JPS59182247A - Preparation of optical fiber of infrared rays - Google Patents

Preparation of optical fiber of infrared rays

Info

Publication number
JPS59182247A
JPS59182247A JP58052405A JP5240583A JPS59182247A JP S59182247 A JPS59182247 A JP S59182247A JP 58052405 A JP58052405 A JP 58052405A JP 5240583 A JP5240583 A JP 5240583A JP S59182247 A JPS59182247 A JP S59182247A
Authority
JP
Japan
Prior art keywords
glass
optical fiber
infrared rays
absorption
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58052405A
Other languages
Japanese (ja)
Inventor
Toshio Katsuyama
俊夫 勝山
Hiroyoshi Matsumura
宏善 松村
Kenzo Susa
憲三 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58052405A priority Critical patent/JPS59182247A/en
Publication of JPS59182247A publication Critical patent/JPS59182247A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/041Non-oxide glass compositions
    • C03C13/043Chalcogenide glass compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To prepare optical fiber of infrared rays having reduced absorption amount of vibration of Ge-O, by heat-treating soot glass of Ge-Se in a reducing gas atmosphere, melting it in a vacuum. CONSTITUTION:Soot glass of Ge-Se is heat-treated in a reducing gas (e.g., CO gas) having about 300cc/min flow rate at about 900 deg.C, and melted under heating to give glass block. This block is then abraded into a rod and drawn. Consequently, absorption amount of CO2 laser light having 10.6mum wavelength is reduced, and absorption position is transferred to the longer wavelength side, so that optical fiber of infrared rays transmitting CO2 laser light stably is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、赤外光、とくに波長10.6μmの光を透過
するGe−8eガラスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing Ge-8e glass that transmits infrared light, particularly light with a wavelength of 10.6 μm.

〔背景技術〕[Background technology]

近年、C02レーザ(波長10.6μm)を利用したレ
ーザ加工やレーザメスが広く用いられ始めている。この
CO2レーザ光を集光し、あるいは曲げて任意の場所に
光を導くには、10.6μmの光を通すレンズや光7ア
イバが必要である。このため、たとえばレンズとしてZ
n S e 、 KH2−5(TtB r −TtI 
) 、K B rからなる多結晶体が用いられている。
In recent years, laser processing using a C02 laser (wavelength: 10.6 μm) and laser scalpels have begun to be widely used. In order to condense or bend this CO2 laser light and guide the light to a desired location, a lens or optical fiber that passes 10.6 μm light is required. For this reason, for example, as a lens, Z
n S e , KH2-5(TtBr -TtI
), a polycrystalline body consisting of KBr is used.

また光ファイバとしてKH2−5゜kgct、CsBr
などからなる単結晶や多結晶体が用いられている。しか
しながら、これらの多結晶体や単結晶体からなるレンズ
や光7アイパは、温度上昇に伴う歪や光7アイバの曲げ
等によって塑性変形が生じ光の透過率を著しく悪化させ
る。また、結晶体からなる光ファイバの場合、作製スピ
ードが従来のシリカ系ガラス光ファイバに比べて数桁低
いという欠点がある。
Also, as optical fibers KH2-5゜kgct, CsBr
Single crystals and polycrystals made of such materials are used. However, lenses and optical eyepieces made of these polycrystalline materials or single crystalline materials undergo plastic deformation due to distortion due to temperature rise, bending of the optical eyelids, etc., resulting in a significant deterioration of light transmittance. Furthermore, in the case of optical fibers made of crystalline materials, there is a drawback that the manufacturing speed is several orders of magnitude lower than that of conventional silica-based glass optical fibers.

これに対し、ガラス材料は塑成変形の問題がなく、かつ
この材料を用いることによシ従来のシリカ系ガラスと同
様の作製スピードで光7アイバを作製することができる
。ガラス材料のうち波長10.6.czmで透明なもの
はZnC2zおよびGeSe。
On the other hand, glass materials do not have the problem of plastic deformation, and by using this material, Hikari 7-Iver can be manufactured at the same manufacturing speed as conventional silica-based glass. Of the glass materials, wavelength 10.6. Transparent czm are ZnC2z and GeSe.

GeTe、AsSe、AsTe等がある。このうちZn
Ctzは潮解性があシ、またAsSe、AsTe等は毒
性が強いという欠点がある。Gl+Se、G@Teのう
ちG11Teはガラス転移温度が低く、CO2レーザ光
照射に伴う温度上昇によシガラス状態が不安定になる。
There are GeTe, AsSe, AsTe, etc. Of these, Zn
Ctz has the disadvantage of being deliquescent, and AsSe, AsTe, etc. are highly toxic. Among Gl+Se and G@Te, G11Te has a low glass transition temperature, and the glass state becomes unstable due to the temperature rise accompanying CO2 laser light irradiation.

このため、ガラス転移温度が比較的高い(300C)G
eSeガラスが波長10.6μmのガラス材料として適
していると考えられる。しかし、GeSeガラスの光吸
収特性を調べてみると、第1図に示すように波長12.
8μmにQ e −Qの振動吸収による大きな吸収が存
在する。この振動吸収のすそは波長10.6μmにまで
のびておバCO2レーザ光の伝送に悪影響を及ぼす。な
お、図中の破線は、ガラス端面の反射を考慮したときの
最大透過率を示す。
Therefore, the glass transition temperature is relatively high (300C)
It is considered that eSe glass is suitable as a glass material for a wavelength of 10.6 μm. However, when we investigated the light absorption characteristics of GeSe glass, we found that the wavelength of 12.
There is a large absorption at 8 μm due to Q e −Q vibration absorption. This vibrational absorption extends to a wavelength of 10.6 μm and has an adverse effect on the transmission of CO2 laser light. Note that the broken line in the figure indicates the maximum transmittance when reflection from the glass end face is taken into account.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、co2レーザ光伝送に悪影響を及はす
Ge−8eガラスの() e −Qの振動吸収量を減少
する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for reducing the amount of ( ) e -Q vibration absorption of Ge-8e glass that adversely affects CO2 laser light transmission.

〔発明の概要〕[Summary of the invention]

Qe−oの振動吸収はGe−8eガラス中の酸素不純物
によって生じる。このため、酸素不純物を減少させれば
、Ge−oの振動吸収を低減化できる。この考え方の基
に、Ge−3eの粉末を還元性ガス、例えば特にcoガ
スで還元したのち、溶融ガラス化することを試みた。第
2図は、Ge−8eの粉末をCOガx(aoocc/m
)中で900Cに10分間加熱した後、真空溶融して作
製したガラスの光透過早特性(試料厚:600μm)を
示したものである(実線)。図かられかるように、Ge
−0の振動吸収はCOガス処理をしない時(破線で示さ
れる曲線)に比べて大幅に低減していることがわかる。
Qe-o vibrational absorption is caused by oxygen impurities in the Ge-8e glass. Therefore, by reducing oxygen impurities, the vibration absorption of Ge-o can be reduced. Based on this idea, an attempt was made to reduce Ge-3e powder with a reducing gas, especially cobalt gas, and then melt and vitrify it. Figure 2 shows how Ge-8e powder is mixed with CO gas (aoocc/m
) shows the light transmission characteristics (sample thickness: 600 μm) of a glass produced by heating at 900 C for 10 minutes and then vacuum melting (sample thickness: 600 μm) (solid line). As shown in the figure, Ge
It can be seen that the -0 vibration absorption is significantly reduced compared to when no CO gas treatment is performed (the curve shown by the broken line).

また、吸収の位置がCOガス処理前の12,8μmに比
べ、よシ長波長の14μmに移行している。このことは
、C02レーザの発振波長である波長10.6μmにお
ける光吸収がたとえ同じ吸収量でも大幅に低下すること
を意味する。以上2つの効果、■)吸収量自身が減少す
る。2)吸収位置が長波長へ移行する。
Furthermore, the absorption position has shifted to a much longer wavelength of 14 μm compared to 12.8 μm before the CO gas treatment. This means that light absorption at a wavelength of 10.6 μm, which is the oscillation wavelength of the C02 laser, is significantly reduced even if the amount of absorption remains the same. The above two effects: ■) The absorption amount itself decreases. 2) The absorption position shifts to longer wavelengths.

はCO2レーザ光伝送に関して非常に有益である。is very beneficial for CO2 laser light transmission.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

出発原料として純度99.99チの金属Qe、 Seの
微小な粉末を用いた。この粉末をCOガス(流量: 3
00 C(/―)中で電気炉で900Cに加熱した。加
熱時間は20分間である。そののち、粉末(すなわちス
ートガラス)を石英ガラス管中に真空封着し、温度80
0Cで24時間溶融した後、室温まで冷却し、ガラスブ
ロックを作製した。
As starting materials, fine powders of metals Qe and Se with a purity of 99.99% were used. This powder was mixed with CO gas (flow rate: 3
It was heated to 900C in an electric furnace at 00C (/-). Heating time is 20 minutes. Thereafter, the powder (i.e., soot glass) was vacuum sealed in a quartz glass tube, and the temperature was 80°C.
After melting at 0C for 24 hours, it was cooled to room temperature to produce a glass block.

このプ0ツクの組成はQe:20mot%、Se:80
mot%でおった。つぎにこのブロックをロンド状に研
磨し、径10mmφ、長さ10crnのプレフォームを
作製した。つぎに、ロッドをFガラス管に入れてそのま
ま線引し、外径lI+01φ、長さ1mの光ファイバを
作製した。この先7アイパの波長l006μmにおける
光減衰量0.4dB/mであった。この光ファイバに5
0WのC02レーザ光を伝送したところ、長時間の光伝
送が可能であった。
The composition of this pump is Qe: 20mot%, Se: 80
It was expressed as mot%. Next, this block was polished into a rond shape to produce a preform having a diameter of 10 mmφ and a length of 10 crn. Next, the rod was put into an F glass tube and drawn as it was to produce an optical fiber having an outer diameter of lI+01φ and a length of 1 m. The optical attenuation at the wavelength of 1006 μm for the next 7 Aipers was 0.4 dB/m. 5 to this optical fiber
When 0W C02 laser light was transmitted, long-time optical transmission was possible.

〔発明の効果〕〔Effect of the invention〕

上記の実施例かられかるように本発明の効果は波長10
.6μmのCOzレーザ光を安定に透過させるのに極め
て顕著である。
As can be seen from the above embodiments, the effect of the present invention is
.. This is extremely effective in stably transmitting 6 μm COz laser light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Qe−8eガラスの光吸収特性を示す図、第
2図は、COガス処理を行った場合の光吸収特性(実線
)と処理をしない時の光吸収特性(破線)を示す図であ
る。 25
Figure 1 shows the light absorption characteristics of Qe-8e glass, and Figure 2 shows the light absorption characteristics with CO gas treatment (solid line) and without treatment (dashed line). It is a diagram. 25

Claims (1)

【特許請求の範囲】[Claims] oe−seカルコゲナイドガラスからなる光ファイバの
製造方法において、Qe−8eスートガラスを還元性ガ
スを用いて熱処理する工程を含むことを特徴とする赤外
光ファイバの製造方法。
A method of manufacturing an optical fiber made of oe-se chalcogenide glass, the method comprising the step of heat treating Qe-8e soot glass using a reducing gas.
JP58052405A 1983-03-30 1983-03-30 Preparation of optical fiber of infrared rays Pending JPS59182247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58052405A JPS59182247A (en) 1983-03-30 1983-03-30 Preparation of optical fiber of infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58052405A JPS59182247A (en) 1983-03-30 1983-03-30 Preparation of optical fiber of infrared rays

Publications (1)

Publication Number Publication Date
JPS59182247A true JPS59182247A (en) 1984-10-17

Family

ID=12913874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58052405A Pending JPS59182247A (en) 1983-03-30 1983-03-30 Preparation of optical fiber of infrared rays

Country Status (1)

Country Link
JP (1) JPS59182247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612294A (en) * 1983-11-28 1986-09-16 Hitachi, Ltd. Glass material for optical fibers used in infrared region
WO2019188025A1 (en) * 2018-03-28 2019-10-03 日本電気硝子株式会社 Chalcogenide glass material
JP2019172560A (en) * 2018-03-28 2019-10-10 日本電気硝子株式会社 Chalcogenide glass material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612294A (en) * 1983-11-28 1986-09-16 Hitachi, Ltd. Glass material for optical fibers used in infrared region
WO2019188025A1 (en) * 2018-03-28 2019-10-03 日本電気硝子株式会社 Chalcogenide glass material
JP2019172560A (en) * 2018-03-28 2019-10-10 日本電気硝子株式会社 Chalcogenide glass material

Similar Documents

Publication Publication Date Title
CN109320093B (en) Transparent glass-ceramic material and preparation method thereof
EP0248564A1 (en) Optical waveguides and their manufacture
US6128429A (en) Low phonon energy glass and fiber doped with a rare earth
Lezal et al. GeO2-PbO glassy system for infrared fibers for delivery of Er: YAG laser energy
Wang et al. Mid-infrared fluoride and chalcogenide glasses and fibers
JPS60118651A (en) Glass material for optical fiber for infrared ray
JPS59182247A (en) Preparation of optical fiber of infrared rays
KR20060017756A (en) Lead-free optical glass and optical fiber
Lucas Infrared fibers
JPS59223245A (en) Production of optical fiber base material
JPS5988338A (en) Optical fiber for infrared light
Nishii et al. Chalcogenide glass fibers for power delivery of CO2 laser
Bornstein et al. Chalcogenide infrared glass fibers
CN106277806A (en) A kind of rear-earth-doped oxy-fluoride glass optical fiber and manufacture method
JP3274955B2 (en) Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material
Fuller Mid‐infrared fiber optics
JP3274954B2 (en) Synthetic quartz glass material for optics and method for producing the same
Margaryan et al. Prospects of using germanium-dioxide-based glasses for optics
Harrington Mid-IR and Infrared Fibers
JPH0472781B2 (en)
JPS6320773B2 (en)
Klocek Infrared Optical Materials: Where Do We Stand?
JPS60226427A (en) Optical fiber for infrared rays
JPS606298B2 (en) optical fiber
JPS60176942A (en) Production of infrared optical fiber