4.
If it is less than 0% by weight, sufficient strength cannot be obtained;
If it exceeds ifi%, the workability will be significantly reduced, so 4.
0 to 4.8% by weight. Also, like Mn, Or is useful for improving strength and preventing deterioration of corrosion resistance, but 0.05% by weight
If it is less than 0.35% by weight, these effects cannot be expected, while if it exceeds 0.35% by weight, ductility will be impaired, so the content is set at 0.05 to 0.35% by weight. Ti contributes to the refinement of the ingot structure and the refinement and dispersion of crystallized compounds, but if it is less than o, oos weight %, no such effect can be expected, while if it exceeds 0.2 weight %, from a cost perspective, Also, since it is unfavorable from the viewpoint of castability, 0
.. 0.005 to 0.20% by weight. Furthermore, in the alloy of the present invention, as mentioned above, Fe,
Sia') and Cu may be included. It is desirable that the amount of Cu be as low as possible, but up to 0.15% by weight is permissible. If Cu exceeds 0.15% by weight, corrosion resistance will be impaired.

上述のようにFe、Si、IJnを抑制することによっ
て、第2相化合物の分散晶出量および大きさを轡低温に
おける板厚方向の機械的特性に実質的に影響がない程度
に制御することができるのであるが、第2相化合物の晶
出量および大きさは具体的には次の条件を満足させるこ
とが望ましい。すなわち、分布量については、圧延方向
に垂直な断面における第2相化合物の晶出量がその断面
のいずれの部分においても面積率で1.6%以下となる
ことが望ましい。ここで面積率で1.6%以下とは、化
合物が300個程程度250〜350個)認められる視
野で観察した場合における視野面積に対する視7− 郡内の総晶出化合物面積の百分率で1.6以下であるこ
とを意味する。なお寅際には前述のように板厚中心から
両側t/8の位置付近の晶出量が最も多いから、その位
置で観察した結果が面積率で1.6%以下であれば充分
である。一方第2相化合物の大きさについては、最大径
100JJll1以上の化合物の数が最大径1声以上の
全化合物数の0.3%以下とすることが望ましい。この
場合も板厚中心から両側t/8の位置付近の化合物が最
も粗大となるから、その位置で観察して100ull+
以上の化合物数が0.3%以下であれば充分である。
By suppressing Fe, Si, and IJn as described above, the amount and size of the second phase compound to be dispersed and crystallized can be controlled to such an extent that the mechanical properties in the thickness direction at low temperatures are not substantially affected. Specifically, it is desirable that the amount and size of crystallization of the second phase compound satisfy the following conditions. That is, regarding the amount of distribution, it is desirable that the amount of crystallization of the second phase compound in the cross section perpendicular to the rolling direction is 1.6% or less in terms of area ratio in any part of the cross section. Here, 1.6% or less in area ratio means 1.6% or less as a percentage of the area of the total crystallized compounds in the area when observed in a visual field where about 300 compounds (250 to 350 compounds) can be observed. .6 or less. In addition, as mentioned above, the amount of crystallization is highest near the position t/8 on both sides from the center of the plate thickness, so it is sufficient if the result observed at that position is 1.6% or less in terms of area ratio. . On the other hand, regarding the size of the second phase compounds, it is desirable that the number of compounds with a maximum diameter of 100JJll1 or more is 0.3% or less of the total number of compounds with a maximum diameter of 1 note or more. In this case as well, the compound near the position t/8 on both sides from the center of the plate thickness is the coarsest, so when observed at that position, 100ul+
It is sufficient if the number of the above compounds is 0.3% or less.

なお前述のようにFe、Siの含有量を蜆制するために
は、Δg地金等の溶解原料として純度の高いものを選択
して使用すれば良い。
As mentioned above, in order to control the content of Fe and Si, it is sufficient to select and use a material with high purity as a melting raw material such as Δg metal.

以下に実施例に基いて更に具体的に説明する。A more specific explanation will be given below based on Examples.

実施例 第1表の試料番号1〜9に示すような成分を含有する厚
さ500IIImに1.上の大型鋳塊をDC鋳造によっ
て得、これを510〜540℃において10〜15時間
加熱後熱間圧延して厚さ200 a+mの超8− 厚板を得た。得られた超厚板の第2相化合物の分散状況
および室温、極低温(−196℃)における板厚方向の
機械的性■を調べた結果を第2表、第3表に示す。なお
第2表における第2相化合物分散状況は、表皮から3(
/8の位M(板厚中央から両側へt/8の位置)の晶出
量が最も多くかつ最も粗大であってしかも極低温の引張
試験の破断位置もその付近に集中するところから、圧延
方向と垂直な断面における表皮から3じ′8の位置で化
合物が300程度認められる視野を5視野観察し、その
平均値で表記した。
1 to a thickness of 500 m containing the components shown in sample numbers 1 to 9 in Table 1. The above large ingot was obtained by DC casting, heated at 510 to 540°C for 10 to 15 hours, and then hot rolled to obtain a super 8-thick plate with a thickness of 200 a+m. Tables 2 and 3 show the results of examining the dispersion state of the second phase compound of the obtained ultra-thick plate and the mechanical properties (1) in the thickness direction at room temperature and at an extremely low temperature (-196°C). Note that the dispersion status of the second phase compound in Table 2 is from the epidermis to 3 (
The amount of crystallization at the /8 position M (position t/8 from the center of the plate thickness to both sides) is the largest and coarsest, and the fracture position in the ultra-low temperature tensile test is also concentrated around this area, so it is considered that rolling Five visual fields were observed in which approximately 300 compounds were observed at a position 3'8 from the epidermis in a cross section perpendicular to the direction, and the average value was expressed.

これらの表から明らかなように、Feが0.20重量%
以上の素材(試料番号7〜9 ) 、Siが0.10重
量%以上の素材(試料番号8)においては、第2相化合
物の晶出mが多くしかも粗大化合物の割合が高く、これ
らの場合には極低温での延性(伸びろ)が室温の場合よ
りも低い。これはアルミニウム材料本来の特性に反する
ものであり、粗大な第2相化合物が影響しているものと
思われる。またFeが0.20重曾%未満でしかもSi
が0.10重量%未満であるがFe +1.In合計量
が0.80重量%以上の素材(試料番号6)の場合、粗
大化合物の割合は依然として高く、極低温での特性も室
温と同程度であるが、未だ充分ではない。
As is clear from these tables, Fe is 0.20% by weight
In the above materials (sample numbers 7 to 9) and the material containing 0.10% by weight or more of Si (sample number 8), the crystallization of second phase compounds is large and the proportion of coarse compounds is high. The ductility (elongation) at cryogenic temperatures is lower than at room temperature. This is contrary to the inherent characteristics of the aluminum material, and is thought to be affected by the coarse second phase compound. In addition, Fe is less than 0.20% and Si
is less than 0.10% by weight, but Fe +1. In the case of a material with a total In content of 0.80% by weight or more (sample number 6), the proportion of coarse compounds is still high, and the properties at extremely low temperatures are comparable to those at room temperature, but they are still not sufficient.

一方、Fe O,20噴I%未満、9i 0,10重道
%未満でしかもFe、Llnの合計量が0.80重量%
未満の素材(試料番号1〜5)では第2相化合物の晶出
固が少なくしかも粗大化合物の割合も少なく、この場合
には極低)品での延性が室温での延性よりも格段に高く
なっており、アルミニウム材料本来の特性が確保されて
いることが明らかである。そして特にFed、10重量
%未満でしかもSi O,10重量%未満の場合(試料
番号1〜2)には、第2相化合物の晶出凹が極めて少な
くしかも粗大化合物の割合も著しく少なく、この場合極
低温での機械的特性、特に延性が著しく優れていること
が明らかである。
On the other hand, Fe O, less than 20% by weight, less than 9i 0,10% by weight, and the total amount of Fe and Lln is 0.80% by weight.
In the materials (sample numbers 1 to 5), the crystallization of the second phase compound is small, and the proportion of coarse compounds is also small (in this case, extremely low), and the ductility of the product is much higher than that at room temperature. It is clear that the original properties of aluminum material are maintained. In particular, when Fed is less than 10% by weight and SiO is less than 10% by weight (sample numbers 1 to 2), the crystallization depressions of the second phase compound are extremely small and the proportion of coarse compounds is also extremely small. It is clear that the mechanical properties, especially the ductility, at extremely low temperatures are significantly superior.

以上の各試料1〜9においてFe、Ijn量が板厚方向
延性に及ぼす影響を第1図に示す。第1図においてO印
は極低温における伸びが空温における伸びよりも優れて
いる場合を示し、・印は極低温における伸びが室温にお
ける伸び以下の場合を示す。
FIG. 1 shows the influence of the Fe and Ijn contents on the ductility in the thickness direction in each of the above samples 1 to 9. In FIG. 1, the O mark indicates that the elongation at extremely low temperatures is superior to the elongation at air temperature, and the * mark indicates that the elongation at extremely low temperatures is less than the elongation at room temperature.

第1図から、極低温における延性を良好にするためには
、Fe 2.0%未満、Fe + un O,80%未
満の両者の条件が必要となることが明らかである。
From FIG. 1, it is clear that in order to improve the ductility at extremely low temperatures, both conditions of less than 2.0% Fe and less than 80% Fe + un O are required.

さらに上記各試料のうち、試料番号2.4.6.9につ
いて一196℃の極低温における疲労クラック伝播試験
を行ない、応力拡大係数の変動分Δに=40ko・1I
llIl−舌における1サイクル当りの疲労クラック伝
播長さを調べたところ、第4表に示す結果が得られた。
Furthermore, among the above samples, sample number 2.4.6.9 was subjected to a fatigue crack propagation test at an extremely low temperature of -196°C, and the variation Δ in the stress intensity factor was 40ko・1I.
When the fatigue crack propagation length per cycle in llIl-tongue was investigated, the results shown in Table 4 were obtained.

但し疲労クラック伝播試験片は、ASTM規格(E39
9&647)で示されたS−TのCT試験片、即ち切欠
を板厚方向に直角な面内に圧延方向と直角方向に入れた
CT試験片で且つその切欠位置を表皮から3t/8の位
置としたものであり、又応力比Rは0.5とした。
However, the fatigue crack propagation test piece is based on ASTM standard (E39
9 & 647), that is, a CT test piece in which the notch was placed in a plane perpendicular to the plate thickness direction in a direction perpendicular to the rolling direction, and the notch position was 3t/8 from the skin. The stress ratio R was 0.5.

第4表から、この発明の成分範囲内の試料2.4は、「
e+すn合計量が過剰な試料6、Fe、Siがともに過
剰な試料9と比較して、疲労クラックの伝播に対する抵
抗が高いことが明らかである。
From Table 4, sample 2.4 within the composition range of this invention is “
It is clear that the resistance to the propagation of fatigue cracks is higher than that of sample 6 in which the total amount of e+sn is excessive and sample 9 in which both Fe and Si are excessive.

以上の説明で明らかなようにこの発明の溶接構造用アル
ミニウム合金は、厚さ8Q++u++程度以上の厚板に
おいて極低温での機械的特性、特に延性や疲労クラック
伝播に対する抵抗が高く、したがってLNG用のタンク
等、各種大型構造物に使用した場合に現材料以上に安全
性の高い材料である。
As is clear from the above description, the aluminum alloy for welded structures of the present invention has high mechanical properties at extremely low temperatures, especially ductility and resistance to fatigue crack propagation, in thick plates with a thickness of about 8Q++u++ or more, and therefore is suitable for LNG use. This material is safer than current materials when used in various large structures such as tanks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は素材中のFe、νn含有量が板厚方向延性に及
ぼす影響を示す相関図である。 出願人  スカイアルミニウム株式会社代理人  弁理
士 豊 1)武 久 (ほか1名) 15− 第1図 Fe含At  (更1%)
FIG. 1 is a correlation diagram showing the influence of the Fe and νn contents in the material on the ductility in the thickness direction. Applicant Sky Aluminum Co., Ltd. Representative Patent Attorney Yutaka 1) Hisashi Take (and 1 other person) 15- Figure 1 Fe-containing At (additional 1%)

Claims (1)

【特許請求の範囲】[Claims] 1g4〜5.5 重1−4%、 Mn  O,4〜 0
.80  重量%、 Oro、05〜0.35重量%、
7i 0.005〜0.2重量%を含有しかつ残部不可
避的不純物および八Qよりなる溶接構造用アルミニウム
合金において、unと不純物成分としての「eとの合計
含有量を0.80重最%未満、「eの単独含有口を0.
20重量%未満、不純物成分としての81の含有量を0
.10重、 量%未満にそれぞれ規制したことを特徴と
する溶接構造用アルミニウム合金。
1g4-5.5 weight 1-4%, MnO, 4-0
.. 80% by weight, Oro, 05-0.35% by weight,
In an aluminum alloy for welded structures containing 0.005 to 0.2% by weight of 7i and the remainder consisting of unavoidable impurities and 8Q, the total content of un and e as an impurity component is 0.80% by weight. less than 0.
Less than 20% by weight, the content of 81 as an impurity component is 0
.. An aluminum alloy for welded structures characterized by being regulated to less than 10% by weight and less than 10% by weight.
JP5698983A 1983-03-31 1983-03-31 Aluminum alloy for welded structure Granted JPS59182940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5698983A JPS59182940A (en) 1983-03-31 1983-03-31 Aluminum alloy for welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5698983A JPS59182940A (en) 1983-03-31 1983-03-31 Aluminum alloy for welded structure

Publications (2)

Publication Number Publication Date
JPS59182940A true JPS59182940A (en) 1984-10-17
JPS6242986B2 JPS6242986B2 (en) 1987-09-10

Family

ID=13042899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5698983A Granted JPS59182940A (en) 1983-03-31 1983-03-31 Aluminum alloy for welded structure

Country Status (1)

Country Link
JP (1) JPS59182940A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070672A (en) * 2005-09-06 2007-03-22 Furukawa Sky Kk Method for producing aluminum alloy thick plate having excellent fatigue property

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216786A (en) * 1988-02-24 1989-08-30 Toshiba Corp Horizontal multiple joint robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070672A (en) * 2005-09-06 2007-03-22 Furukawa Sky Kk Method for producing aluminum alloy thick plate having excellent fatigue property

Also Published As

Publication number Publication date
JPS6242986B2 (en) 1987-09-10

Similar Documents

Publication Publication Date Title
US6139653A (en) Aluminum-magnesium-scandium alloys with zinc and copper
EP1902150B1 (en) High strength aluminum alloys and process for making the same
KR100192936B1 (en) Ultra high strength aluminum-base alloys
RU2109835C1 (en) Low-density aluminum-based alloy and material of manufacturing product therefrom
JP3194742B2 (en) Improved lithium aluminum alloy system
JP2002543289A (en) Peel-resistant aluminum-magnesium alloy
JPH0559477A (en) Aluminum alloy for forging
PL193871B1 (en) Aluminium alloy casting of cylinder head and cylinder blocks as well as method of making such casting
JPH0372147B2 (en)
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
WO2005003398A2 (en) High strength aluminum alloys and process for making the same
EP1078109B1 (en) Formable, high strength aluminium-magnesium alloy material for application in welded structures
US20030145912A1 (en) Formable, high strength aluminium-magnesium alloy material for application in welded structures
CN111850436B (en) Heat treatment method for simultaneously improving strength of high-strength and high-toughness aluminum alloy matrix and strength of welded joint
US2985530A (en) Metallurgy
JP2009197249A (en) Aluminum alloy for high-pressure hydrogen gas and aluminum alloy clad material for high-pressure hydrogen gas
JPS59182940A (en) Aluminum alloy for welded structure
JPH07145440A (en) Aluminum alloy forging stock
JP2663078B2 (en) Aluminum alloy for T6 treatment with stable artificial aging
US20080056931A1 (en) Aluminum Alloy And Brazing Sheet Manufactured Therefrom
JP3684245B2 (en) Aluminum alloy for cold forging
JPH0911721A (en) Torque rod and manufacture thereof
JPH01312043A (en) Manufacture of boron-containing aluminum alloy
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPS63161136A (en) Aluminum alloy for bomb