JPS59180254A - 連続磁気冷凍装置 - Google Patents

連続磁気冷凍装置

Info

Publication number
JPS59180254A
JPS59180254A JP5599483A JP5599483A JPS59180254A JP S59180254 A JPS59180254 A JP S59180254A JP 5599483 A JP5599483 A JP 5599483A JP 5599483 A JP5599483 A JP 5599483A JP S59180254 A JPS59180254 A JP S59180254A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
salt
magnet
paramagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5599483A
Other languages
English (en)
Other versions
JPH0442587B2 (ja
Inventor
裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5599483A priority Critical patent/JPS59180254A/ja
Publication of JPS59180254A publication Critical patent/JPS59180254A/ja
Publication of JPH0442587B2 publication Critical patent/JPH0442587B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
[発明の技術分野] 本発明は周期的に励磁、消磁を繰+)返す11び場内に
置かれた常磁性塩の磁場強度変化によるエントロピ変化
を利用した連続磁気冷凍装置vvに関する。 〔発明の技術的背景〕 従来、常磁性塩の磁場強度変化によるエントロピ変化を
利用する磁気冷凍装置としては、第1図に示すものが提
案されている。図において、Iは磁場を発生する超電導
マグネット、2はこの磁場内に置かれた円筒状の常磁性
塩、3は常磁性塩2を磁場の内、外へ周期的に移動させ
るための操作機構、4は常磁性塩2が励mによ0発生す
る熱を吸収するための高温冷媒(イ’41えば温度T2
=4.2°にの液体ヘリウム)、5は冷凍対象としての
図示しガい機器を冷却するための低温冷媒(例えば温度
T+−1,8°K の液体−リウム)で、常磁性塩2が
下降時消簡による吸熱(温度低下作…)を示す際の熱供
給肩゛1イである。 また、6は温度の異なる上記各冷媒4.5 を分離し、
目つ常磁性塩2をスムーズに通過させるための摺動装置
を示すもθ)である。 かかる磁気冷凍装置において、いま常時励1aされてい
る超′屯導マゲλ、ントl内に操作機構3の操作にて常
磁性塩2が進入してくると、第2図に示すように常磁性
塩2は励磁されることにより、図示状態Aから略断熱変
化忙てt都度が上昇する。そして、所定の磁場強度に達
する過程(図ではQ’l’eslaから5’T”esl
aまで)において高温冷媒4によ番)冷却されるため、
常磁性塩2の61!度は励磁終了時には略高温冷媒4の
温度T2になl)、状態Bを経由I2て状態Cと々る。 この場合、図示A−Hの過程が断熱変化、13〜Cの過
程が放熱変化であり、またここで菖う励磁終了時とは常
磁性塩2が、略100 パーセント超電導マグネットl
の磁場内に収容された状態である。 一方、上記状態Cより常磁性塩2を操作機構3の操作に
て超電導マグネットIの磁場夕1/\移動させると、消
磁効果により常(lt?性塩2の温度がtW熱的に低下
する。そして、低温冷媒、5中に没するとこれから熱(
1ソ1示しない冷凍対象し文型を冷却することによl)
上昇する熱量の一部)を吸収[7、消磁終了時にし:[
常磁性塩2 (7’l /!+A度は略低温冷専5の温
度T、(状態A)となる。こ」]により、常常磁性塩 
&:t 1サイクルを完了し元の状態Nに復帰する。な
お第2図において、余1線を伺[7た領域E A D 
F  は1サイクル狛のLス’i凍熱佑、同じく領域E
 B CFは高温冷媒4に排出される熱量を示すもので
ある。 〔背鼠技術の問題点〕 然乍ら、上述した磁気冷凍装置においては、高温、低温
の温度の異々つだ2つの冷媒4,5を分離する摺動装置
6を通して2つの冷媒4゜5の混合が発生するため、冷
凍エネルギーの損失が発生することが最大の丹点と々っ
ている。 特に、極低温領域にて使用される磁気冷凍装置では冷媒
4,5として液体ヘリウムを用いるi4A合が多く、」
二記摺動装置6からの冷媒の7’i、i ji、がとも
すると冷凍舶用を土1[コ団、低温冷媒5を所定温度コ
゛1(二1.8°K)に保持することカー不可能となる
。また、常磁性塩2の表面伝熱面精フI″−限定さう1
.ている為、励磁、消磁の発、吸熱時における冷媒4,
5と常磁性塩2との間の1′品度差カー大きくならざる
を得1゛、サイクツ1ノ効率が低小する。σtつで、結
果的に従来の磁気冷凍装置では良好な冷凍能力を得るこ
とができないという問題がある。 〔発明の目的〕 本発明は上記のような東端に鑑みて成されたもので、そ
の目的は冷媒と常磁性塩との間の温度差を小さくし月つ
サイクル効率を向−ヒさせて冷凍能力を高めることが可
能な連続磁気冷凍装置を提供することにある。 〔発明の概要〕 上記目的を達成するために本発明では、常磁性塩を多孔
質のものとL、これを断熱容器内に設置してマグネット
の励磁、消磁に同期させて冷媒を通過させるようにした
ことを特徴とする。 〔発明の実施イ′lII ’II 脚下、本発明を図面VC示す一実施例について説明する
。第3図は、本発明に9Lる沖続圃((冷凍装置の構成
例を示すものである。[メiKおシ八で、7は励磁電流
の通電により1f、ζ楊を発生するj)47i5導マ〃
ネツト、8は多孔性形状を有する常1充v1塩であり、
断熱客器内に収納し2て上記超4j導フグネット7の発
生する磁場によ番)励6B川能をて配置している。また
、9け常磁性塩8が励IIHにより発生する熱を吸収す
るだめの容器に収容された高温冷媒(例えば温度” 2
−4.2 ” K  のlt+休ヘ体ウム)で、配管に
設けられた市1 ’?Ah側の冷媒循環ポンプ1(7H
によ番]ストツづ°バルブ+111’、(介して、上記
高温冷媒9を常6<p 4)l Jp、(sに対流イb
’1環させるようにしている。さらに、12は冷凍対象
としての図示しない機器を冷却するだめの容器に収容さ
れた低温冷奴(例えば温度i” 、 =1.8°にの液
体ヘリウム)で、配管に設けられた低温側の冷媒循環ポ
ンプIOL  によりストップバルブIIL  を介し
て、上記低温冷媒12を常磁性塩8に対流循環させるよ
うにしている。さらにまた、13は上記常磁性塩8の温
度を検出する温度検出器であり、例えば熱電、対、ゲル
マニウム抵抗温度R(、白金抵抗′/昌度計等を用いる
。 一方、14は制御ml器であり以下のII能を有する。 (a)上記超電導マグネット7に対する励磁電流を周期
的に変化させる。つまり例えば励磁強度がQ ’11.
’+−5la 〜5 Te5laの範囲で励磁、消磁を
ヤイクリックに繰り返す機能。 (bl  上記励磁、消磁に同期させて上記冷奴91^
環ポンプTOH,IOL  およびストップバルブ17
11 、I I L  を駈動制?1fllする、つま
り励■、11時上記温度検出器I3の検出温度が土ML
冒温冷媒9の温度T2 と一致した時、また消郁多時1
司じく検出温度が上記低7,1i!昂媒12の温度T1
 と一致しまた時に、前者は高!!n! fil、jl
のまた後者は低温(++11の冷媒循環ポツプ7QI1
.IOL  およびストップバルブl l 1.1 、
11 r−を、夫々運転および開山11佃する機能。 次に、かかる連続磁気冷凍装置の作11”Iについて第
4図を用いて述べる。第4図は、常磁性塩8の1サイク
ル中の変化を閉曲懸’、 A 、B 、 C、T′1に
より示しまたものである。 例えば、いま状態Aから冷却作用が開始さオ
【るとする
。まず、状態Aにおいて制御器I4により超電導マグネ
ット7Q)1・ill磁が開始さ牙すると、該マグネッ
ト7にて発生する磁1゛1によって常1+fft4L塩
8が励磁され、その温度フン;、1IIII磐市流の変
化に伴なって上昇する。こσ目M合、常舷0生塩8は多
孔性形状であるため、その78間部にイア在ずろ低温度
の冷媒のために断熱IJ−Ji/こけ変化せず、玉ソト
ロピーが減少1.て図ボA〜Bのように右下l)に変化
する。そして、励laが進んで常磁性塩Hの温度が高温
冷媒9のパ1情ffi”’2に等し7くなる(状態B)
と、温191金1中器I3からの、甲、カイ1.鴇を残
に制御器14から、高へ冒1111の冷媒循「背ポンプ
If7HおよびストップバルブI T I−1に対して
制御信号が与えられる。これによ1)、冷媒循r・“、
゛1ポンプIOHが運転を開始するとJIGにストップ
バルブllHが開いて高温冷媒ループが影成され、高7
:]rr 冷媒9が常磁性塩8を’jb 1.テqli
!i I?417.1til+ 67Mに伴なって常磁
性塩8の発生する熱が1411去r〕れる。そして、−
ヒ畜:55)J磁によって磁場・;4i度が高磁B3.
強度(本例では5 q’esla )に達する(状態C
)と、励耐;終了とri711侍に詮媒イIIf環ポン
プIOHが】車軸48−+l−かつストップバルブI 
+ 11が閉とな0、この時には常磁性塩8の温度は略
高温冷媒9の温度T2となる。かかる励磁工程における
冷媒9と常磁性塩8との温度λ:は、常60U4−域、
X8が多孔性形状であることにより極めて小さく抑える
ことプJ(できる。 = ’、−ji 、上記に)dいて磁場強度が晶6μ扁
強度に達1゛る(状態C)と、制卸器14によ0紹雷導
マグネツト7の消N)、 2”” Hf’l始され、励
磁電流の新化に4”+’なって常磁t/を一塩8の温度
が低下する0、この切1合、常61′;性17,480
) 7:11:度はMI熱的には変化せ寸、図示C−D
のように左十番)に変化する。そして、消6μが進んで
常磁性塩8 (7) f、i’を度が低f福冷媒12の
温度′I′1 に等しくなる(状態D)と、子連同様に
制御器14から低温側の冷媒循環ポンプIOL  およ
びストップバルブI I +、  に対1゜て側副信号
が与えられる。こ牙1によ()、冷媒。ri、”、。 環ポンプ7(7L  が運転を開始すると」しにスト・
ノブバルブI I L  が開いて低f″晶1名j4.
:、(ルーづ°か)し1ノ(。 され、低温冷媒I2が常6〈ビ叶上j+a 8を曲して
?I、’、 )!;;する。その結果、(ス示し5ない
r9↑凍対家扮2;コをと)却することにより上hイし
7た熱V11の−’l’J<を常63・・1ノ1塩8に
て吸収する8そして、消(滋によ−)て磁ν1゛。 強度が低磁場強度(本例でId’ 0’f”−5la 
)に達する(状態A)と、消(直終了と同+i′iK冷
媒、’l’l l”、’:ポンプIOT  が運転停止
か一つり)・ソフバノI7ブII+。 が閉となり、この時には常6.′:性塩8の温襞I沫(
16低2M1冷媒12の温度T1 と々る。カカz、消
(1;’1. 、、!稈においても、前述Ir′+!様
の、14iう110(よi+、?fル112と常磁性塩
8との間の温用差は小さく細身ることかできる。 従って、かかるA−Cの励11f・と(シ〜Aの/1:
 5AII−L稈を1ザイクルとし、こね、をnL定・
フ)ザイクル繰を)返して行なうことによ番)、低温冷
姑’(rzσ)温度がT1に捏持されることVXfrる
。 上述したように、本連続磁気冷凍装置においては、常磁
性塩8を多孔性形状のものとして伝熱面積を拡大し2、
且つ高温、低71完沈媒9,12の混合を最小限に抑え
るようにし、でいることにより、各冷媒9.z2と常磁
性塩8との間の温度差を小さくしてザイクル効率を向上
させることが可fiし、すなわち冷凍熱情(B A T
) F )の放熱−(B A 13CI) l” )に
対する割合を改善してカルノー効率に近づけ、冷凍部:
力を大いに高めることができる。 尚、本発明は上記実姉例に限られるものでは々く、次の
ようにしても実施することができるものである。 (al  第5図に示−Jように、前記第3図における
ストップバルブl 7 H、I I T、  に代えて
、配管の圧力差によ1)自動的に開閉I1ノ作するチェ
ックバルブ15H,75L  を設けるよ一]をてして
もよい。 かかる構成とすることによ【〕、バパルの小形化および
熱容量の縮小化が一1jT能と々る。 (b)  多孔質常磁性塩8の形状とし7ては、海綿状
であってもあるいは微小球状常磁性塩を+E ’?”;
させたようなおこし7状であってもが土ゎhい1、がこ
の場合、空隙の常磁性塩外七体稍シこ系II7て占める
割合は、2〜4パーセント稈Lす]が、いも′、シ(1
ン令Sがよい。 (C)上記実姉例では超電昨マ)f大ツトケ110ハた
が・常゛眠導マゲイ・ツ)・を用いろように12でもよ
い。 (d+  l記実施例では、夙、I1晴、消陳■二程に
オ(、いて冷媒9.I2を直接當砂什塩8に列してイ5
’:t?、、’jl〜だが、例えは第6図、第71ソ1
に承寸1うに常磁性塩8には作動冷媒(液体ヘリウム舌
)を?j”1環させ、これを熱交換器!6.17におい
て各1☆11゛11^、低温冷媒9,12と熱交換を?
]々ゎ→ト、間接的に冷媒を循環させろようにし7てJ
lよいイ、のである。 〔発明の効果〕 以上説明したように本発明にょゎ、ば、l’K 6’;
 +”」盆を多孔質のものと17、これをνi−が(客
器内に謹直してマグネットの励磁9消碍に同11させて
冷媒を通スlωさせるようにしたので、冷媒と常6(ε
性塩との間の温度差を小さくI−2目リサイクル効率を
向上させて冷凍能力を旨めること/1″−i[能々極め
て信頼性の高い連続(IR磁気冷凍装置提供できる。
【図面の簡単な説明】
第1図は従来の磁気冷凍装置の構成を示す図、第2図は
第1図における常磁性塩の冷凍ライフルを説、明するた
めの図、第3図は本発明の一実施例を示ず構成図、第4
図は第3図における常磁性塩の冷凍サイクルを示す構成
図、第5図〜第7図は本発明の他の実施例を示す構成図
である。 1.7・・超′?ド導マゲネット、2.8・・常醒1生
塩、3・・・操作冷横、4,9・高扁冷的、5.I2・
低温冷媒、6・・摺動装置、I OIl、 J OL”
’/@媒省占瑠ボンフ“’、7+1(,71T、 ・ス
トップバルブI3・・・′/Au+度検出器、I4・・
側番11器、15・チェックバルブ、16.17・・熱
交換器。 を川頓人代理人  弁理士 鈴 江 武 彦260− 第 1 図 m 2 図 第  3 図 0out 第4図 第 5 図 第 7 %

Claims (2)

    【特許請求の範囲】
  1. (1)励磁電流の通電により磁場を発生するマグネット
    と、断熱容器に収納され前記マグネットの発生する磁場
    内に配置された多孔質の常磁性塩と、容器内に収容され
    た所定温度の高温冷媒と、冷凍対象要素を冷却する容器
    内に収容された前記高温冷媒よりも低温度の低温冷媒と
    、前記常磁性塩の温度を検出する温度検出器と、前記マ
    グネットに対する励磁電流を周期的に変化させると共に
    、前記温度検出器の検出温度を基に前記励磁電流の変化
    に伴なうマグネットの励磁、消磁に開明させて前記常磁
    性塩に前記高温、低温冷媒を循環させる手段とを具備し
    て成ることを特徴とする連続磁気冷凍装置。
  2. (2)  マグネットとしては超電導マグネットを用い
    るようにした特許請求の範囲第1ff、i項記載の連続
    磁気冷凍装置。
JP5599483A 1983-03-31 1983-03-31 連続磁気冷凍装置 Granted JPS59180254A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5599483A JPS59180254A (ja) 1983-03-31 1983-03-31 連続磁気冷凍装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5599483A JPS59180254A (ja) 1983-03-31 1983-03-31 連続磁気冷凍装置

Publications (2)

Publication Number Publication Date
JPS59180254A true JPS59180254A (ja) 1984-10-13
JPH0442587B2 JPH0442587B2 (ja) 1992-07-13

Family

ID=13014630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5599483A Granted JPS59180254A (ja) 1983-03-31 1983-03-31 連続磁気冷凍装置

Country Status (1)

Country Link
JP (1) JPS59180254A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650576U (ja) * 1992-12-22 1994-07-12 神星工業株式会社 ズボン用ハンガー
JP2007533949A (ja) * 2004-04-23 2007-11-22 クールテック アプリケーションズ 電磁熱材料による発熱装置ならびに方法
JP2009520946A (ja) * 2005-12-21 2009-05-28 株式会社大宇エレクトロニクス 磁気冷凍機
WO2010106242A1 (fr) * 2009-03-20 2010-09-23 Cooltech Applications S.A.S. Generateur thermique magnetocalorioue et son procede d'echange thermique

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650576U (ja) * 1992-12-22 1994-07-12 神星工業株式会社 ズボン用ハンガー
JP2007533949A (ja) * 2004-04-23 2007-11-22 クールテック アプリケーションズ 電磁熱材料による発熱装置ならびに方法
JP2009520946A (ja) * 2005-12-21 2009-05-28 株式会社大宇エレクトロニクス 磁気冷凍機
JP4825879B2 (ja) * 2005-12-21 2011-11-30 株式会社大宇エレクトロニクス 磁気冷凍機
WO2010106242A1 (fr) * 2009-03-20 2010-09-23 Cooltech Applications S.A.S. Generateur thermique magnetocalorioue et son procede d'echange thermique
FR2943407A1 (fr) * 2009-03-20 2010-09-24 Cooltech Applications Generateur thermique magnetocalorique et son procede d'echange thermique
CN102356286A (zh) * 2009-03-20 2012-02-15 制冷技术应用股份有限公司 磁热热发生器及其热交换方法
JP2012520986A (ja) * 2009-03-20 2012-09-10 クールテック アプリケーションズ エス.エイ.エス. 磁気熱量による熱発生器およびその熱交換方法
US9134051B2 (en) 2009-03-20 2015-09-15 Cooltech Applications Societe Par Actions Simplifiee Magnetocaloric heat generator

Also Published As

Publication number Publication date
JPH0442587B2 (ja) 1992-07-13

Similar Documents

Publication Publication Date Title
Bohigas et al. Room-temperature magnetic refrigerator using permanent magnets
Betts An introduction to millikelvin technology
EP1053437A1 (en) Reciprocating active magnetic regenerator refrigeration apparatus
JPH0357389B2 (ja)
GB1290377A (ja)
US3119236A (en) Superconductive temperature control
Critoph et al. Proof of concept car adsorption air-conditioning system using a compact sorption reactor
JPS59180254A (ja) 連続磁気冷凍装置
Numazawa et al. Magnetocaloric effect of polycrystal GdLiF4 for adiabatic magnetic refrigeration
Warren A pressurized helium II-cooled magnet test facility
Kamiya et al. Hydrogen liquefaction by magnetic refrigeration
Benoit et al. Dilution refrigerator for space applications with a cryocooler
Zimm et al. Magnetic refrigeration: Application and enabler for HTSC magnets
Daunt The Magnetic Refrigerator for Temperatures below 1° k
SU1467339A1 (ru) Магнитокалорический рефрижератор
JPH0317055B2 (ja)
Kashani et al. Development of a Magnetic Refrigerator Operating between 2 K and 10 K
JP3247714B2 (ja) 素子加熱冷却試験装置
Schroeder et al. Performance predictions of a magnetocaloric refrigerator using a finite element model
Helvensteijn et al. Conceptual design of a 0.1 W magnetic refrigerator for operation between 10 K and 2 K
Lounasmaa New Methods for Approaching Absolute Zero
Mueller et al. Refrigeration into the microkelvin range
Lacaze et al. Prospects in magnetic refrigeration
JPH09303978A (ja) ループ型細管ヒートパイプ装置
JPS59183265A (ja) 連続磁気冷凍装置