JPS59180271A - Air liquefying method utilizing cold heat of liquefied natural gas - Google Patents

Air liquefying method utilizing cold heat of liquefied natural gas

Info

Publication number
JPS59180271A
JPS59180271A JP5574783A JP5574783A JPS59180271A JP S59180271 A JPS59180271 A JP S59180271A JP 5574783 A JP5574783 A JP 5574783A JP 5574783 A JP5574783 A JP 5574783A JP S59180271 A JPS59180271 A JP S59180271A
Authority
JP
Japan
Prior art keywords
natural gas
air
liquefied natural
heat
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5574783A
Other languages
Japanese (ja)
Inventor
川口 要
山口 誼
柏田 潤
上山 仁夫
滝沢 政司
谷本 和彦
金子 輝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Chubu Electric Power Co Inc
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Chubu Electric Power Co Inc
Priority to JP5574783A priority Critical patent/JPS59180271A/en
Publication of JPS59180271A publication Critical patent/JPS59180271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、液化天然カス(Jメト、l−N Gど略称
りる6)の冷熱を利用しC空気を液化(Jイ)プi法に
係り、詳しくはL N Gの冷熱を効率J、く利用し、
液化空気(以下1−Δと略称する)をJ、す4111.
−+ス1〜T:製造づる方法に門(る、1 [−N Gの冷熱を利用して空気を液化りする方?人ど
シテ、−J’ T−ニ特聞昭55 1’163726、
!1″工聞11fl! 56−3 /I 083Eなど
が捉案され゛(いる、1しかし、これらの方法は、LN
Gの使用バ)が 定の場合にGJl−N Gの冷熱を十
分利用覆ることがてさ、効果的であるが、LNGの使用
中に変動り\ある1′2合にはLNGの冷熱を十分に利
用r:キない欠点がある。すなわち、このような空気の
液化方法は、例えばカスクーピン発電にif’>い(、
助燃用空気を常11.1燃FI III 1. N G
 (7) 冷熱ヲf’J 川L/ ’Ciff 化II
? 留シ’(,13き、電力需要のピーク時にそのし△
を集中的に気イし使用りることにより、空気11縮別を
用いすに光電りる場合に用いられるが、この場合しNO
の使用fA fJ、電力需要にほぼ対応し7、第1図の
グラフに承りように、昼間の9)時〜1704に大きく
夜間の20時・−B it:’jに小さく<rす、最大
使用量の330・・・40%とくfす、口平均どしては
その値Paは約70%ど4Tる9、このような変動があ
る場合にはINGの1a熱を安定して回収づるために、
最低使!l En P m i nよりし*) −11
1−カk 少イp ++ ヲ、lA’2MJ::i J
るための定常量としC設定りるが、日平均量(1−)a
)が70%C11〕0を35%とり−れば、冷熱の四収
捧は50%となっ−Cしまい、I△の製造1−λ1〜が
高くつく欠点がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for liquefying carbon air by using the cold energy of liquefied natural gas (Jmeth, abbreviated as L-NG). Utilizes the cold energy of NG efficiently,
Liquefied air (hereinafter abbreviated as 1-Δ) is J, S4111.
-+S1~T: Gate to the manufacturing method (ru, 1 [-N How to liquefy air using the cold energy of G? Who is it? -J' T-Ni Special Report 1977 1'163726 ,
! However, these methods are
It is effective to make full use of the cold energy of GJl-N when the amount of G used is constant, but if it fluctuates during the use of LNG, it is effective to use the cold energy of LNG. Fully utilized: There are some drawbacks. In other words, such an air liquefaction method is suitable for, for example, Cascoupin power generation if'>
Always use air for auxiliary combustion 11.1 Combustion FI III 1. NG
(7) Cold heat wo f'J Kawa L/'Ciff II
? Torushi' (,13 ki, during the peak of electricity demand △
It is used when using air 11 to produce photoelectric power by intensively using air, but in this case, NO
The use of fA fJ almost corresponds to the power demand7, and as shown in the graph of Figure 1, it is large in the daytime from 9:00 to 1704, and is large at night at 20:00. The amount used is 330...40%, and the average value Pa is about 70%.9 If there is such a fluctuation, ING's 1a heat can be stably recovered. for,
Worst messenger! From l En P min *) -11
1-ka k 小いp ++ wo, lA'2MJ::i J
C is set as a constant amount to ensure that the daily average amount (1-)a
) is 70% C11]0 is taken as 35%, the cooling and heat consumption is 50% -C, which has the drawback that the production of I△1-λ1~ is expensive.

S1〕2図にC,JI L A製造中に対りる1、−N
 G利用量の割合により]−へ製造の電力原111位の
変化の例を示しであるが、例えば、LAを一180℃で
製j貴し、L N Gの使用割合が1 、 tlc+1
. NG/kat Aの場合、電力原字イ0は約0. 
1 /+ 2 l<w II/′kgl△どなり、これ
が0 、8 kc+ L N G / kq l−△ど
イfるど++JO,206Kw l−1/kgLAに−
b/iす、)NOの冷熱を有効に回収Jることの重要性
が叩VRaれろ、。
S1] Figure 2 shows C, 1, -N during JILA manufacturing.
The following is an example of a change in the power source for production (according to the ratio of G usage).
.. In the case of NG/kat A, the electric power original character I0 is approximately 0.
1 /+ 2 l<w II/'kgl△, this is 0, 8 kc+ L N G / kq l-△do f Rudo++ JO, 206Kw l-1/kgLA-
b/i) The importance of effectively recovering the cold energy of NO should be emphasized.

このため、第1図中のPmaxから13m i n ;
l、C・ノ冷熱を回収づる場合には、65%の変動を1
!伎収弓る必要がある。、これを、冷熱を回収Jる流体
合一処理づるカス圧縮機を右づるプロレス(り・j応り
るi;二1.i1、このガス圧縮機の処JIPMの一部
をバイパスさ[!るか、おるいは吐出放出せねばならず
、動力を11゛)失りることになる。動力損失なしC゛
ト記変Jを吸収りるには、複数台の圧縮機を設【ノ、こ
れらの圧縮機のうちいずれかを運転またはl?°+L、
 7Jる必要があり、設備&5 J、び運転か複刹にな
り、かつ建設τ′1が多大どなる欠点がある。
Therefore, 13min from Pmax in FIG.
In the case of recovering cold heat from l and C, the fluctuation of 65% is reduced to 1
! It is necessary to complete the bow. This is done by bypassing a part of the JIPM in this gas compressor [! Otherwise, it has to be discharged, resulting in a loss of power of 11゛). To absorb the loss of power without power loss, install multiple compressors and operate one of these compressors. °+L,
The disadvantage is that it requires 7J, 5J, and operation, and requires a lot of construction time.

この発明(、↓1記事情に鑑み−(なされたしの(゛、
火力発電所などの需要先のL N Gの使用tβに人d
な変動があっ(−も、この変動りるl N GのイJづ
る冷熱を略完全に回収刊用匁ることが(’J、(I℃=
1ストで1Aを冑ることがで゛き、しから5H2(5,
+」、運申入が容易7: thるINGの冷熱を利用し
!ご空気d4化方法を提供りることを目的どりるbので
ある。
This invention (,↓In view of the circumstances of article 1-(was made (゛,
LNG usage tβ at demand destinations such as thermal power plants
There is a fluctuation (-, but this fluctuation occurs.) It is possible to almost completely recover the cooling energy of the G ('J, (I℃=
It is possible to remove 1A with one stroke, and then 5H2 (5,
+", easy to apply 7: Utilize the cold energy of THRUING! Our purpose is to provide a method for converting air into D4.

Jス下、図面を参照しくこの発明の詳細な説明りる、。A detailed description of the invention is given below with reference to the drawings.

第3図は、この弁明の空気液化方法の一例を示づ゛もの
(′ある7、原オ゛ミ1空気は、管1から予圧ブ[1ワ
2に尋人され4月縮され、管3を経C原別空気精製装置
4に送られ、ここ′ひ原石空気中の水分、炭素カスか除
)、される5、この際、除ノ、効ytりをL−ぼるため
、LNGの冷熱の一部をルAンガスなどの熱媒イホに移
し、これにJ、り原料η1気を冷却゛りる方法か■yら
れる3、この方γ人は、J、た直1丁う空気とり、 N
Gとが接トPl!(、する危険11を回避することがC
さ /+7J、シいしの(−ある、。
Figure 3 shows an example of the air liquefaction method of this defense. 3 is sent to the LNG source air purification device 4, where it is removed from the moisture and carbon scum in the air. There is a method of transferring part of the cold heat to a heating medium such as gas, and using this to cool the raw material η1. , N
G is in contact with Pl! (C
Sa/+7J, Shiishino(-aru,.

このJ、うにして精製された原Fl空気は、管5から予
冷熱交換器6に送られ、(1,に温熱媒体おJ、びイ1
℃?:)i’+の11(JF ’、”気ど熱交換し、つ
いC管7がら空気1F縮機8の吸入側にj9 /Jlれ
る、1ごの9ν気圧縮機8の中間段から(ムさ出された
空気(、L、ぜ・194経て、再び上記予冷熱交換器6
C冷111]され、管10で空気液化方法から仄−)で
−さた低温の中月′空気ど合’&: Ly、IJ211
 J: リ”+” 気りl縮fil! 80) 後段k
 It給サす、rTi (y圧縮される3、従来の液化
711法((、I空気(,1、]5・−・25ataに
11幅されるがこの例(4;1. l N G )iu
j 川/i:の変動に耐えるように、カスj丁1tI苧
(預〈て1空・j;/ブ、天然カス圧縮機)を使用しイ
γいjj ’、’[l:どしたため、L N GはI−
、N Gの需要先の要)jシ珪力で気化、¥−/温した
1、このため、空気の液化動子を土()るIJめに、空
気をより高圧に圧縮りる必要がl:I−シ、ここでにI
、約5O−70aLaに圧縮される5、この高圧空気は
、管12を経−C熱交換器1ζ3(こ導かれ、上記熱媒
体によって冷7.IIされ、仏1/lから一部は管15
を経r l−N G熱Q 1% 器17にj!、’+ 
j)1れる。−ji、LNG熱交換器17(Jは、l 
N G I!’i’槽44よりL N Gポンプ46て
テi几されたL N Oの第1図1に示した平均使用量
1〕aに相当りる帛が管45、管/1.7を経て送給さ
れる。l−、N G熱交換器17では、第4図に示寸よ
うに、ING熱で)イIXi線aに対し−C高圧空気は
blあるい(、目)2のJ、:)に熱交換し、交換熱Φ
Q+あるいIJ Q 2を授受し(d1冒α1251、
ζ冷ノ]1される。l−、N Gの熱交換終点Δは1.
゛・−介11力の飽和ン品1rLt/\に合うように設
定3)れ、f’B 4;i稈1亨によりΔ1あイ)い(
31,Δ2点にi′J−(1・するようにガス化学が決
すノ°)弓れる。この熱交換し2kI N(肩)2、管
7′I8/J目らI NOハ・・l−ノア/I 9に3
9かれ、−11貯留される。ぞし【、このり、 N G
バッノノ7/19に貯えら・れ7.: L N Gは、
需要先の1.− N (3(す2川早に応してぞの液分
が弁51で流量調節されlン)え菅j O、J 2を経
てLNG気化器5/Iにう9かれ、またガス分が臂53
を経てLNG気化器54に導かれ、熱媒体に冷熱を−I
ノえ、自身は冒温し、?’)57から?lff要先に送
られる。
The raw Fl air purified in this way is sent from the tube 5 to the pre-cooling heat exchanger 6, where a heating medium is added to (1) and
℃? :) i'+'s 11 (JF', "air exchanges heat, and the air from the intermediate stage of the 9ν air compressor 8 is passed through the C pipe 7 to the suction side of the 1F compressor 8. After passing through the pumped air (, L, ze, 194
Ly, IJ211
J: Re”+” Kiki l contraction fil! 80) Second stage k
It supply, rTi (y compressed 3, conventional liquefaction 711 method ((, I air (, 1, ] 5...25 ata to 11 width), but in this example (4; 1. l N G ) iu
In order to withstand the fluctuations of the river /i:, a natural waste compressor (a natural waste compressor) is used to withstand the fluctuations in the LNG is I-
, N G's demand destination) J is vaporized by silicon power and heated 1, Therefore, it is necessary to compress the air to a higher pressure in order to make the liquefied particles of the air in the IJ. l:I-shi, here I
This high-pressure air is compressed to about 5O-70aLa and is guided through the pipe 12 to the -C heat exchanger 1ζ3 (here), and is cooled by the heat medium described above, and a portion of the air from 1/l is passed through the pipe. 15
Through r l-N G heat Q 1% j to vessel 17! ,'+
j) 1 will be. -ji, LNG heat exchanger 17 (J is l
NGI! A fabric corresponding to the average usage amount 1]a shown in FIG. will be sent. In the l-, NG heat exchanger 17, as shown in Fig. 4, the -C high-pressure air is heated to bl or (,)2 J, :) with ING heat. exchange and exchange heat Φ
Give and receive Q+ or IJ Q 2 (d1 attack α1251,
ζ Cold] 1. The heat exchange end point Δ of l-, NG is 1.
Set to match the saturated product 1rLt/\ of 11 forces, f'B 4;
31, Δ2 points i'J- (gas chemistry determines 1). This heat exchanger is 2 kI N (shoulder) 2, tube 7'I8/J eyes I NO ha...l-Noah/I 9 to 3
9, -11 is stored. Zoshi [, Konori, NG
Saved on 7/19 7. : LNG is
Demand destination 1. - N (3) The flow rate of the liquid component is adjusted by the valve 51 according to the flow rate of the liquid, and the liquid component is transferred to the LNG vaporizer 5/I via the O, J 2, and the gas component is armpit 53
The LNG is led to the vaporizer 54 through the
No, did you warm yourself? ') From 57? lff will be sent to the required destination.

INOだ)交1襲器17で冷7J1さねた高圧空気は、
↑τ′19を経U 、 T’F’、 16から熱交換器
18を経た高1F空(〈tに合流し、管21を舒て熱交
換器22’t−さら(ご冷加され、管23を経U 、 
1lij服弁2/Iで上記空気11縮機8の中間段圧力
まC−膨服し、一部液化!jる。そし−C1気液分離器
26で、この空気は気液分離され、ガス状空気は管27
、熱交換器22.1τ2ε)、熱交換器18.1°τ2
9を経て原石空気に合流され、1△は管3oを経でL/
\過冷過熱 1に導かれ、ここで過熱7ff+され、′
i′鉱32.,33.3)5)、弁3/lを経U l−
Δ貯IW’j /I3に)りがれ、貯へじれる。。
INO) The high-pressure air that was pumped by the cold 7J1 with the AC 1st attack device 17 was
↑U through τ'19, T'F', from 16 to heat exchanger 18, join to 1F air (〈t), connect tube 21 and connect to heat exchanger 22't-further (cooled, Through the tube 23,
1lij Closure valve 2/I expands the air 11 to the intermediate stage pressure of the compressor 8 and partially liquefies it! I will. Then, in the C1 gas-liquid separator 26, this air is separated into gas and liquid, and the gaseous air is passed through the pipe 27.
, heat exchanger 22.1τ2ε), heat exchanger 18.1°τ2
9, 1△ joins the raw stone air through pipe 3o, and L/
\Supercooling and superheating 1, where it is superheated by 7ff+,'
i′ ore 32. ,33.3)5), through valve 3/l
ΔStorage IW'j /I3), and the storage is reduced. .

また、この1−Δの一部は、(’j 30を仔(’ 1
lti利水弁ζ17に送られ、ここで人気Ir近くン1
、(−l1ii′!服し、WtX ICf低下してLA
過過熱31に送られ、ここC上記1△を湯冷ムI L、
自身は気化し箆3℃)、熱交換器22、管40、熱交換
器18、管/11を通り、「冷熱交換器6でO℃程度よ
−(゛加W’Jn 3れ管42よりJJI出される。こ
のJJI出空気は、原1′;1空気1゛^製装首1の再
生用ガスとしC利用♂れる。
Also, part of this 1-Δ is ('j 30 (' 1
Sent to lti water valve ζ17, popular here near Ir N1
, (-l1ii'!, WtX ICf decreases and LA
It is sent to superheating 31, where C above 1△ is cooled with hot water I L,
It vaporizes and passes through the heat exchanger 22, tube 40, heat exchanger 18, and tube 11, and the temperature is about 0℃ in the cold heat exchanger 6. JJI is discharged. This JJI discharged air is used as a regeneration gas for the raw material 1'; 1 air 1'^ manufacturing neck 1.

ぞして、需要先の使用L N G 、7+が1−記平均
早1″aJ:すb少いどきはL NGバッ−) i’ 
/l 9にL N Gが貯えられ、逆に使用L N a
早が甲均甲P a 、J、すb多いときはL N Gバ
ッファ’19iこl宇えられたjN G カ[−、N 
G 気化?jg 5 /Iヲ経(需要り!; ニlj、
 i* c’! 4’する。ぞして、このようにLNG
・気化器5.I L、: j9がれるL N G mは
変動りるが、この変動に見合−)た熱媒体がLNG気化
器54に供給されるよ−)にイcっでいる。覆なわら、
蓄熱槽5F)から管j)9、循1ζ″;ボンf I; 
0、管〔31を経’Ct、 N O気化器5 ’l l
J)入られる熱り1!イホ(,1、循環ポンプ6 C1
の吐出流量を調nii +IることにJ、つCぞの流量
が調節され、INGの変動:βに見合う早が蓄熱槽58
からI−N G気1ヒ器5 /lにjスられ、ぞしC変
動りるり、 N Gの冷熱をり、lぼ100%回収し、
自らG1Lイ1(渇とな−)−(管62を経(蓄だ! 
4+M 58に戻される。これによっC変動りるL−N
 Gの冷熱は蓄熱槽58に貯えられることになる。
Therefore, the demand destination's usage L NG , 7+ is 1-, the average speed is 1''aJ: Sub, L NG B-) i'
L N G is stored in /l 9 and conversely used L N a
When the early speed is high, it is L N G buffer '19i was crushed.
G. Vaporization? jg 5 /Iwo sutra (demand!; nilj,
i*c'! 4' Do. Then, like this, LNG
・Vaporizer5. Although the LNG m produced by I L,:j9 varies, the amount of heat medium commensurate with this variation is supplied to the LNG vaporizer 54. Despite the cover,
Heat storage tank 5F) to pipe j)9, circulation 1ζ''; Bon f I;
0, tube [31 through 'Ct, N O vaporizer 5'l l
J) Heat that can be entered 1! Iho (,1, circulation pump 6 C1
By adjusting the discharge flow rate of +I, the flow rates of J and C are adjusted, and the heat storage tank 58 is adjusted to correspond to the fluctuation of ING: β.
The I-NG gas is placed in a 5/l tank, the temperature changes, the cold heat of the NG is removed, and 100% of the l is recovered.
G1L i1 (thirsty) - (through tube 62 (storage!)
Returned to 4+M 58. This causes C to fluctuate L-N
The cold heat of G is stored in the heat storage tank 58.

匠しく、Ir熱槽58にtri’えられた低温の41(
保体の 定ら)は、n 63、循環ボン−164、管6
5を紅(3:j(交換器13、予冷熱交換器6、原1’
l空気粘製装置4に冷熱を分配供給し、常温となって管
7F5から4?熱槽58に戻される。、この場合、熱交
jφZ413の出[](の熱媒体の湿度が蓄熱槽58に
人ね熱!!!、!体の温度(J近い場合に4J菅68、
管70、′i′τ71の系統を通さずに、管72、弁7
3、n74を経C7;熱槽58に熱媒体を戻りことbあ
る。
The low-temperature 41(
N 63, circulation tube 164, tube 6
5 is red (3:j (exchanger 13, pre-cooling heat exchanger 6, original 1'
l Cold heat is distributed and supplied to the air viscous device 4, and when the temperature reaches room temperature, it is passed from the pipe 7F5 to the pipe 4? It is returned to the heat tank 58. , In this case, if the humidity of the heat medium of the heat exchanger jφZ413 is close to the heat storage tank 58, the temperature of the body (4J tube 68,
The pipe 72 and valve 7 are connected without passing through the pipe 70 and 'i'τ71 system.
3. C7: Return the heat medium to the heat tank 58 via n74.

1スLの3」、うイf空気液化〕)法によれば、需要先
のI N ()IjJJ川♀か用1図のように変動し、
l−N G使用量がLNGバツノア49に導入されるI
NG帛(Pa )を越えるときは、L N Gバッファ
49に貯えられたり、 N Gを同時に需′要先にII
給りることがC′き、多母のINGの冷熱は、熱911
体にJ、−)′(蓄熱槽58に貯えられ、L、 N G
便用字が塘少し、熱媒体に供給される冷熱が減少した1
易合に(、j5、・二の貯えられた冷熱を利用りること
がCさるのC11−A製造プ1]レスのl−、N G熱
交換器17、熱交トヲ・器13、予冷熱交換器6には常
+1:’1− :1吊の冷熱か供給されることになり、
各熱交換器17.’lC1゜6は一定状態で安定に作動
し、ぼ器に!1((狸をJ〕えることなく、一定けの空
気を効′:t′J、<dり化りることができる。この結
果、t−N Gの使用量1rl変IsJかあっても、こ
の変動りるり、 N (コのリベての冷蟹I4(コ、ぼ
100%回収りることがてさ、1Δの電力原車(0を低
下ざぜることができる、。
According to the 1st L of 3'', Uf air liquefaction]) method, the demand destination's I
I-NG usage will be introduced into LNG Batsunoa 49
When exceeding the NG (Pa) limit, the LNG is stored in the LNG buffer 49, or the NG is sent to the customer at the same time.
It is C' to supply, and the coldness of ING of many mothers is heat 911
J, -)' (stored in the heat storage tank 58, L, N G
The convenience character is 塘, and the cold energy supplied to the heat medium has decreased 1
It is easy to use the stored cold energy of C11-A manufacturing process 1], N G heat exchanger 17, heat exchanger 13, The cold heat exchanger 6 is always supplied with +1:'1-:1 cold heat.
Each heat exchanger 17. 'lC1゜6 operates stably in a constant state and is a great tool! 1 ((Raccoon) , this fluctuation, N (Ko's cold crab I4 (Ko, it is possible to recover almost 100%, 1Δ electric power generator (0 can be reduced).

第5図は、需要先のINO使用11ハの11.)量的1
2動とこれに対応するL N C,バッフ:i’ 49
のLNGI!宇液徂変化a3よび蓄熱槽58の(fU温
熱奴1木部、畠ン1−熱媒体1の変化を示(グラフCあ
る1、このグラ−〕より、l−N G使用量がその平均
(「酉つaを下回る時期に【ま、INOバッファ49に
1.、 N Gが貯えられ、希熱槽58の低温熱媒体用
が減少し、1;1温熱媒体F11か]11加りる3、ま
た、1NGfffi川早が平均値Paを1回ると、)φ
にり、 N Gバラツノ・ll9の1−、 IすGは減
少し、蓄熱tfli 58の低温熱媒体Φは増加し、常
温熱媒体間は減少りる3゜ 第6図はこの発明の空気液化ll法の第2の実施例を承
りもの(・ある1、この例rlJ、I−NGバッファ/
I 9からL N Gを需要先に送出ゾる系統を、図示
した」、うにLNG讐圧ポンプ51′、膨張タービンε
)0、発電機81、加温器83で4M成し、I−N Q
 i+’、、i li!サイクルによつ−C勅力を回収
りるようにしたbのでitうる。上記膨張タービン80
に可変ノスルタイゾのものを採用することにより、容量
調節をll0−140%の範囲で行うことがCさ、IN
 O−の変化に対して比較的容易に対応りるごとができ
る、1 第7図は、第3図に示した実施例の変形例を示づムので
あって、空気圧縮機8の中間冷却段数を増加し、空気圧
縮機8の動力を低減とぜたしの(・(bる。
Figure 5 shows the 11. ) quantitative 1
2 motion and corresponding L N C, buffer: i' 49
LNGI! From the change in fluid level a3 and the change in thermal storage tank 58 (fU heating element 1 x wood, heat exchanger 1 - thermal medium 1 (graph C 1, this graph)), the l-NG usage amount is the average (When the temperature drops below a, 1., N G is stored in the INO buffer 49, the low-temperature heat medium in the diluted heat tank 58 decreases, and 1; 1 heat medium F11?) 11 is added. 3. Also, when 1NGfffi Kawahaya goes around the average value Pa once, )φ
1-, IsuG decreases, the low temperature heat medium Φ of the heat storage tfli 58 increases, and the room temperature heat medium decreases 3゜Figure 6 shows the air liquefaction of this invention. The second example of the ll method (・1, this example rlJ, I-NG buffer/
The diagram shows the system for sending LNG from I9 to the demand destination, LNG pressure pump 51', and expansion turbine ε.
) 0, generator 81, heater 83 make up 4M, I-N Q
i+',,i li! It is possible to recover the power by cycle. The expansion turbine 80
It is possible to adjust the capacity in the range of 10% to 140% by adopting a variable nosultizoone.
7 shows a modification of the embodiment shown in FIG. 3, in which intermediate cooling of the air compressor 8 is possible. The number of stages is increased and the power of the air compressor 8 is reduced.

Jメ下、実施例を示しi’ L:1.体向に説明1〕る
1゜〔実施例〕 第3図に対しC第6図に示した1ノが、を抹用し、さら
に第7図に示した変形例を組合liiこy’ l−ルス
で′、次の条イ!l下C液化空気を製造した。。
J Meg below shows examples i' L: 1. 1〕  〔                                                                                 ” -Rus de', next article! Liquefied air was produced under 1C. .

LNGの最人吊使用是(pmax ) 61  T on、’旧゛ しNGの最小使用ψ(RIltin) 22 、2 Ton/br LNGの平均使用量(Pa) 4 ’I 、  ’、’J T’ (ill/’旧゛原
Fl空気Q   26,0OONTl’/l+r空気液
化m   20.00ONTn’/l+r空気液化温度
  −180℃ INGバッファ49の容量  1ε3 Q T on熱
媒体  )[1ン12 蓄熱槽58の低温熱媒体用庶  −110TC蓄熱槽5
8の常温熱媒体温度  −ト9℃L N G気化器54
に送られる熱媒体量95〜26O−T−on/hr 空気液化プロセスに送られる熱媒体量 192丁o n 、−’ b r この条イ’Ic”、LNGi君、′しA吊(よ、平均1
,7/Ikaz薯くqCあり、液化空気電力原子イl′
Iは、0.1、’、3 K w Ll / kgどなっ
た。
Maximum usage of LNG (pmax) 61 T on, Minimum usage of old NG (RIltin) 22, 2 Ton/br Average usage of LNG (Pa) 4 'I, ', 'J T'(ill/'Original Fl Air Q 26,0OONTl'/l+r Air liquefaction m 20.00ONTn'/l+r Air liquefaction temperature -180℃ Capacity of ING buffer 49 1ε3 Q T on heat medium) [1-12 Heat storage tank 58 -110TC heat storage tank 5 for low temperature heat medium
Room temperature heat medium temperature of 8 - 9℃ LNG vaporizer 54
Amount of heat medium sent to 95 to 26 O-T-on/hr Amount of heat medium sent to air liquefaction process 192 tons/hr average 1
, 7/Ikaz example qC, liquefied air power atom I'
I was 0.1,',3 K w Ll/kg.

以1説明したj、うに、この発明の1.、 N Gの冷
熱不利用した空気液化方法によれ(J、LNG(7)需
要先にa3いてL N (、、llの使用nの時間的変
動があつCし、この変動・するり、 N Gが4iりる
冷熱をほぼ完全に回収覆ることができ、これを空気液化
ゾ1Jレスに右列に利用りることがてパき、LAの製j
告コス1〜を大幅に低下させることが1す能Cある1、
また、1−1’J (15の変動に伴う冷熱是の変動を
蓄熱槽をπリリ゛にれに吸収させるJ、うにしたのC1
L、 N Gの大幅イ1変動に3・]シてしよく)8従
できるとともに、しNGの変動に対応りる可動部分は熱
媒体循環ボン1のニアi、 c゛あり、設備J3よび運
転が容易℃・あり、建設
1 of this invention explained below. , N Due to the air liquefaction method that does not use cooling heat (J, LNG (7) at the demand site, there is a temporal fluctuation in the use of L N (,, ll), and this fluctuation, It is possible to almost completely recover the cold heat generated by G4I, and this can be used in the right column without air liquefaction.
It has the ability to significantly reduce the cost of 1 to 1,
In addition, 1-1'J (J to absorb the fluctuations in the cooling/heating ratio due to the fluctuations in 15 to the
The movable parts that can respond to the large fluctuations in L and NG are the near i and c of the heating medium circulation cylinder 1, and the equipment J3 and Easy to drive and construction

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はING使用量の時間的ゆ動を示リグラフ、第2
図は、しΔ電力原甲荀とL゛N G I#i″17/[
Δ甲との関係を液化渦電を変え−C示したグラフ、第3
図(よこの発明の空気液化り法のm個4示l系統図、第
4図はLNGと空気との熱交(色条1’lを示リグラフ
、第5図はしNG使用皐の変動とこれに対応りるL N
 Gバッファの貯液量の変化おJ、び蓄熱4g9の低温
熱媒体用、常温熱媒体Iイの変化を示リグラフ、第6図
はこの発明の他の例を;j(IJ要部系統図、第7図は
第3図に示した方法の変形例を示(ノ要部系統図である
。 2・・・・・・予圧ブ1」ツク、4・・・・・・原r1
卆気精製装置、6・・・・・・予冷熱交換器、8・・・
・・・空気Y1縮PQ、133・・・・・・熱交換器、
17・・・・・・ING熱交換1ソ:)、I B・・・
・・・熱交換器、22・・・・・・熱交換器、2/l・
・・・・・膨用、)弁、26・・・・・・気液分離器、
31・・・・・・1−△過熱器、37・・・・・・膨張
弁、43・・・・・・L A貯槽、’14・・・・・何
N G気化器、57・・・・・・管、58・・・・・・
蓄熱槽、60・・・・・・循環ポンゾ、61・・・・・
・管、62・・・・・・管、6 /l・・・・・・tb
’i環ポンプ、67・・・・・・管、038・・・・・
・管、70・・・・・・菅、71・・・・・・臂、75
・・・・・・管。 出願人 中部電力株式会社 ]−1水酸素株式会礼 第1図 炬キ褒ワ LN’kAt(K騒、。 第3図 8 一
Figure 1 is a graph showing the fluctuation of ING usage over time;
The figure shows ΔElectric Power Source and L゛NG I#i''17/[
Graph showing the relationship between ΔA and liquefaction eddy current by changing -C, 3rd
(Figure 4 is a system diagram showing m pieces of air liquefaction method of this invention, Figure 4 is a graph showing the heat exchange between LNG and air (color stripes 1'l), Figure 5 is a graph showing the variation in the use of NG. and the corresponding L N
Figure 6 shows another example of this invention; , FIG. 7 shows a modification of the method shown in FIG. 3 (it is a system diagram of the main parts).
Air purification device, 6... Pre-cooling heat exchanger, 8...
... Air Y1 condensation PQ, 133 ... Heat exchanger,
17...ING heat exchange 1 so:), I B...
... Heat exchanger, 22 ... Heat exchanger, 2/l.
...inflation, ) valve, 26... gas-liquid separator,
31...1-△Superheater, 37...Expansion valve, 43...LA storage tank, '14...N G vaporizer, 57... ...Tube, 58...
Heat storage tank, 60... Circulation ponzo, 61...
・Tube, 62...Tube, 6/l...tb
'i-ring pump, 67... pipe, 038...
・Pipe, 70... Suga, 71... Arm, 75
······tube. Applicant Chubu Electric Power Co., Inc.]-1 Water Oxygen Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 原オ′11空気を液化天然ガスの冷熱を利用し’C+f
ii製したの”; 1.’!縮し、ついで液化天然ガス
で冷7,111.て液化さけ液化空気を1゛ノるととも
に気化した液化天然ガスをH′1費先にjX給づる液化
天然ガスの冷熱を利用した空気液化方法におい(−1消
費先の気化しだ液化天然ガスの使用量に変動がある場合
、その変動する使用量の平均値の液化天然ガスを貯槽に
受(〕入れ、この液化天然ガスにJ、)で原料空気を液
化づるととbに、」−記貯槽から消費先が要求づるりの
液化天然ガスを送給しこの液化天然ガスを液化天然ガス
気化器C熱媒体と熱交換さけて二の熱媒体に冷熱を!j
え、この低温の熱媒体を蓄熱槽(こ貯えるどどもに(の
−窓用を液化空気製造工程の冷熱利用部に冷却源どして
送給循環づることに゛より、消費先の気化した液化天然
ガスの1φ用FI]が−し記平均(16を上回るllS
は液化天然カスがl;j−:)余剰の冷熱を上記蓄熱槽
に貯え、使用中が平均値を下回る時はI−記蓄熱槽に貯
えられた余剰の冷だ)を利用づるJ、うにしたことを特
徴どりろ液化人?((カスの冷熱を利用した空気液化方
法、。
Geno'11 Using the cold energy of liquefied natural gas to convert air to 'C+f
1.'! Condensed, then cooled with liquefied natural gas to avoid liquefaction, liquefied air was heated for 1 hour, and the vaporized liquefied natural gas was supplied to the destination for H'1 liquefaction. In the air liquefaction method that uses the cold energy of natural gas (-1) If there are fluctuations in the amount of liquefied natural gas used at the consumption destination, the average value of the fluctuating amount of liquefied natural gas is received in the storage tank (). The raw air is liquefied into this liquefied natural gas at J, ), and the amount of liquefied natural gas requested by the consumer is delivered from the storage tank to B, and this liquefied natural gas is transferred to a liquefied natural gas vaporizer. C Avoid heat exchange with the heat medium and transfer cold energy to the second heat medium!j
In addition, by supplying and circulating this low-temperature heat medium to a heat storage tank (which stores the window) as a cooling source to the cold energy utilization part of the liquefied air production process, the consumption destination is vaporized. The average FI for 1φ of liquefied natural gas is -
The liquefied natural waste is stored in the above heat storage tank, and when the temperature during use is below the average value, the surplus cold stored in the heat storage tank is used. Dororo Liquefied Man? ((Air liquefaction method using the cold energy of waste.
JP5574783A 1983-03-31 1983-03-31 Air liquefying method utilizing cold heat of liquefied natural gas Pending JPS59180271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5574783A JPS59180271A (en) 1983-03-31 1983-03-31 Air liquefying method utilizing cold heat of liquefied natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5574783A JPS59180271A (en) 1983-03-31 1983-03-31 Air liquefying method utilizing cold heat of liquefied natural gas

Publications (1)

Publication Number Publication Date
JPS59180271A true JPS59180271A (en) 1984-10-13

Family

ID=13007444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5574783A Pending JPS59180271A (en) 1983-03-31 1983-03-31 Air liquefying method utilizing cold heat of liquefied natural gas

Country Status (1)

Country Link
JP (1) JPS59180271A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216480A (en) * 1975-07-30 1977-02-07 Nippon Sanso Kk Process for production of liquefied air using chilling of liquefied na tural gas
JPS55146372A (en) * 1979-05-02 1980-11-14 Nippon Oxygen Co Ltd Method of liquefying air by liquefied natural gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216480A (en) * 1975-07-30 1977-02-07 Nippon Sanso Kk Process for production of liquefied air using chilling of liquefied na tural gas
JPS55146372A (en) * 1979-05-02 1980-11-14 Nippon Oxygen Co Ltd Method of liquefying air by liquefied natural gas

Similar Documents

Publication Publication Date Title
JP4971356B2 (en) Method and system for collecting carbon dioxide from combustion gases
US7299619B2 (en) Vaporization of liquefied natural gas for increased efficiency in power cycles
US20170038008A1 (en) Cold utilization system, energy system comprising cold utilization system, and method for utilizing cold utilization system
JP7181690B2 (en) Cryogenic generator
JPH04502196A (en) Power generation from LNG
CN109386316B (en) LNG cold energy and BOG combustion energy combined utilization system and method
JPH07174003A (en) Improving method of whole generation of available energy in energy utilizer and liquid-cooled thermal power engine carrying out improving method
RU2680285C2 (en) Station for reducing gas pressure and liquefying gas
WO2012174418A1 (en) Process for removing carbon dioxide from a gas stream using desublimation
WO2021248289A1 (en) Transducing method and system
JPH03215139A (en) Power generating method
JP2001193483A (en) Gas turbine system
JPH03906A (en) Feed water preheating method and device in steam generating plant
CN108518584A (en) A kind of high-pressure natural gas pipe network pressure energy recycling system
CN202133185U (en) High-temperature steam-generating heat pump system
JPS59180271A (en) Air liquefying method utilizing cold heat of liquefied natural gas
CN109350983A (en) A kind of two-stage compression heat pump double-effect evaporation concentration systems
US1264807A (en) Process of regrigeration.
KR102127960B1 (en) System and Method for Liquid Air Evaporation with Industrial Plant
CN208487636U (en) It is a kind of white plume administer and energy recycling system
KR101994097B1 (en) Energy storage power generating system and method by liquefaction, regasification and expansion process of air
WO2015126324A1 (en) Cold energy recovery system and method
JPH11159342A (en) Energy storage type gas turbine generation system
WO1999022189A1 (en) Temperature difference heat engine
CN219494592U (en) BOG cold energy recycling device