JPS59182028A - Electrolytic composite machining method - Google Patents

Electrolytic composite machining method

Info

Publication number
JPS59182028A
JPS59182028A JP5726983A JP5726983A JPS59182028A JP S59182028 A JPS59182028 A JP S59182028A JP 5726983 A JP5726983 A JP 5726983A JP 5726983 A JP5726983 A JP 5726983A JP S59182028 A JPS59182028 A JP S59182028A
Authority
JP
Japan
Prior art keywords
machining
diameter
effective
flatness
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5726983A
Other languages
Japanese (ja)
Inventor
Hiroshi Kamata
釜田 浩
Hidehiko Maehata
英彦 前畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP5726983A priority Critical patent/JPS59182028A/en
Publication of JPS59182028A publication Critical patent/JPS59182028A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/12Rotating-disc electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To perform machining satisfying the required flatness by setting the diameter of a disk-type tool for electrolytic composite machining to a preset value or more determined by the machining depth and the flatness. CONSTITUTION:If the ratio between the diameter D of a disk-type tool for electrolytic composite machining and the effective machining width W is made an effective constant K, the effective constant K is determined by the machining depth dc and the flatness S. To finish the machined surface to the required flatness S or less, an equation D>=W/K nees to be met. Accordingly, the desired flatness can be satisfied by determining the tool diameter D and the effective machining width W.

Description

【発明の詳細な説明】 この発明は、電解作用による陽極性の金属工作物の溶出
除去作用と機械的な砥粒擦過作用を複合させる電解複合
加工方法に関し、金属工作物を要求される平面度に形状
加工することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic composite processing method that combines the elution and removal action of an anodic metal workpiece by electrolytic action and the mechanical abrasive abrasion action. The purpose is to process the shape.

従来、金属の電解溶出作用で陽極性の金属工作物を加工
する方法として電解加工法がある。この方法は陽極性の
金属工作物と陰極性電極を電解液に対向させ、電流密度
あるいは電解液流量等を制御することによって行なわれ
ている。しかしこの方法では、電解ギャップ中での電流
密度分布の不均一さおよび流速の不均一さにより、加工
面全体にわたって均一 な加工深さを確保することは難
しく、精度が要求される加工には不向きである。さらに
、除去速度ならびに作業性に多くの問題がある。
Conventionally, there is an electrolytic machining method as a method of machining anodic metal workpieces by electrolytic elution of metal. This method is carried out by placing an anodic metal workpiece and a cathodic electrode facing an electrolyte and controlling the current density, electrolyte flow rate, etc. However, with this method, it is difficult to ensure a uniform machining depth over the entire machined surface due to uneven current density distribution and non-uniform flow velocity in the electrolytic gap, making it unsuitable for machining that requires precision. It is. Additionally, there are many problems with removal speed and workability.

一方、この電解作用に機械的な砥粒擦過作用を複合させ
て加工する方法の代表例として電解研削法がある。この
方法では、用いる剛体砥石の研削力と電流密度IA/c
m以上の高効率電解溶出作用により高い除去速度を得る
ことができる。
On the other hand, an electrolytic grinding method is a typical example of a processing method that combines this electrolytic action with a mechanical abrasive abrasion action. In this method, the grinding force of the rigid grindstone used and the current density IA/c
A high removal rate can be obtained by the highly efficient electrolytic elution action of m or more.

この方法は本来生産性を重視した加工法であるが、工作
物の加工精度は装置精度で定まり、それ以下には良くな
らない。したがって、たとえば大面積平面の精度加工等
に対しては精度の確保は容易でなく、かつ作業能率が低
下する。
This method is originally a processing method that emphasizes productivity, but the processing accuracy of the workpiece is determined by the equipment accuracy, and it cannot be improved beyond that. Therefore, for example, it is difficult to ensure precision in precision machining of large-area planes, and work efficiency is reduced.

また、剛体砥石のかわりに、第1図に示すように、パフ
材などの柔軟性のある研摩材を用し)る方法かある。こ
の方法は、直流電源の負極に接続された電極(1)に、
絶縁性があり通水性の不織布などに塗付された研摩材(
2)を装着させ、その研摩工具(3)を直流電源の陽極
に接続された金属工作物(4)に軽く押し当て、電極(
1)の供給路(5)から電解液(6)を研摩材(2)中
に流出させて行なうものである。
Furthermore, instead of a rigid grindstone, there is a method of using a flexible abrasive material such as puff material, as shown in FIG. In this method, an electrode (1) connected to the negative electrode of a DC power source is
Abrasive material applied to insulating and water-permeable nonwoven fabric (
2), lightly press the polishing tool (3) against the metal workpiece (4) connected to the anode of the DC power supply, and then attach the electrode (
This is carried out by flowing the electrolytic solution (6) into the abrasive material (2) from the supply path (5) of 1).

しかし、この方法は加工面のあらさ低減を目的とした表
面の仕上技術であり、機械加工されtコ下地面の凹凸を
効率良く低減させるJコめのものである。したがって素
材からの荒加工を行なう場合のよう々目的に対しては不
向きであり、かつ加工後の形状も下地に負うところが犬
である。
However, this method is a surface finishing technique aimed at reducing the roughness of the machined surface, and is a method for efficiently reducing the unevenness of the machined base surface. Therefore, it is not suitable for purposes such as rough machining from a raw material, and the shape after machining depends on the base material.

この発明は、前記の点に留意してなされたものであり、
電解作用による陽極性の金属工作物の溶出除去作用と機
械的な砥粒擦過作用を利用する電解複合加工方法におい
て、柔軟性のある研摩材を用いる直径りの回転円盤型電
極の研摩工具を用し1、平面工作物を加工深さdcて、
かつ要求される平面度Sを満足する有効加工幅Wを冑べ
く、加工深さdcおよび平面度Sにより定まる有効定数
Iぐと有効加工幅Wおよび直径りとの間にD≧7w7+
<の関係を満足させることを特徴とする電解複合加工方
法を提供するものである。
This invention was made with the above points in mind,
In an electrolytic composite machining method that utilizes the elution and removal effect of anodic metal workpieces through electrolytic action and the mechanical abrasive abrasion action, a polishing tool with a rotating disk-shaped electrode of a diameter diameter using a flexible abrasive material is used. 1. Cut the flat workpiece to a machining depth dc,
In order to obtain an effective machining width W that satisfies the required flatness S, the relationship between the effective constant I determined by the machining depth dc and the flatness S, and the effective machining width W and the diameter is D≧7w7+.
The present invention provides an electrolytic composite processing method characterized by satisfying the relationship <.

したがってこの発明によると、[)」記関係を満足する
電極の直径を選択することにより、平面上作物を効率よ
く要求される平面度に形状加工することができる。
Therefore, according to the present invention, by selecting the diameter of the electrode that satisfies the relationship [)'', it is possible to efficiently shape a planar crop to the required flatness.

つぎにこの発明を、その実施例を示した第2図以下の図
面とともに詳細に説明する。
Next, this invention will be explained in detail with reference to the drawings from FIG. 2 onwards showing embodiments thereof.

まず、この発明に使用される研摩工具の1例を示した第
2図について説明する。
First, FIG. 2, which shows an example of a polishing tool used in the present invention, will be explained.

同図において、(7)は下端部が皿状に拡大した導電性
の回転研摩工具の基部、(8)は基部(7)に形成され
た電解液(9)の供給路、θOは基部(7)の下端面に
モに着されJコ陰極性直径りの円盤型電極、0])は電
極(1()の中央部に透設された電解液(9)の流出に
1.0カは電極θQの下面に装着された絶縁性2通水性
、柔軟性の研摩材、(13は陽極性の金属の平面工作物
である。
In the figure, (7) is the base of a conductive rotary polishing tool whose lower end is expanded into a dish shape, (8) is the supply channel for the electrolyte (9) formed in the base (7), and θO is the base ( 7) A disc-shaped electrode with a J-cathode diameter attached to the lower end surface of the electrode (0]) has a diameter of 1.0 to prevent the electrolyte (9) from flowing out through the center of the electrode (1 2 is an insulating, water-permeable, and flexible abrasive material attached to the lower surface of the electrode θQ; (13 is a flat metal workpiece with anode polarity);

そして、加工に際して、第2図に示したよう々研摩工具
を用い、所定の電流を陰極性電極θ0と陽極性金属の平
面工作物(1,(1間に通流するとともに、研摩工具を
回転させ、同時に、研摩工具あるいは平面工作物α′3
を移動して行なう。
During machining, a predetermined current is passed between the cathode electrode θ0 and the anodic metal flat workpiece (1, (1) using the abrasive tool shown in Figure 2, and the abrasive tool is rotated. At the same time, the polishing tool or flat workpiece α'3
Move and do this.

つぎに第3図は、第2図の研摩工具による加工形状の創
成機構を説明するものである。
Next, FIG. 3 explains a mechanism for creating a machined shape by the polishing tool of FIG. 2.

まず、研摩工具と平面工作物0[相]とが相対的に移動
した場合、工作物0■の研摩工具通過後の第3図(a)
のX−X部分は、機械的な擦過力の分布と工作物(1埠
の各点での複合加工時間の相違により、研摩工具通過後
の加工形状は、第3図(1))に示すように中心伺近の
盛り上りならびに周辺のだれが起こる。
First, when the polishing tool and the flat workpiece 0 [phase] move relatively, Fig. 3 (a) after the workpiece 0 has passed the polishing tool.
The machined shape after passing the abrasive tool is shown in Fig. 3 (1) due to the difference in the mechanical abrasion force distribution and the composite machining time at each point of the workpiece (Fig. 3 (1)). Just like that, there is an upsurge in the area around the center and a slump in the surrounding area.

したがって、研摩工具による加工深さは必ずしモ均一で
は無いが、この工具を用いる加工方法にはつぎのような
特徴がある。
Therefore, although the machining depth by the abrasive tool is not necessarily uniform, the machining method using this tool has the following characteristics.

】)同゛じ研摩材面積でも研摩工具を回転させることに
より、工作物の単位部分に作用する砥粒数を研摩工具を
往復動させるような方法に比べ増大させることができ、
したがって高い除去性が得られる。
]) Even with the same abrasive area, by rotating the abrasive tool, the number of abrasive grains that act on a unit part of the workpiece can be increased compared to a method that reciprocates the abrasive tool,
Therefore, high removability can be obtained.

2)大面積工作物の加工にあたっては、研摩工具の電極
の直径を大きくすることで容易に対応できる。
2) Machining of large-area workpieces can be easily handled by increasing the diameter of the electrode of the polishing tool.

一方、工作物各点1−での加工深さcarをそれぞれ電
極の半径R,(−〇/2)ならびに中心での加工深さd
cで正規化すると、加工形状を半径Rに無関係に第4図
のようにあられすことができ、電極の直径ならびに加工
深さに無関係な正規化された加工形状が得られる。した
がって、この正規化された加工形状をもとにすることに
より、種々の要求される加工形状に対してその加工条件
を与えることができる。
On the other hand, the machining depth car at each point 1- of the workpiece is defined as the electrode radius R, (-〇/2) and the machining depth d at the center.
By normalizing by c, the machining shape can be obtained as shown in FIG. 4 regardless of the radius R, and a normalized machining shape that is independent of the electrode diameter and machining depth can be obtained. Therefore, by using this normalized machining shape as a basis, machining conditions can be provided for various required machining shapes.

そしてこの発明は、要求される平面度Sの平面工作物を
形状加工する場合の研摩工具の電極の直径りと有効加工
幅Wの関係を与えるものであり、第5図はこの発明の方
法で加工された平面工作物の加工形状を示し、平面度S
は最も深い加工深さdbからの深さの差とし、有効加工
幅Wはcl +)’−5の深さに相当する中心からの距
離r1の2倍(中心からの振り分け)としている。した
がって加工能率を考えると、有効加工幅Wが電極の直径
りに近い程能率的な加工が行なえる。
This invention provides the relationship between the diameter of the electrode of an abrasive tool and the effective machining width W when shaping a flat workpiece with the required flatness S, and FIG. Indicates the machined shape of the machined flat workpiece, and the flatness S
is the difference in depth from the deepest machining depth db, and the effective machining width W is twice the distance r1 from the center (distribution from the center) corresponding to the depth of cl +)'-5. Therefore, when considering machining efficiency, the closer the effective machining width W is to the diameter of the electrode, the more efficient machining can be performed.

そこで、有効加工幅Wと電極の直径りの比を有効定数に
−W/Dとすると、Kを加工能率の1つの目安として扱
うことができる。
Therefore, if the ratio of the effective machining width W to the diameter of the electrode is set as an effective constant -W/D, K can be treated as one measure of machining efficiency.

一方、有効定数には前記の正規化された加工形状の関係
から電極の直径りに無関係に中心での加工深さdcと要
求される平面度Sとの関係として第6図に示すようにあ
られすことができ、加工深さdc7らびに平面度Sが与
えられると、有効定数■くが定まる。
On the other hand, the effective constant has the relationship between the machining depth dc at the center and the required flatness S, as shown in Figure 6, regardless of the diameter of the electrode, based on the relationship of the normalized machining shape described above. When the machining depth dc7 and the flatness S are given, the effective constant {circle around (2)} is determined.

つぎに工作物の有効加工幅Wのとき、用いるべき電極の
直径りは前記有効定数Kをもとにして導くことができる
Next, when the effective machining width W of the workpiece is determined, the diameter of the electrode to be used can be derived based on the effective constant K.

第7図は加工深さl Q Itmの場合の電極の直径り
と有効加工幅Wの関係を平面度S = 171mおよび
S = 517r+〕について求めた結果であり、電極
の直径りの増加とともに有効加工幅Wは直線的に増加し
ている。
Figure 7 shows the relationship between the electrode diameter and the effective machining width W for the flatness S = 171m and S = 517r+ when the machining depth is l Q Itm. The processing width W increases linearly.

たとえば、2Q Q mm幅の平面工作物を平面度S−
1/1mで加工する場合、電極の直径りは92280m
m以上で可能である。
For example, a flat workpiece with a width of 2Q Q mm has a flatness of S-
When processing at 1/1 m, the diameter of the electrode is 92280 m.
This is possible with m or more.

したがって、有効加工幅W、電極の直径1)および有効
定数にの関係をD≧W/にとして扱え、この関係を満足
する電極の直径りを選択することにより、要求される平
面度を満足する形状加工が行なえる。
Therefore, the relationship between the effective machining width W, the electrode diameter 1), and the effective constant can be treated as D≧W/, and by selecting the electrode diameter that satisfies this relationship, the required flatness can be satisfied. Shape processing can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の研摩工具の正面図、第2図はこの発明の
加工方法に使用する研摩工具の1例を示し、(a)は一
部切断正面図、0〕)は下面図、第3図(21)、(b
)は加工形状の創成機構の説明図、第4図および第5図
は加工形状の説明図、第6図は加工深さと有効定数の関
係図、第7図は有効加工幅と電極の直径の関係図である
。 θO)電極、O2・研摩材、o諸  工作物。 代理人 弁理士  藤田龍太部 ■ 第2図 (o)         (b) A
Fig. 1 is a front view of a conventional abrasive tool, and Fig. 2 is an example of an abrasive tool used in the processing method of the present invention. Figure 3 (21), (b
) is an explanatory diagram of the creation mechanism of the machining shape, Figures 4 and 5 are explanatory diagrams of the machining shape, Figure 6 is a diagram of the relationship between the machining depth and the effective constant, and Figure 7 is the relationship between the effective machining width and the electrode diameter. It is a relationship diagram. θO) Electrode, O2/abrasive material, o various workpieces. Agent: Patent Attorney Ryutabe Fujita■ Figure 2 (o) (b) A

Claims (1)

【特許請求の範囲】[Claims] ■ 電解作用による陽極性の金属工作物の溶出除去作用
と機械的な砥粒擦過作用を複合させる電解複合加工方法
において・、柔軟性のある研摩材を用いる直径りの回転
円盤型電極の研摩工具を用い、平面工作物を加工深さc
lcで、かつ要求される平面度Sを満足する有効加工幅
Wを得べく、加工深さdCおよび平面度Sにより定まる
有効定数にと有効加工幅Wおよび直径りとの間にD≧W
/にの関係を満足させることを特徴とする電解複合加工
方法。
■ In the electrolytic composite processing method that combines the elution and removal action of anodic metal workpieces by electrolytic action and the mechanical abrasive abrasion action, a polishing tool for a rotating disk-shaped electrode with a diameter that uses a flexible abrasive material. is used to machine a flat workpiece to a depth c
In order to obtain an effective machining width W that satisfies the required flatness S, D≧W is established between the effective constant determined by the machining depth dC and flatness S, and the effective machining width W and diameter.
An electrolytic composite processing method characterized by satisfying the relationship: /.
JP5726983A 1983-03-31 1983-03-31 Electrolytic composite machining method Pending JPS59182028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5726983A JPS59182028A (en) 1983-03-31 1983-03-31 Electrolytic composite machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5726983A JPS59182028A (en) 1983-03-31 1983-03-31 Electrolytic composite machining method

Publications (1)

Publication Number Publication Date
JPS59182028A true JPS59182028A (en) 1984-10-16

Family

ID=13050806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5726983A Pending JPS59182028A (en) 1983-03-31 1983-03-31 Electrolytic composite machining method

Country Status (1)

Country Link
JP (1) JPS59182028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103100A (en) * 1986-10-17 1988-05-07 Yasuo Kimoto Method for working superhigh-precision electrolytic composite specular surface
CN103495782A (en) * 2013-09-30 2014-01-08 胜利油田康贝石油工程装备有限公司 Device and method for electric machining with circular electrode and ultrasonic wave used for cutting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103100A (en) * 1986-10-17 1988-05-07 Yasuo Kimoto Method for working superhigh-precision electrolytic composite specular surface
JPH0359159B2 (en) * 1986-10-17 1991-09-09 Yasuo Kimoto
CN103495782A (en) * 2013-09-30 2014-01-08 胜利油田康贝石油工程装备有限公司 Device and method for electric machining with circular electrode and ultrasonic wave used for cutting

Similar Documents

Publication Publication Date Title
US6312324B1 (en) Superabrasive tool and method of manufacturing the same
US5032238A (en) Method of and apparatus for electropolishing and grinding
JPH0343145A (en) Grinding device
EP1877216B1 (en) Method of electrolytically microfinishing a metallic workpiece
KR19990072939A (en) Method and apparatus for shaping and mirror surface grinding
CA2299638C (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
JPS59182028A (en) Electrolytic composite machining method
JPH10113878A (en) Super abrasive grain wheel and its manufacturing method
JPS62193777A (en) Linear abrasive body and polishing method
JP2565385B2 (en) Combined processing method and apparatus of electrolytic dressing grinding method and polishing method using conductive whetstone as tool
JPH01188266A (en) Electrolytic dressing for electric conductive grindstone and device thereof
JPS59175924A (en) Electrolytic compound working method
JPS6048216A (en) Electrolytic and mechanical combined grinding method
JPH01121172A (en) Grinding attachment equipped with electric discharge forming area for blade edge
JP4132591B2 (en) Super abrasive tool manufacturing method
JPS58137527A (en) Surface finishing method by electrolytic compound processing
JPH052291Y2 (en)
KR20010083429A (en) Lapping work device for using in-process electrolytic dressing
JPS6119513A (en) Grinding wheel for electrolytic electric discharge machining
JPH0957622A (en) Grinding method with in-process electrolytic dressing
JPS629823A (en) Electrolytic complex polishing method
JPS61100316A (en) Surface finishing method
JPH0632902B2 (en) Grooving / cutting device
JPH058127A (en) Method for manufacturing surface finishing tool
PL167582B1 (en) Method of electrochemically grinding with lose abrasive shaped turning tools