JPS59181068A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59181068A
JPS59181068A JP5348883A JP5348883A JPS59181068A JP S59181068 A JPS59181068 A JP S59181068A JP 5348883 A JP5348883 A JP 5348883A JP 5348883 A JP5348883 A JP 5348883A JP S59181068 A JPS59181068 A JP S59181068A
Authority
JP
Japan
Prior art keywords
film
gate
photoresist
metal
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5348883A
Other languages
Japanese (ja)
Other versions
JPH0212018B2 (en
Inventor
Masaoki Ishikawa
石川 昌興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5348883A priority Critical patent/JPS59181068A/en
Publication of JPS59181068A publication Critical patent/JPS59181068A/en
Publication of JPH0212018B2 publication Critical patent/JPH0212018B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To form a fine gate electrode and to reduce a gate resistance by using a metal having excellent heat resistance for a gate electrode. CONSTITUTION:The first, second films 8, 9 are sequentially formed on a semiconductor substrate 1 formed with an active layer 2.The film 9 is partly covered with a mask material 6, etched by an anisotropic dry etching method to form a hole 91 in the film 9. Then, a mask material 6 is removed, and the third film 9 is provided on the entire surface of the film 9 and the hole 91. The film 92 is etched by anisotropic dry etching from the surface to allow the film 92 to remain only on the side of the hole 91 and exposed. Further, the film 8 is removed by etching to expose the substrate 1. Then, a gate metal 30 is covered on the entire surfaces of the substrate 1 and the film 9. Further, after a photoresist 60 is coated on the entire surface, the photoresist 60, the metal 30 and the film 9 are sequentially removed by dry etching. Further, the metal 30, the film 9 are sequentially removed. Moreover, the film 8 is removed by etching to form a gate electrode 3 on the substrate 1.

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特にショットキ
障壁ゲート型電界効果トランジスタ(MBSFET)に
設けられるゲート電極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a gate electrode provided in a Schottky barrier gate field effect transistor (MBSFET).

砒化ガリウム(GaAs )を用いたMBSFETはマ
イクロ波帯で動作が可能であり、超高周波帯トランこの
ようなMESFETを用いて、同一基板上に集積した回
路(集積回路:IC)、特に高速ロジッラICやメモリ
ICの開発が活発に行なわれている。
MBSFETs using gallium arsenide (GaAs) can operate in the microwave band, and can be used in very high frequency band transformers such as circuits (integrated circuits: ICs) integrated on the same substrate, especially high-speed logic ICs. and memory ICs are being actively developed.

このような、MBSFETの良好な高周波特性を得不た
めにはゲート長が短かく、且つゲート抵抗の小さいこと
が必要であシ、更に特性が均一性良く、生産性にも優れ
ていることが重要である。
In order to obtain such good high frequency characteristics of MBSFET, it is necessary to have a short gate length and low gate resistance, and it is also necessary to have good uniformity of characteristics and excellent productivity. is important.

しかしながらケート抵抗は逆比例する関係にあり、ゲー
ト抵抗の低減とゲート長の短縮を同時にの方法は用いら
れる金属の性質やゲートパターンの形状々どにより、そ
れぞれそれに適した方法が選択され用いられているが、
上記ゲート抵抗とゲート長の問題をはじめ、それぞれの
方法に特有の様々な問題があった。次に従来方法の問題
点について、第1図、第2図および第3図を用いて説明
する。
However, gate resistance is in an inversely proportional relationship, and methods for simultaneously reducing gate resistance and gate length must be selected and used depending on the properties of the metal used and the shape of the gate pattern. There are, but
There were various problems unique to each method, including the problems of gate resistance and gate length mentioned above. Next, problems with the conventional method will be explained using FIGS. 1, 2, and 3.

第1図は2最も一般的な構造のMESFETの概略断面
図を示したもので、半絶縁性(]aAs半導体基板1に
n型の能動層2とゲート電4!i3、ソース電極′bよ
ひドレイン電極5が設けられている。
Figure 1 shows a schematic cross-sectional view of a MESFET with the most common structure.It is a semi-insulating (]aAs semiconductor substrate 1, an n-type active layer 2, a gate electrode 4!i3, a source electrode 'b', etc.). A low drain electrode 5 is provided.

このようなMESFF、Tの従来の製造方法を第2図(
a)t (b)および第3図(a)+ (b)を用いて
説明する。
The conventional manufacturing method of such MESFF, T is shown in Figure 2 (
This will be explained using a) t (b) and FIGS. 3(a)+(b).

細ち、第2図(a)に示すよ2に半絶縁性GaAs基板
1にイオン注入法により、能動)@2を設け、通常用い
られているホトレジストによシ、ゲート領域のみ開口し
たホトレジストによるマスク6を設け、茨に真空蒸着法
によシ垂直方向から、ゲート金属°3を被着形成し、次
にホトレジストを溶剤で除去する。そうするとホトレジ
スト上の金属はすべて除去されて、第1図に示すゲート
電極3が得られる。次に同じようにして、第2図(b)
に示す如く、ホトレジストを用いて、ソースおよびドレ
イン領域のみを開口したホトレジストマスク60’を設
ff、真空蒸着法により、ソースおよびドレイン電極金
属を被着する。次にホトレジストを除去して熱処理すれ
は第1図に示すゲート3とソース4およびドレイン5が
設けられたMESFFtTが得られる。この方法は一般
にソフトオフ方法と呼ばれている。
As shown in FIG. 2(a), an active layer 2 is formed on a semi-insulating GaAs substrate 1 by ion implantation, and instead of the commonly used photoresist, a photoresist with an opening only in the gate region is used. A mask 6 is provided, and gate metal 3 is vertically deposited on the thorns by vacuum evaporation, and then the photoresist is removed using a solvent. Then, all the metal on the photoresist is removed, and the gate electrode 3 shown in FIG. 1 is obtained. Next, in the same way, Figure 2 (b)
As shown in FIG. 2, a photoresist mask 60' having openings only in the source and drain regions is set using photoresist, and source and drain electrode metals are deposited by vacuum evaporation. Next, the photoresist is removed and heat treated to obtain the MESFFT shown in FIG. 1, in which the gate 3, source 4, and drain 5 are provided. This method is generally called the soft-off method.

次に第2の製造方法を、第3図(a)、 (b)を用い
て説明する。この方法は、第3図(a)に示すように能
動層2が設けられた基板表面の全面にゲート金属3を被
着したのち、その上に所定のゲート領域となるマスク6
をホトレジストで設は次にウェットエツチングあるいは
ドライエツチング法により、不要な部分を除去してゲー
ト電極3を設ける(第3IN(b))。そしてホトレジ
ストを用いたリフトオフ方法x法によシ、ソースおよび
ドレイン電極を設けて′廁1図に示したMESFETが
得られる。
Next, the second manufacturing method will be explained using FIGS. 3(a) and 3(b). In this method, as shown in FIG. 3(a), a gate metal 3 is deposited on the entire surface of the substrate on which an active layer 2 is provided, and then a mask 6 is placed on top of the gate metal 3 to form a predetermined gate region.
is formed using photoresist, and then unnecessary portions are removed by wet etching or dry etching to form the gate electrode 3 (3rd IN(b)). Then, source and drain electrodes are provided by the lift-off method using photoresist to obtain the MESFET shown in Figure 1.

以上述べた従来のMESFFiTの製造方法では次の、
ような問題点があった。第1にリフトオフ方法にセいて
、ホトレジストを用いることはゲート金属の被着のとき
高温になると、パターンが変形したシレジストが焼きつ
いて溶剤で溶けなくなシ、リフトオフが困難となること
。またレジストからガスが発生1、これがGaAs基板
とゲート金属の密着性を著るしく悪化させ、ショットキ
特性が不安定となること、さらにレジストの膜厚を利用
してリフトオフするために、ゲート電極膜厚が厚く得ら
れない等の問題点があった。このような問題点は高融点
金属、例えばタングテン(6)、モリブデン(MO)*
タンタル(Ta)?白金(Pt )などに顕著に現られ
れる。
In the conventional MESFFiT manufacturing method described above, the following steps are performed:
There were some problems. First, when using a photoresist in the lift-off method, when the gate metal is deposited at a high temperature, the resist with a deformed pattern is baked and cannot be dissolved by a solvent, making lift-off difficult. In addition, gas is generated from the resist1, which significantly deteriorates the adhesion between the GaAs substrate and the gate metal, making the Schottky characteristics unstable.Furthermore, in order to perform lift-off using the resist film thickness, the gate electrode film There were problems such as not being able to obtain a large thickness. This problem is caused by metals with high melting points, such as tungsten (6) and molybdenum (MO)*.
Tantalum (Ta)? It appears prominently in materials such as platinum (Pt).

第2の問題点として、ウェットエツチングまたはドライ
エツチング方法による形成方法では、基板とゲート金属
とのエツチング選択比の充分なものを選はねばならない
。例えばウェットエツチング法を用いて、ゲート電極が
アルミニウム(AI)の場合では、GaAs基板を全く
溶解せずAI だけ=1/やそれらの合金たとえばチタ
ンリンゲステン’(TiW)合金などはまだ良好なエツ
チング液が開発、されていない。そのためこれらの金属
を用いたゲ=ト電極は、ウェットエツチング法では得ら
れて;杯ない。
A second problem is that when using a wet etching or dry etching method, it is necessary to select a material that has a sufficient etching selectivity between the substrate and the gate metal. For example, when the gate electrode is made of aluminum (AI) using the wet etching method, the GaAs substrate is not dissolved at all, and only AI = 1/, and alloys thereof such as titanium Ringesten' (TiW) alloy are still etched well. Liquid has not been developed. Therefore, gate electrodes using these metals cannot be obtained by wet etching;

このようなウェットエツチング法を適用できない金属は
、ドライエツチング法が用いられている。
For metals to which wet etching cannot be applied, dry etching is used.

しかし、この方法は、エツチングされた金属が再び基板
表面に付着して特性が劣化する再付着の問題、エツチン
グのエンドポイントの制御性の問題、エツチングの均一
性の問題など解決しなければならない多くの難問があり
、特性が良く、生産性に優れた製造方法が確立されてい
ないのが現状である。
However, this method has many problems that must be solved, including the problem of redeposition, where the etched metal re-adheres to the substrate surface and deteriorates its properties, the problem of controllability of the etching end point, and the problem of etching uniformity. Currently, there are difficult problems, and a manufacturing method with good characteristics and high productivity has not been established.

本発明の目的は、ゲート電極の形成において、ドライエ
ツチング法と、ウェットエツチング法の両方の長所をと
って讐通常の写真製版技術でもってゲート′m極の微治
11化とゲート抵抗の低減を実現し、特性が均一性良く
、生産性釦優れた半導体装置の製造方法を提供すること
にある。
The purpose of the present invention is to take advantage of both the dry etching method and the wet etching method in the formation of gate electrodes, and to achieve finer control of the gate electrode and reduction of gate resistance using ordinary photolithography technology. It is an object of the present invention to provide a method for manufacturing a semiconductor device with good uniformity of characteristics and excellent productivity.

本発明によれば、能動層が設けられた半導体基板上に第
1の膜を設け、さらに第1の膜上に第2の膜を露出し、
さらにエツチングして、前記露出された第1の膜を除去
して半導体基板を露出し、次いで半導体基板および第2
の膜の全面にゲート金属を被着し、さらにホトレジスト
を全面に塗布したのち、ドライエツチング法を用いて、
表面から前記ホトレジスト、ゲート電極部以外の領域に
被着したゲート金属、さらに第2の膜を順次除去して、
第1の膜を露出し、更にエツチングにょシ、第1の膜を
除去して、前記半導体基板上にゲート電極を形成する工
程を含むことを特徴とする半導体装置の製造方法が得ら
れる。
According to the present invention, a first film is provided on a semiconductor substrate provided with an active layer, and a second film is further exposed on the first film,
Further etching is performed to remove the exposed first film to expose the semiconductor substrate, and then the semiconductor substrate and the second film are etched.
After depositing the gate metal on the entire surface of the film and applying photoresist on the entire surface, dry etching is used to
sequentially removing the photoresist, the gate metal deposited in areas other than the gate electrode portion, and the second film from the surface;
A method for manufacturing a semiconductor device is obtained, which includes the steps of exposing the first film, and further removing the first film by etching to form a gate electrode on the semiconductor substrate.

前記本発明によれは、第1の膜を設けることによシ、第
2の膜の開口部形成においてドライエツチング法を用い
ても、半導体基板への損傷を与えることなく、精度良く
設けることができ、さらに第3の膜を設けることにょシ
、ゲート長をマスクだ半導体装置の製造方法が可能とな
る。
According to the present invention, by providing the first film, even if a dry etching method is used to form the opening in the second film, the opening can be formed with high accuracy without causing damage to the semiconductor substrate. Furthermore, by providing the third film, it becomes possible to manufacture a semiconductor device in which the gate length is masked.

次に本発明の一実施例を図面を用いて説明する。Next, one embodiment of the present invention will be described with reference to the drawings.

第4図(、)〜(g)は本発明の一実施例を説明するた
めの図で、主要工程におけるMESFFliT半導体装
置のゲート電極、ソースおよびドレイン電極の各断面を
工程1111に示したものである。
FIGS. 4(a) to (g) are diagrams for explaining one embodiment of the present invention, and each cross section of the gate electrode, source, and drain electrode of the MESFFliT semiconductor device in the main process is shown in step 1111. be.

半導体基板としてGaAs半絶縁性基板lにn型能動層
2が形成さtlだGaAs基板に、第1の膜8としてア
ルミニウム(A1)を200 X真空蒸着法で設りる。
An n-type active layer 2 is formed on a GaAs semi-insulating substrate 1 as a semiconductor substrate.Aluminum (A1) is provided as a first film 8 on the GaAs substrate 1 by 200× vacuum evaporation.

次に第2の膜9として、CVD法により、470℃以下
で二酸化硅素(sho2)を6000X形成し、通常用
いられている。写真製版技術により、ゲート領域が1μ
mに開口(61)されたレジストによるマスク6を用い
て、異方性ドライエツチング法により第2の膜9である
8i02 を開口(91)する。(第4図(a))。5
i02のドライエツチングには、エツチングガスにCF
4を用いる。エツチングパワーは17W/crlである
。このとき8i02のエツチング速度は250X/分で
あり、AIのエツチング速度は10X/分であるだめウ
ェハー面内でのS+02膜厚の均来る。次に第3の膜9
2として、5i02膜をCVd法によ9470℃以下の
温度で、所望の膜厚、例えば0.3μmを全面に設ける
(第4図(b))。そして爾び異方性ドライエツチング
法によシ、前述した条件で、表面からエツチングして第
3の膜92を開口して第1の膜を露出し、次にリン酸(
N3 PO4)を用いて、露出しているAIをウェット
エツチングして除去し開口部81を設けGaAs基板表
面21を露出する(第4図(C))。次に露出されたG
aAs基板表面21に向けて、全面にゲート金属例えば
タングステン・チタン合金(TiW)30をマグネトロ
ンスパッタ法を用いて、50ooX被着する。そして、
通常用いられているホトレジスト6oをゲート金属表面
の全面に塗布し、150’CのN2ガス中で乾燥する(
第4図(d))。このと・き、ホトレジスト60は開口
部が凹状のため厚く設けられる。次にドライエツチング
法、例えばイオンミリング法によシ、表面からホトレジ
ストさらにゲート金属と順次エツチングして、第2の1
lIX!9が露出されるまで除去する(第4図(e))
。イオンミIJングの条件は、イオンガスにArを用い
圧力は2X 10−’ torr、アク1−一ター電圧
500 V 、カンード電流0.6A、アーク電110
A、アーク゛電圧30V、サプレツサー電圧200■1
■桑る。そしてこの条件におけるホトレジスト(AZ−
1350J =商品名)のエツチング速度は150X/
分。
Next, as the second film 9, 6000X silicon dioxide (sho2) is formed at 470° C. or lower by the CVD method, which is normally used. The gate area is 1μ by photolithography technology.
Using a resist mask 6 with openings (61) at m, openings (91) are made in the second film 9 8i02 by anisotropic dry etching. (Figure 4(a)). 5
For dry etching of i02, CF is added to the etching gas.
4 is used. Etching power was 17 W/crl. At this time, the etching rate of 8i02 is 250X/min, and the etching rate of AI is 10X/min, so that the S+02 film thickness within the wafer surface is uniform. Next, the third film 9
2, a 5i02 film is formed over the entire surface at a temperature of 9,470° C. or lower to a desired thickness, for example, 0.3 μm (FIG. 4(b)). Then, using an anisotropic dry etching method, the third film 92 is etched from the surface under the conditions described above to open the third film 92 and expose the first film, and then phosphoric acid (
The exposed AI is removed by wet etching using N3PO4) to form an opening 81 and expose the GaAs substrate surface 21 (FIG. 4(C)). Next exposed G
A gate metal such as tungsten-titanium alloy (TiW) 30 is deposited at 50 ooX on the entire surface of the aAs substrate surface 21 using magnetron sputtering. and,
A commonly used photoresist 6o is applied to the entire gate metal surface and dried in N2 gas at 150'C (
Figure 4(d)). At this time, the photoresist 60 is thick because the opening is concave. Next, using a dry etching method such as an ion milling method, the photoresist and then the gate metal are sequentially etched from the surface to form a second layer.
lIX! Remove until 9 is exposed (Figure 4(e))
. The conditions for ion mining were: Ar was used as the ion gas, the pressure was 2X 10-' torr, the arc voltage was 500 V, the arc current was 0.6 A, and the arc current was 110 V.
A, arc voltage 30V, suppressor voltage 200 1
■ Mulberry. And photoresist (AZ-
The etching speed of 1350J (product name) is 150X/
Minutes.

TiWは170Xでほぼ同等な速度であるため全面に被
着されているゲート金属は開口部は残され、他の部分は
除去されてゲート電極のパターンは良好に得ることが出
来る。次に露出された第3の1廃92である8i04膜
と第2の膜9である5ift膜をバッフアート弗酸を用
いてエツチング除去し、つづいて第1の層であるAl 
8をH3PO4で除去して、ゲート長が0.4μmのゲ
ート電極3が形成される(第4図(f) ) 。
Since TiW has almost the same speed at 170X, an opening is left in the gate metal deposited on the entire surface, and the other part is removed, so that a good gate electrode pattern can be obtained. Next, the exposed 8i04 film, which is the third 1-waste 92, and the 5ift film, which is the second film 9, are removed by etching using buffered hydrofluoric acid.
8 is removed using H3PO4 to form a gate electrode 3 having a gate length of 0.4 .mu.m (FIG. 4(f)).

ソース電極およびドレイン電極は、引続き例えば通常の
ホトレジストを用いたり7トオフ法にょシ、AuGe合
金およびN1の積層金属膜を、能動層2の表面に選択的
に設けることにより、形成される。またゲート金属とし
て、本実施例で述べたTiW合金等の耐熱性の極めて高
い材料を用いた場合は、M4図(f)に示した工程に続
いて、第4図(g)に示したようにゲート′H,極3を
マスクとして高ドースのイオン注入を行ない、アニール
することによシ、ゲート電極3に極めて近接した低抵抗
コンタクト領域50を形成でき、ソース、ドレイン抵抗
を大幅に低減することが出来る。
The source and drain electrodes are then formed, for example, by using a conventional photoresist or by selectively applying a laminated metal film of AuGe alloy and N1 on the surface of the active layer 2 using a seven-off method. In addition, if a highly heat-resistant material such as the TiW alloy described in this example is used as the gate metal, following the process shown in M4 (f), as shown in FIG. 4 (g), By performing high-dose ion implantation using the gate 'H, pole 3 as a mask and annealing, it is possible to form a low resistance contact region 50 extremely close to the gate electrode 3, greatly reducing source and drain resistance. I can do it.

M上のように本発明の特徴はウェットエッチンpcle
昧ではゲート電極の形成が困難であシ、且っドjJエツ
チング法では、避けることのできなかった半導体基板へ
の損傷を防止して、高耐熱性ゲー・ト1:釜属を用いた
半導体装置が特性の均一性と量産性食<形成することが
出来る。また第3の膜を用いたことによシ初めに用いた
ゲートマスク寸法よりも微細なゲート長が容易に得られ
、さらにホトレジストを用いたソフトオフ法と異なるた
めゲート金属の密着性、ショットキ特性が改善される。
As shown above, the feature of the present invention is wet etching pcle.
It is difficult to form a gate electrode with high heat resistance. The equipment can form food with uniform properties and mass production. In addition, by using the third film, a finer gate length can be easily obtained than the gate mask dimensions originally used, and since it is different from the soft-off method using photoresist, the adhesion of the gate metal and the Schottky properties are improved. is improved.

そして第2の膜を任意に得ることが可能なため、ゲート
金属の膜厚は制約を受けないため、ゲート金属膜が厚く
得られるのでゲート抵抗が低減される。
Since the second film can be obtained arbitrarily, the film thickness of the gate metal is not subject to any restrictions, so that the gate metal film can be obtained thickly, thereby reducing the gate resistance.

尚本発明の実施例として、第1の膜としてAl膜を、第
2の膜として8i0z膜を、更に第3の膜として第2の
膜と同じ8i02膜を用いた場合について述べたが、第
1の膜と第2の膜さらにゲート金属とにおいて、ウェッ
トエツチングで充分な選択比があれば他の物質膜を用い
てもよい。
As an example of the present invention, a case has been described in which an Al film is used as the first film, an 8i0z film is used as the second film, and an 8i02 film, which is the same as the second film, is used as the third film. Other material films may be used as long as wet etching has a sufficient selectivity between the first film, the second film, and the gate metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図(a)、 (b)および第3図(a)l
’ (b)は往工程における素子断面図に示したもの壬
ある。 図中1は半絶縁性半導体基板、2は能動層、3はゲート
電極、4および5はそれぞれソースtr、極おヨヒトレ
イン電極、6.60はホトレジスト、7はオーミック用
金属、8は第1の膜、9は第2の膜、30はゲート金属
、5oは低抵抗半導体領域、61.81および91は開
口部、92は第3の絢。 を示したものである。 HHF出願人  島;愚Hj院長 石板誠−第 1 口 第 2 閃 第3図 躬 4 図
Figure 1, Figure 2 (a), (b) and Figure 3 (a)l
' (b) is a cross-sectional view of the element in the previous process. In the figure, 1 is a semi-insulating semiconductor substrate, 2 is an active layer, 3 is a gate electrode, 4 and 5 are a source transistor and a polar electrode, respectively, 6.60 is a photoresist, 7 is an ohmic metal, and 8 is a first 9 is a second film, 30 is a gate metal, 5o is a low resistance semiconductor region, 61, 81 and 91 are openings, and 92 is a third fiber. This is what is shown. HHF applicant Shima; Gu Hj Director Makoto Ishiita - 1st part 2nd flash 3rd figure 4 figure

Claims (1)

【特許請求の範囲】[Claims] 能動層が設けらtまた半導体基板上に第1の膜を設け、
さらに第1の膜上に第2の膜を設け、該第2の膜を部分
的にマスク材で覆い、これを異方性ドライエツチング法
でエツチングして、第2の膜らエツチングして、前記第
2の膜の開口部側面にだけ第3の膜を残して第1の膜を
露出し、さらにエツチングして前記露出された第1の膜
を除去して半導体基板を露出し、次いで半導体基板およ
び第2の膜の全面にゲート金属を被着し、さらにホトレ
ジストを全面に塗布したのち、ドライエツチング法を用
いて、表面から前記ホトレジスト、グー)[44部以外
の領域に被着したゲート金属、さらに第2の膜を順次除
去して、第1の膜を露出し、更にエツチングにより、第
1の膜を除去して、前記半導体基板上にゲート電極を形
成する工程を含むことを特徴とする半導体装置の製造方
法。
an active layer is provided; and a first film is provided on the semiconductor substrate;
Further, a second film is provided on the first film, the second film is partially covered with a mask material, and this is etched by an anisotropic dry etching method to etch the second film, The first film is exposed leaving the third film only on the side surface of the opening of the second film, the exposed first film is removed by etching to expose the semiconductor substrate, and then the semiconductor substrate is etched. A gate metal is deposited on the entire surface of the substrate and the second film, and a photoresist is further applied on the entire surface, and then the photoresist is etched from the surface using a dry etching method. The method includes the step of sequentially removing the metal and then the second film to expose the first film, and further removing the first film by etching to form a gate electrode on the semiconductor substrate. A method for manufacturing a semiconductor device.
JP5348883A 1983-03-31 1983-03-31 Manufacture of semiconductor device Granted JPS59181068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5348883A JPS59181068A (en) 1983-03-31 1983-03-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5348883A JPS59181068A (en) 1983-03-31 1983-03-31 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS59181068A true JPS59181068A (en) 1984-10-15
JPH0212018B2 JPH0212018B2 (en) 1990-03-16

Family

ID=12944222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5348883A Granted JPS59181068A (en) 1983-03-31 1983-03-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59181068A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772384A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772384A (en) * 1980-10-24 1982-05-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor

Also Published As

Publication number Publication date
JPH0212018B2 (en) 1990-03-16

Similar Documents

Publication Publication Date Title
US3994758A (en) Method of manufacturing a semiconductor device having closely spaced electrodes by perpendicular projection
JPS6351550B2 (en)
JPH08172102A (en) Manufacture of semiconductor device
JPS59181068A (en) Manufacture of semiconductor device
JPH065682B2 (en) Method for manufacturing semiconductor device
JPS6155969A (en) Semiconductor device and manufacture thereof
JPS61116877A (en) Manufacture of field effect transistor
JPS63273363A (en) Manufacture of semiconductor device
JPS6068662A (en) Semiconductor device and manufacture thereof
JPH0653249A (en) Manufacture of semiconductor device
JPS61154177A (en) Manufacture of semiconductor device
JPS6218071A (en) Manufacture of semiconductor element
JPH01214067A (en) Gate electrode and wiring and their manufacture
JPH02220449A (en) Field-effect transistor and manufacture thereof
JPH03289142A (en) Manufacture of compound semiconductor device
JPS598378A (en) Gaas fet
JPH02103940A (en) Manufacture of compound semiconductor device
JPS59114826A (en) Manufacture of semiconductor device
JPS6161550B2 (en)
JPH11233527A (en) Semiconductor device and its manufacture
JPH0324062B2 (en)
JPS6020517A (en) Manufacture of semiconductor device
JPH02309634A (en) Manufacture of semiconductor device
JPS6196771A (en) Manufacture of semiconductor device
JPH0217932B2 (en)