JPS59179171A - Atomizer using ultrasonic oscillator - Google Patents

Atomizer using ultrasonic oscillator

Info

Publication number
JPS59179171A
JPS59179171A JP5239483A JP5239483A JPS59179171A JP S59179171 A JPS59179171 A JP S59179171A JP 5239483 A JP5239483 A JP 5239483A JP 5239483 A JP5239483 A JP 5239483A JP S59179171 A JPS59179171 A JP S59179171A
Authority
JP
Japan
Prior art keywords
ultrasonic
oscillator
atomizer
holder
ultrasonic transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5239483A
Other languages
Japanese (ja)
Inventor
Minoru Sakairi
実 坂入
Hideki Kanbara
秀記 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5239483A priority Critical patent/JPS59179171A/en
Publication of JPS59179171A publication Critical patent/JPS59179171A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations

Abstract

PURPOSE:To atomize continuously a very small amt. of a sample soln. for a long time in a device for atomizing an eluate from a liquid chromatograph by providing a sample supplying means in a way as to contact with an ultrasonic oscillator grasped in a holder and providing an air layer on the rear of an atomizing region and a cooling means in the peripheral part. CONSTITUTION:An ultrasonic oscillator 1 having 1.7MHz resonance frequency is sandwiched by upper and lower holders 2, 3 made of copper in such a way that the oscillator can be oscillated via two O-rings 4, 5. An introducing hole 7 and discharging hole 8 for cooling water 6 are provided in the holder 3, and a cavity 14 is provided between the holders 2 and 3. The cooling water is filled in said cavity. An air layer is formed on the rear side in the atomizing region 10 of the oscillator 1 by a through-hole 13 provided in the holder 3 so that the generated ultrasonic energy can be reflected 100%. A very small amt. of a soln. 12 rides satisfactorily on the oscillator 1 through a sample supplying pipe 11 and is efficiently atomized to particles having small diameters.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波振動子を用いた霧化器の改良に係り、特
に、この種の霧化器において微量な試料溶液を連続的に
長時間霧化するのに好適な構造に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to the improvement of an atomizer using an ultrasonic vibrator, and in particular, to the improvement of an atomizer using an ultrasonic vibrator. It relates to a structure suitable for atomization.

〔発明の背景〕[Background of the invention]

例えば、液体クロマトグラフ/質量分析計結合装置にお
いて液体クロマトグラフから溶出液全超音波振動子を用
いて霧化し、イオン化して質箪分析することが行なわれ
ている。
For example, in a combined liquid chromatograph/mass spectrometer device, eluate from a liquid chromatograph is atomized using an ultrasonic transducer, ionized, and subjected to qualitative analysis.

通常、従来一般の超音波振動子を用いた霧化器では、大
量の溶液の時には超音波噴水あるいは液柱を生じさせる
ことにより、非常に細かい液体粒子(粒径:1〜10μ
m)を得ることができる(例えば、Ultrasoni
cs、 10.2 (1972)127−133)。し
かしながら、上述した霧化方法では液体クロマトグラフ
の出力の如き少量の溶液を連続的に霧化しようとする場
合には、浴液量が少ないため超音波噴水を生じさせるこ
とが困難であること、超音波振動子を冷却する役目をも
かねている大量の溶液がないために超音波撮動子が発熱
し、その結果、超音波振動子の分極が短時間で破壊され
て霧化できなく々ることなどのためにそのままでは使用
できないという問題がある。
Normally, conventional atomizers using general ultrasonic vibrators generate extremely fine liquid particles (particle size: 1 to 10 μm) by generating ultrasonic fountains or liquid columns when handling a large amount of solution.
m) can be obtained (for example, Ultrasoni
cs, 10.2 (1972) 127-133). However, with the atomization method described above, when trying to continuously atomize a small amount of solution such as the output of a liquid chromatograph, it is difficult to generate an ultrasonic fountain because the amount of bath liquid is small. Because there is not a large amount of solution that also serves to cool the ultrasonic transducer, the ultrasonic transducer generates heat, and as a result, the polarization of the ultrasonic transducer is destroyed in a short period of time, making it impossible to atomize. There is a problem that it cannot be used as is due to various reasons.

この問題に対処するため超音波振動子の裏側を大量の水
で冷却し、表側で溶液を霧化しようとするとかなりの超
音波エネルギーが必要となり、その結果、超音波振・曲
子及び電源をいためる結果になり好ましくない。また、
超音波振動子を用いた霧化器の他の例としては、精化効
率を向上させるために金属ホーンを用いた例があるが(
例えば、ジャパンフードサイエンス、7,11 (19
68)22−28)、超音波振動子の周波数はその嘴造
上100KHz程度までしか上げられないため、その分
、液体粒径も30〜40μmと太きくなってし甘うとい
う欠点がある。
To deal with this problem, cooling the back side of the ultrasonic transducer with a large amount of water and trying to atomize the solution on the front side requires a considerable amount of ultrasonic energy, which can damage the ultrasonic vibrator, the bender, and the power source. The result is not desirable. Also,
Another example of an atomizer using an ultrasonic vibrator is one that uses a metal horn to improve purification efficiency (
For example, Japan Food Science, 7, 11 (19
68) 22-28) Since the frequency of the ultrasonic vibrator can only be raised to about 100 KHz due to its beak structure, there is a disadvantage that the liquid droplet size becomes thicker at 30 to 40 μm.

〔発明の目的〕[Purpose of the invention]

したがって、本発明の目的は、例えば2MH2程度の超
音波振動子を用いて、流量が例えば毎分1m4程度の試
料浴液を連続的に長時間霧化しつる超音波振動子を用い
た霧化器を提供することにある。
Therefore, an object of the present invention is to continuously atomize a sample bath liquid at a flow rate of, for example, about 1 m4 per minute using an ultrasonic transducer of about 2 MH2 for a long time. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明においては、ホルダー
中に振動し得るように挾持された超音波振動子と、この
超音波振動子の霧化領域に霧化すべき試料溶液を供給す
るだめの試料供給手段と、超音波振動子によって発生さ
れた超音波エネルギーを反射するため霧化領域の背面に
設けられた反射手段と、超音波振動子を冷却するため霧
化領域の周辺部に設けられた冷却手段とから超音波振動
子を用いた霧化器を構成したことを特徴としている。
In order to achieve the above object, the present invention includes an ultrasonic vibrator held in a holder so as to be able to vibrate, and a sample container for supplying a sample solution to be atomized to the atomization area of the ultrasonic vibrator. a supply means, a reflection means provided at the back of the atomization region for reflecting the ultrasonic energy generated by the ultrasonic transducer, and a reflection means provided at the periphery of the atomization region for cooling the ultrasonic transducer. The present invention is characterized in that an atomizer using an ultrasonic vibrator is constructed from the cooling means and the cooling means.

かかる本発明の特徴的な構成によって、微量の試料溶液
であっても超音波振動子によって粒径の小さな霧を長時
間に亘って連続的に得ることができる精化器の提供が可
能となった。
This characteristic configuration of the present invention makes it possible to provide a purifier that can continuously obtain a mist with a small particle size over a long period of time using an ultrasonic vibrator even for a minute amount of sample solution. Ta.

〔発明の概要〕[Summary of the invention]

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明による霧化器の断面構造を示したもので
ある。同図において、霧化器は上ホルダー2、下ホルダ
ー3、および超音波振動子1から構成されている。共振
周波数が1.7MH2の超音波振動子(材質:ジルコン
酸チタン酸鉛)1は、銅ででき・た上、下ホルダー2,
3により、2つの0−リング4,5を介して振動し得る
ように挾持される。下ホルダー3には冷却水6の導入孔
7と排出孔8とを設け、また、上、下ホルダー2,3間
には冷却水6を満すための空洞14を設けて発熱する超
音波振動子1を冷却するのに用いる。上。
FIG. 1 shows a cross-sectional structure of an atomizer according to the present invention. In the figure, the atomizer is composed of an upper holder 2, a lower holder 3, and an ultrasonic vibrator 1. An ultrasonic transducer (material: lead zirconate titanate) 1 with a resonance frequency of 1.7 MH2 has upper and lower holders 2 made of copper,
3, it is clamped so that it can vibrate via two O-rings 4, 5. The lower holder 3 is provided with an inlet hole 7 and an outlet hole 8 for cooling water 6, and a cavity 14 for filling the cooling water 6 is provided between the upper and lower holders 2 and 3 to generate heat using ultrasonic vibrations. It is used to cool the child 1. Up.

下ホルダー2,3UO−リング9を介して固定されてい
る。超音波振動子1の上ホルダー2によって限定された
中心部(直径:4m)すなわち、霧化領域10だけは、
裏側(背面)に冷却水6を通していない。このため、超
音波振動子1は通常、無負荷の状態で約120°〜13
0Cに温度が上昇するが、霧化領域100周辺部分が冷
却されているためにこれ以上、温度が上がることはない
The lower holders 2 and 3 are fixed via an O-ring 9. Only the central part (diameter: 4 m) limited by the upper holder 2 of the ultrasonic transducer 1, that is, the atomization area 10,
Cooling water 6 is not passed through the back side (rear side). For this reason, the ultrasonic transducer 1 is normally approximately 120° to 13° in an unloaded state.
Although the temperature rises to 0C, the temperature does not rise any further because the area around the atomization region 100 is cooled.

そして、負荷状態の場合は超音波振動子1の熱は一部分
、試料供給パイプ11によって供給される霧化されるべ
き試料溶液12の気化に用いられるため、超音波振動子
1の中心部10の温度は約70°〜80Cどまりとなる
。いずれの場合にも超音波振動子1を構成するジルコン
酸チタン酸鉛のキュリ一点が約350Cであることを考
えると、発熱((よる分極の破壊の心配は全くない。寸
だ、超音波振動子1の霧化領域10の裏側(背面)を下
ホルダー3に設けた貫通孔13によって空気層にするこ
とによって、発生した超音波エネルギーは超音波振動子
1と空気層との境界面で100%の反射率で反射するた
め、超音波振動子1の表側の霧化領域10での超音波エ
ネルギーは、その裏面(背面)を冷却水6による水層に
したときと比べて2倍となる。従って、超音波振動子1
に与える超音波エネルギーのパワーは1/2ですむとい
うメリットが出てくる。
In the case of a loaded state, part of the heat of the ultrasonic transducer 1 is used to vaporize the sample solution 12 to be atomized, which is supplied by the sample supply pipe 11. The temperature remains at about 70° to 80°C. In either case, considering that the Curie point of lead zirconate titanate that constitutes the ultrasonic transducer 1 is about 350 C, there is no worry about destruction of polarization due to heat generation. By making the back side (rear surface) of the atomization area 10 of the child 1 into an air layer through the through hole 13 provided in the lower holder 3, the generated ultrasonic energy is 100% at the interface between the ultrasonic vibrator 1 and the air layer. %, the ultrasonic energy in the atomization area 10 on the front side of the ultrasonic transducer 1 is twice as much as when the back side (rear side) is made into a water layer with the cooling water 6. .Therefore, the ultrasonic transducer 1
The advantage is that the power of the ultrasonic energy applied to the device only needs to be halved.

例えば、液体クロマトグラフ/質量分析計結合装置にお
いては、液体クロマトグラフからの微量な出力すなわち
、溶出液を連続的に霧化するインy7 ニー スが必要
となるが、このインタフェースに上述した本発明による
霧化器を使用できる。つ甘り、液体りaマドグラフから
の試料供給パイプ11を第1図のように、超音波振動子
1に接するように設けると、微量の溶液12は試料供給
パイプ11から超音波振動子15.Ω上にうまくのり、
径の小さな粒に効率よく霧化される。こういつだ構成の
霧化器を用いると、水系の溶液や有機溶媒系の溶液であ
れ、01mt/蛤から1mt/mの流量の試料を連続的
にかつ長時間に亘っての処理が可能となる。−Pた、こ
のような霧化器は分光分析機器の霧化手脂としても適用
できることは云うまでもない。
For example, in a combined liquid chromatograph/mass spectrometer device, a very small amount of output from the liquid chromatograph, that is, an input device that continuously atomizes the eluate, is required. Atomizers can be used. In other words, if the sample supply pipe 11 from the liquid magnetograph is placed in contact with the ultrasonic transducer 1 as shown in FIG. It fits well on the Ω,
Efficiently atomized into small diameter particles. By using an atomizer with this type of configuration, it is possible to process samples continuously and over a long period of time, whether it is an aqueous solution or an organic solvent solution, at a flow rate of 0.1 mt/m to 1 mt/m. Become. -P Needless to say, such an atomizer can also be used as an atomizer for spectroscopic analysis equipment.

ところで、超音波振動子の材質は上述した材質以外のも
ので凌)つてもよく、冷却手段は水以外の媒体を用いて
も良い。さらに、反射手段は空気層であることが最も反
射効率が良いが他の媒質であってもよく、その背面鎖酸
は霧化領域と1=1に対応することが望ましいが多少大
きくでも小さくても良いことは云うまでもない。
By the way, the material of the ultrasonic transducer may be other than the above-mentioned materials, and the cooling means may use a medium other than water. Furthermore, the reflection means is preferably an air layer, but other media may be used, and it is desirable that the backside chain acid corresponds to the atomization area in a 1=1 relationship, but it may be slightly larger or smaller. Needless to say, it's a good thing.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、0.1〜l mt/mixといった少
量の浴液の連続霧化が長時間(1000時間以上)K亘
って可能となったため、液体クロマトグラフ/等 質量分析計結合装惣夕霧化手段に適用することによって
これらの装置の高性能化を容易に実現可能となる。
According to the present invention, continuous atomization of a small amount of bath liquid such as 0.1 to 1 mt/mix for a long time (1000 hours or more) is possible, so that liquid chromatograph/equal mass spectrometer coupled equipment can be used. By applying the present invention to evening misting means, it is possible to easily improve the performance of these devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超音波振動子を用いた霧化器の断
面構成図である。
FIG. 1 is a cross-sectional configuration diagram of an atomizer using an ultrasonic vibrator according to the present invention.

Claims (1)

【特許請求の範囲】 1、 ホルダー中に振動し得るように挾持された超音波
振動子と、上記超音波振動子の霧化領域に霧化すべき試
料溶液を供給するだめの試料供給手段と、上記超音波振
動子によって発生された超音波エネルギーを反射するた
め上記霧化領域の背面に設けられた反射手段と、上記超
音波振動子を冷却するため上記霧化領域の周辺部に設け
られた冷却手段とを備えてなることを特徴と、する超音
波振動子を用いた霧化器。 2、上記反射手段が空気層からなることを特徴とする第
1項の超音波振動子を用いた霧化器。 3、上記冷却手段が水冷機構からなることを特徴とする
第1項あるいは第2項の超音波振動子を用いた霧化器。
[Scope of Claims] 1. An ultrasonic transducer held in a holder so as to be able to vibrate, and a sample supply means for supplying a sample solution to be atomized to an atomization region of the ultrasonic transducer; a reflecting means provided on the back surface of the atomization region to reflect the ultrasonic energy generated by the ultrasonic transducer; and a reflection means provided on the periphery of the atomization region to cool the ultrasonic transducer. An atomizer using an ultrasonic vibrator, characterized in that it is equipped with a cooling means. 2. The atomizer using an ultrasonic vibrator as set forth in item 1, wherein the reflecting means comprises an air layer. 3. The atomizer using an ultrasonic vibrator as set forth in item 1 or item 2, wherein the cooling means comprises a water cooling mechanism.
JP5239483A 1983-03-30 1983-03-30 Atomizer using ultrasonic oscillator Pending JPS59179171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5239483A JPS59179171A (en) 1983-03-30 1983-03-30 Atomizer using ultrasonic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5239483A JPS59179171A (en) 1983-03-30 1983-03-30 Atomizer using ultrasonic oscillator

Publications (1)

Publication Number Publication Date
JPS59179171A true JPS59179171A (en) 1984-10-11

Family

ID=12913580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5239483A Pending JPS59179171A (en) 1983-03-30 1983-03-30 Atomizer using ultrasonic oscillator

Country Status (1)

Country Link
JP (1) JPS59179171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150074907A (en) * 2013-12-24 2015-07-02 주식회사 포스코 Cooling apparatus for radiator of ultrasonic test equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150074907A (en) * 2013-12-24 2015-07-02 주식회사 포스코 Cooling apparatus for radiator of ultrasonic test equipment

Similar Documents

Publication Publication Date Title
Deepu et al. Dynamics of ultrasonic atomization of droplets
US3198170A (en) Ultrasonic-wave painting machine
TW565472B (en) Multiple horn atomizer with high frequency capability and method thereof
JPS6171340A (en) Atomizer for analysis
US5173274A (en) Flash liquid aerosol production method and appartus
US20040005256A1 (en) Crystallization system utilizing atomization
US20060032941A1 (en) Micro droplet generator
WO2000058022A1 (en) A method and apparatus for nebulizing a liquid particularly useful for the aerosol delivery of biopharmaceuticals
JPS5951352B2 (en) Ultrasonic atomizer
JPS59179171A (en) Atomizer using ultrasonic oscillator
JPS61141955A (en) Liquid jet apparatus
JP2644621B2 (en) Ultrasonic atomizer
JPH0824501A (en) Ultrasonic alcohol fractionating device
JP2001096243A (en) Ultrasonic nozzle unit and device and method for treating with ultrasonic wave using the same
JPH0336205A (en) Method and apparatus for manufacturing metal fine powder
JP3527998B2 (en) Ultrasonic deposition equipment
JP2525299B2 (en) Ultrasonic atomizer
JPS61257260A (en) Ultrasonic wave atomizing apparatus
JPH11326914A (en) Manufacture of liquid crystal display device
JPS58202070A (en) Atomizer
JPS5843262A (en) Atomizing method for liquid to uniform size and device for embodiment thereof
JPH07116574A (en) Ultrasonic atomizer
JPS62289259A (en) Atomizer for evaporating monomer
RU2007920C1 (en) Device for smoking food products
JPS6059022B2 (en) liquid applicator