JPS59182678A - Image converting element - Google Patents

Image converting element

Info

Publication number
JPS59182678A
JPS59182678A JP58057553A JP5755383A JPS59182678A JP S59182678 A JPS59182678 A JP S59182678A JP 58057553 A JP58057553 A JP 58057553A JP 5755383 A JP5755383 A JP 5755383A JP S59182678 A JPS59182678 A JP S59182678A
Authority
JP
Japan
Prior art keywords
elastic wave
electrode
thin film
slit
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58057553A
Other languages
Japanese (ja)
Inventor
Kenzo Ochi
謙三 黄地
Ritsuo Inaba
律夫 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58057553A priority Critical patent/JPS59182678A/en
Publication of JPS59182678A publication Critical patent/JPS59182678A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Light Receiving Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To make the performance of an image converting element high by making an extracting electrode of the image converting element as a slit form and arranging the electrode with a gradient in the direction of surface acoustic wave propagation so as to apply sufficient surface acoustic wave into a photoconductive film. CONSTITUTION:Interdigital electrodes 11, 12 are formed on the surface of a piezoelectric base plate 13 being a surface acoustic wave propagating medium. Further, the photoconductive thin film 14 is formed to the base plate 13 via an insulation layer and heat-treated. The slit-shaped extracting electrodes 25, 26 are separated to form a thin film 14 with an electrode gap 27. The slit-shaped extracting electrodes 25, 26 are arranged while being cut off with each other by the electrode gap 27 in an angle theta with the direction of elastic wave propagation. Then, the performance of the image converting element is made high by applying sufficient surface acoustic wave in the inside of the thin film 14.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光学イメージ変換素子に関するものである。特
に、光学イメージを骨性波を用いて処理する変換素子の
構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to optical image conversion elements. In particular, it relates to the configuration of a conversion element that processes an optical image using bone waves.

従来例の構成とその問題点 第1図に従来の光学イメージ変換素子の構造を示す。同
図において、11.12は圧電性基板13上に設けられ
た弾性波を送信するためのインターディジタル電極、1
4は圧電性基板13上に設けられた光導電性薄膜を示し
、15.16は光導電性薄膜14上に設けられた電極を
示す。次に動作原理を簡単に説明する。まず光導電性薄
膜14上に光学像を投影する。取り出し電極15.16
に直流バイヤスを印加する。このような状態において、
インターディジタル電極11.12にfI * f2な
る周波数の電圧を印加し、弾性波を発生きせ、光導電性
薄膜14に送信すると、取り出し電極15.16間に周
波数(r、+fz)の電流が光学像に依存して流れる。
Structure of a conventional example and its problems FIG. 1 shows the structure of a conventional optical image conversion element. In the same figure, 11 and 12 are interdigital electrodes for transmitting elastic waves provided on the piezoelectric substrate 13;
4 indicates a photoconductive thin film provided on the piezoelectric substrate 13, and 15.16 indicates an electrode provided on the photoconductive thin film 14. Next, the operating principle will be briefly explained. First, an optical image is projected onto the photoconductive thin film 14. Extraction electrode 15.16
Apply DC bias to. In such a situation,
When a voltage with a frequency fI * f2 is applied to the interdigital electrodes 11.12 to generate an elastic wave and transmitted to the photoconductive thin film 14, a current with a frequency (r, +fz) is optically generated between the extraction electrodes 15.16. It flows depending on the image.

このような従来のイメージ変換素子において、電極16
.16間の間隔が広いだめ、光導電性薄膜14の直流抵
抗が高く、充分な直流電流を流すことが困難であった。
In such a conventional image conversion element, the electrode 16
.. Due to the wide spacing between the photoconductive thin films 14, the DC resistance of the photoconductive thin film 14 was high, making it difficult to flow a sufficient DC current.

そのためS/N比が悪かった。Therefore, the S/N ratio was poor.

また、光学像により光導電性薄膜14に送信された弾性
波が大幅に減衰し、周波数(fll+f2)  なる出
力電流が非常に小さいという欠点かあった。
Another drawback was that the elastic wave transmitted to the photoconductive thin film 14 by the optical image was significantly attenuated, and the output current at the frequency (fll+f2) was extremely small.

すなわち、この種のイメージ変換素子においては、半導
体(光導電体)中のキャリアと弾性波との相互作用を用
いるため、上記半導体中に充分な弾性波を供給すること
が必要であるが、従来の素子構造においては、充分な弾
性波を供給することが困難であり、イメージ変換のS/
N比も非常にわるかった。
In other words, in this type of image conversion element, since the interaction between carriers in the semiconductor (photoconductor) and elastic waves is used, it is necessary to supply sufficient elastic waves into the semiconductor. In this element structure, it is difficult to supply sufficient elastic waves, and the S/
The N ratio was also very poor.

発明の目的 本発明の目的は、従来の素子が有していた欠点を除去し
た、直流抵抗が低く、光学像のS/N比が高く、弾性波
の減衰の少ない高性能なイメージ変換素子の提供にある
OBJECTS OF THE INVENTION The object of the present invention is to provide a high-performance image conversion element with low direct current resistance, high S/N ratio of optical images, and little attenuation of elastic waves, which eliminates the drawbacks of conventional elements. On offer.

発明の構成 本発明は、弾性波伝搬媒体となる基板と、上記基板上に
設けられた弾性波発生用の電極と、上記基板上の弾性波
伝搬部分上に設けられた光導電性薄膜と、上記光導電性
薄膜に設けられた取り出し電極とを有するイメージ変換
素子において、上記取り出し電極をスリット状電極とし
て光導電性薄膜の直流抵抗を低くし、かつ、スリットの
長手方向を弾性波の伝搬方向に対して傾けることにより
、弾性波の伝搬損失の小ざい高性能のイメージ変換素子
を実現するものである。ぐらに、スリット状電極の弾性
波の伝搬方向に垂直な方向の電極ギャップを使用するづ
ψ性波の実効波長以下にすることにより光学像のS/N
比の向上を実現するものである。
Structure of the Invention The present invention includes a substrate serving as an elastic wave propagation medium, an electrode for generating elastic waves provided on the substrate, and a photoconductive thin film provided on an elastic wave propagation portion of the substrate. In the image conversion element having a take-out electrode provided on the photoconductive thin film, the take-out electrode is a slit-shaped electrode to lower the direct current resistance of the photoconductive thin film, and the longitudinal direction of the slit is the propagation direction of the elastic wave. By tilting it relative to the surface, a high-performance image conversion element with small propagation loss of elastic waves can be realized. Furthermore, by using the electrode gap in the direction perpendicular to the propagation direction of the elastic wave of the slit-shaped electrode, the S/N of the optical image can be reduced by making it less than the effective wavelength of the elastic wave.
This is to improve the ratio.

すなわち、取り出し電極をギャップの狭いスリット状の
電極とすることにより、直流抵抗を低くし、直流電流が
大きくとれるため、イメージ変換素子のS/N比の向上
を実現するものである。
That is, by forming the extraction electrode into a slit-shaped electrode with a narrow gap, the direct current resistance can be lowered and a large direct current can be obtained, thereby realizing an improvement in the S/N ratio of the image conversion element.

さらに、電極ギャップを、弾性波の伝搬方向に対して傾
斜させて配置することにより、弾性波の伝搬損失を低減
し、充分な弾性波を光導電性薄膜の有効幅全面にわたっ
て供給するものである。すなわち、電極ギヤツブにおい
て、弾性波は、光学イメージにより、光導電性薄膜中に
誘起された光電子と相互作用をする結果、その弾性エネ
ルギーを失なう。そのため電極ギャップが、弾性波の伝
搬方向と一致している場合、光導電性薄膜の有効幅全体
にわたって、すなわち弾性波伝搬方向全体にわたって、
充分な弾性波を供給することか困難となる。しだがって
、本発明にもとつく、スリット状の取り出し電極を弾性
波の伝搬方向に対して斜めに設けることにより、光導電
性膜中に充分な弾性波を有効幅全体に供給することがで
き、高性能なイメージ変換素子を実現することができる
Furthermore, by arranging the electrode gap at an angle with respect to the propagation direction of the elastic wave, the propagation loss of the elastic wave is reduced and sufficient elastic waves are supplied over the entire effective width of the photoconductive thin film. . That is, in the electrode gear, the elastic waves lose their elastic energy as a result of interacting with photoelectrons induced in the photoconductive thin film by the optical image. Therefore, when the electrode gap coincides with the propagation direction of the elastic wave, over the entire effective width of the photoconductive thin film, that is, over the entire elastic wave propagation direction,
It becomes difficult to supply sufficient elastic waves. Therefore, according to the present invention, by providing the slit-shaped extraction electrode obliquely to the propagation direction of the elastic wave, sufficient elastic waves can be supplied to the entire effective width of the photoconductive film. This makes it possible to realize a high-performance image conversion element.

すなわち、本発明にもとづくスリット状電極の場合、電
極ギャップ部分以外の所は光学イメージがある場合にお
いても相互作用することがないため弾性波のエネルギー
減衰力になぐ、光導電性薄膜全体に充分な弾性波を供給
することができる。
In other words, in the case of the slit-shaped electrode according to the present invention, there is no interaction in areas other than the electrode gap area even when there is an optical image, so there is sufficient space for the entire photoconductive thin film to overcome the energy attenuation force of the elastic wave. It can supply elastic waves.

実施例の説明 第2図を用いて、本発明にもとづくイメージ変換素子の
一実捲例を説明する。
DESCRIPTION OF EMBODIMENTS A practical example of an image conversion element according to the present invention will be described with reference to FIG.

基板13として、L i N b O3単結晶板を用い
た。
As the substrate 13, a LiNbO3 single crystal plate was used.

面方位は128°R−Y面とし、弾性波の伝搬方向はX
方向とした。基板を洗浄后、13の表面にマグネトロヌ
バノタ法により酸化珪素からなる絶縁層を0.05〜0
.15μm形成し、その後真空蒸着によりCdS  を
主成分とする光導電性薄膜14を形成した。膜厚(は約
0,6μm程度であった。この際、上記絶縁層があれば
、上記光導電性薄膜140基板13への接着強度がいち
じるしく向上することを発明者らは確認した。光導電性
薄膜14を形成した後、粉末法によI)45o〜550
 ’Cで熱処理を行ない、この光導電性薄膜14を活性
化した。弾性波送信用の電極11.12はアルミニウム
を用いて、通常のホトリソグラフィー技術により形成し
た。電極11..12の有効幅は2m7〃で企った。す
々わち、弾性波の有効幅が2 marであるということ
である。スリット状電極25.26はインジウムを用い
て形成した。光導電性薄膜14の弾性波伝搬方向の長さ
は2’ Ommであった。すなわち、光導電性薄膜の有
効幅が20mmであるということである。電極ギャップ
27は、100μmであった。本実柿例においては、弾
性波の伝搬方向とスリット状電極とのなす傾き28は約
5.7度であった。また、電極ギャップの弾性波伝搬方
向の長さは約1.6mmであり、光導電性薄膜の有効幅
20問に比べて殉以下であった。
The plane orientation is 128°R-Y plane, and the propagation direction of the elastic wave is X.
direction. After cleaning the substrate, an insulating layer made of silicon oxide of 0.05 to 0.0
.. A photoconductive thin film 14 containing CdS as a main component was formed by vacuum evaporation. The film thickness (was approximately 0.6 μm. At this time, the inventors confirmed that the presence of the insulating layer significantly improves the adhesive strength of the photoconductive thin film 140 to the substrate 13. After forming the transparent thin film 14, powder method is used to form the 450 to 550
The photoconductive thin film 14 was activated by heat treatment with 'C. The electrodes 11 and 12 for transmitting elastic waves were formed using aluminum by ordinary photolithography technology. Electrode 11. .. The effective width of 12 was planned to be 2m7. That is, the effective width of the elastic wave is 2 mar. The slit-shaped electrodes 25 and 26 were formed using indium. The length of the photoconductive thin film 14 in the direction of elastic wave propagation was 2' Omm. That is, the effective width of the photoconductive thin film is 20 mm. The electrode gap 27 was 100 μm. In this persimmon example, the inclination 28 between the propagation direction of the elastic wave and the slit-shaped electrode was approximately 5.7 degrees. Further, the length of the electrode gap in the elastic wave propagation direction was about 1.6 mm, which was less than 1.6 mm compared to the effective width of the photoconductive thin film.

このようにして作製した本発明にもとつくイメージ変換
素子の弾性波特性を測定した結果を第3図に示す。同図
において、縦軸は電極11または同12より弾性波を送
信し、電極12または同11により受信したときの挿入
損失を示す。横軸は光の照度を示す。実線は、本発明に
もとつくイメージ変換素子の特性を示す。破線は従来の
電極ギャップ2だmのイメージ変換素子の結果を示す。
FIG. 3 shows the results of measuring the elastic wave characteristics of the image conversion element based on the present invention produced in this way. In the figure, the vertical axis represents the insertion loss when an elastic wave is transmitted from the electrode 11 or 12 and received by the electrode 12 or 11. The horizontal axis shows the illuminance of light. The solid line shows the characteristics of the image conversion element according to the invention. The broken line shows the results of the conventional image conversion element with an electrode gap of 2 m.

図より、本発明にもとづく素子においては、挿入損失が
従来のものに比べて大幅に減少し、特性がいちじるしく
向上していることがわかる。すなわち、本発明にもとづ
き、スリット状の電極を形成した素子においては、充分
な弾性エネルギーを光導電性膜内に供給できることを示
している。
From the figure, it can be seen that in the device based on the present invention, the insertion loss is significantly reduced compared to the conventional device, and the characteristics are significantly improved. That is, it is shown that sufficient elastic energy can be supplied into the photoconductive film in an element in which a slit-shaped electrode is formed based on the present invention.

第4図に、本発明にもとつく光学イメージ変換素子で得
られた光学イメージによる出力電圧特性を示す。横軸は
インカイジタル電% 11.12より送信した高周波電
力の周波数差(Δf:f2−f。
FIG. 4 shows the output voltage characteristics according to the optical image obtained by the optical image conversion element based on the present invention. The horizontal axis is the frequency difference (Δf: f2-f) of the high-frequency power transmitted from the in-digital power % 11.12.

を示す。ここで、f、は37mm2とし、f2は374
1.5MH2の範囲で変化させた。縦軸は取り出し@極
21,22に誘起された、’ (f、 +f2)  な
る周波数成分の出力電圧を示す。なお、光学イメージ(
d幅3.7mのスリット状であった。光の照度は100
〜3001x程度であった。2o1x以上の照度でも、
充分な出力か得られた。上述から明らかなように、帯域
が4.5 MHzであり、したがって実効弾性波の最小
波長はfλ−υより、伝搬速度v−3980m/秒とし
て、約0.9mmであった。
shows. Here, f is 37 mm2, and f2 is 374
It was varied within a range of 1.5MH2. The vertical axis indicates the output voltage of the frequency component ' (f, +f2) induced in the extraction@poles 21 and 22. In addition, the optical image (
It was in the shape of a slit with a width of 3.7 m. The illuminance of the light is 100
It was about ~3001x. Even with illuminance of 2o1x or more,
I got enough output. As is clear from the above, the band was 4.5 MHz, and therefore the minimum wavelength of the effective elastic wave was approximately 0.9 mm from fλ-υ, assuming a propagation speed of v-3980 m/sec.

電極ギャップを上記実効弾性波の最小波長よりも短く形
成しておけば充分なS/N比が得られるものと考えられ
る。
It is considered that a sufficient S/N ratio can be obtained by making the electrode gap shorter than the minimum wavelength of the effective elastic wave.

この理由は、取り出し電極のギャップが実効弾性波の波
長よりも短ければ、光導電性薄膜中に光学イメージと弾
性波によって弾性波の波長程度に空間的に変調された抵
抗変化が能率よく検出されると考えられる。すなわち、
電極ギャップが、弾性波の波長よりも広い場合、上記の
抵抗変化は、上記薄膜内の拡散効果により検出されにく
くなるものと考えられる。
The reason for this is that if the gap between the extraction electrodes is shorter than the wavelength of the effective elastic wave, the resistance change that is spatially modulated to the wavelength of the elastic wave by the optical image and the elastic wave in the photoconductive thin film can be efficiently detected. It is thought that That is,
When the electrode gap is wider than the wavelength of the elastic wave, it is thought that the above resistance change becomes difficult to detect due to the diffusion effect within the thin film.

きらに、発明者らは、光導電性膜をCdS  系の簿膜
で形成すれば、高感度のイメージ変換素子を実現できる
ことも罐誌した。さらに、CaS  系薄膜にCd’e
を混合して行くと、光感度の波長依存性を制御すること
ができることも見つけた。
Furthermore, the inventors have also discovered that a highly sensitive image conversion element can be realized by forming a photoconductive film using a CdS-based film. Furthermore, Cd'e in CaS-based thin films
We also found that the wavelength dependence of photosensitivity can be controlled by mixing them.

第5図に光導電性薄膜の組成と、光感度が最大値を示す
波長との関係を示す。横軸は膜をCd51−xCdSe
xで示しだ場合の組成(xiを示す。すなわち、X =
 0.4において、最大感度が550nmになることを
示している。しだがってその組成比によって光導電性膜
、さらには光イメージ変換素子の感度を視感度に合致さ
せることができる。
FIG. 5 shows the relationship between the composition of the photoconductive thin film and the wavelength at which the photosensitivity reaches its maximum value. The horizontal axis represents the film Cd51-xCdSe.
The composition when denoted by x (denotes xi, i.e., X =
0.4, the maximum sensitivity is 550 nm. Therefore, depending on the composition ratio, the sensitivity of the photoconductive film and furthermore the optical image conversion element can be made to match the luminous sensitivity.

と圧電性基極との界面に設けても、上述と同様の弾性波
伝搬特性、光学イメージ変換特性が得られることをも見
つけた。また、取り出し電極をインジウム、カドミウム
、アルミニウム、クロムなとの金属で構成しても上記の
特性を劣化させないことをも確認した。この場合、差と
えは、弾性波送信用の電4極と取り出し電極とを同一材
料で構成すれば、素子作製のプロセスが大幅に簡略化さ
れることは明らかであり、製造上の大きな利点となる。
It has also been found that the same elastic wave propagation characteristics and optical image conversion characteristics as described above can be obtained even if the material is provided at the interface between the piezoelectric substrate and the piezoelectric base. It was also confirmed that the above characteristics would not deteriorate even if the extraction electrode was made of metals such as indium, cadmium, aluminum, and chromium. In this case, the difference is that if the acoustic wave transmission quadrupole and the extraction electrode are made of the same material, it is clear that the process of manufacturing the element will be greatly simplified, which is a major manufacturing advantage. becomes.

発明の効果 以上のように、本発明は弾性波伝搬媒体と、その媒体上
に設けられた光導電性薄膜とを有するイメージ変換素子
において、取り出し電極をスリット状とし、弾性波伝搬
方向に対し、傾斜して配置することにより、充分な弾性
波を光導電性膜内に供給することができ、高性能なイメ
ージ変換素子を実現できるものである。
Effects of the Invention As described above, the present invention provides an image conversion element having an elastic wave propagation medium and a photoconductive thin film provided on the medium, in which the take-out electrode is slit-shaped, and with respect to the elastic wave propagation direction, By arranging them at an angle, sufficient elastic waves can be supplied into the photoconductive film, making it possible to realize a high-performance image conversion element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光学イメージ変換素子の斜視図、斜視図
、第3図は光学イメージ変換素子の弾性波伝搬特性を示
す図、第4図は本発明にもとづく光学イメージ変換素子
の出力波形を示す図、第5図ば〆光感度の組成に対する
波長依存性を示す図である。 11.12・・・・インターティジタル電極、13・・
・・圧電性基板、14・・・・・光導電性薄膜、25゜
26 ・・取り出し電極、27・ ・・電極ギャップ、
28  ・電極ギャップと弾性波の伝搬方向とのなす角
・ 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 G 第2図
FIG. 1 is a perspective view of a conventional optical image conversion element, FIG. 3 is a diagram showing the elastic wave propagation characteristics of the optical image conversion element, and FIG. 4 is a diagram showing the output waveform of the optical image conversion element based on the present invention. FIG. 5 is a diagram showing the wavelength dependence of photosensitivity on composition. 11.12...Interdigital electrode, 13...
... Piezoelectric substrate, 14... Photoconductive thin film, 25° 26 ... Extraction electrode, 27... Electrode gap,
28 ・Angle between the electrode gap and the propagation direction of elastic waves ・Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure G Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)弾性波伝搬媒体となる基板と、上記基板上に設け
られた弾性波発生用電極と、上記基板上の弾性波伝搬部
分上に設けられた光導電性薄膜と上記光導電性薄膜に設
けられた取り出し電極とを有し、上記取り出し電極をス
リット状電極とし、かつス1ルトの長手方向を弾性波の
伝搬方向に対して傾けたことを特徴とするイメージ変換
素子。
(1) A substrate serving as an elastic wave propagation medium, an elastic wave generation electrode provided on the substrate, a photoconductive thin film provided on the elastic wave propagation portion of the substrate, and the photoconductive thin film. What is claimed is: 1. An image conversion element having a take-out electrode provided therein, wherein the take-out electrode is a slit-shaped electrode, and the longitudinal direction of the sult is inclined with respect to the propagation direction of an elastic wave.
(2)  スリット状電極を、弾性波の有効幅と、光導
電性薄膜の有効幅とを二辺とする矩形の対角線上に設け
たことを特徴とする特許請求の範囲第1項記載のイメー
ジ変換素子。
(2) The image according to claim 1, characterized in that the slit-shaped electrode is provided on the diagonal of a rectangle whose two sides are the effective width of the elastic wave and the effective width of the photoconductive thin film. conversion element.
(3)  スリット状電極の弾性波伝搬方向に垂直な方
向の電極ギャップの寸法が、使用する弾性波の実効波長
以下であることを特徴とする特許請求の範囲第1項記載
のイメージ変換素子・
(3) The image conversion element according to claim 1, wherein the dimension of the electrode gap in the direction perpendicular to the elastic wave propagation direction of the slit-shaped electrode is equal to or less than the effective wavelength of the elastic wave used.
JP58057553A 1983-03-31 1983-03-31 Image converting element Pending JPS59182678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057553A JPS59182678A (en) 1983-03-31 1983-03-31 Image converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057553A JPS59182678A (en) 1983-03-31 1983-03-31 Image converting element

Publications (1)

Publication Number Publication Date
JPS59182678A true JPS59182678A (en) 1984-10-17

Family

ID=13058995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057553A Pending JPS59182678A (en) 1983-03-31 1983-03-31 Image converting element

Country Status (1)

Country Link
JP (1) JPS59182678A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559861A (en) * 1978-07-10 1980-01-24 Kanden Hankiyuu Shoji Kk Method of forming iiitype anhydrous gypsum by extrusion
JPS55100782A (en) * 1979-01-26 1980-07-31 Nippon Telegr & Teleph Corp <Ntt> Converter to electric time-series picture information of optical two-dimensional picture information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559861A (en) * 1978-07-10 1980-01-24 Kanden Hankiyuu Shoji Kk Method of forming iiitype anhydrous gypsum by extrusion
JPS55100782A (en) * 1979-01-26 1980-07-31 Nippon Telegr & Teleph Corp <Ntt> Converter to electric time-series picture information of optical two-dimensional picture information

Similar Documents

Publication Publication Date Title
JPH0336326B2 (en)
JPH04212132A (en) Optical device with periodic domain inverted structure and production thereof
JPH09223943A (en) Surface acoustic wave device
GB2165956A (en) Thin film optical element
JPS5935489A (en) Manufacture of photo semiconductor device
JPH11274883A (en) Piezoelectric compound substrate and surface acoustic wave element
JPS59182678A (en) Image converting element
JP2021180465A (en) Composite substrate for surface acoustic wave device and method for manufacturing the same
US4122495A (en) Method and a device for an electro-acoustic reading of an optical device image
JPS59182679A (en) Image converting element
JP2005070195A (en) Method for manufacturing periodical polarization reversal structure, and optical device
US3959748A (en) Dual sidestepping SWIF and method
JPH08228398A (en) Transversal wave transducer
JPH09130192A (en) Surface wave device
JP2602222B2 (en) Surface acoustic wave convolver
JPS59213A (en) Surface acoustic wave device
JPS5986916A (en) Composite piezo-resonator
JPH0311686B2 (en)
JPS6279417A (en) Optical shutter array
JPH04369915A (en) Surface acoustic wave device
JPS6130070A (en) Photosensor
JP2706443B2 (en) Image sensor and method of manufacturing the same
JPS58197910A (en) Elastic surface wave element
JPS5830216A (en) Acoustic wave device
JPS598964B2 (en) Manufacturing method of surface acoustic wave device