JPS59178921A - Ground-fault selecting relay for common trestle multichannelsystem - Google Patents

Ground-fault selecting relay for common trestle multichannelsystem

Info

Publication number
JPS59178921A
JPS59178921A JP5190783A JP5190783A JPS59178921A JP S59178921 A JPS59178921 A JP S59178921A JP 5190783 A JP5190783 A JP 5190783A JP 5190783 A JP5190783 A JP 5190783A JP S59178921 A JPS59178921 A JP S59178921A
Authority
JP
Japan
Prior art keywords
ground fault
phase
current
line
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5190783A
Other languages
Japanese (ja)
Other versions
JPH0517772B2 (en
Inventor
隆章 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5190783A priority Critical patent/JPS59178921A/en
Publication of JPS59178921A publication Critical patent/JPS59178921A/en
Publication of JPH0517772B2 publication Critical patent/JPH0517772B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は共架多回線系統用地絡回線選択継電器に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ground fault line selection relay for a shared multi-line system.

同一鉄塔に多数の送電線が共架される共架多回線送電線
においては、送電線の各導体間の相互インダクタンスが
不平衡となシ他回線(以下起MA手詩と称す)の故障電
流や負荷電流の誘導によって被誘導系統の回線間を循環
する零オ目伍1埠′屯流(以下零相イノu環上1.流工
OCと称す)が発生する。被誘導系統が高抵抗接地系統
では、その中性点抵抗器の電流容量は一般に100A〜
400Aである/25、これに1jjQべて零相循環亜
流工OCが無視でき々い大きさになるため高感度かつ信
頼性の高い地絡保護が困離という間鴇がある。この対策
として、従来から共架多回線高抵抗接地系統平行2回線
を地絡故障から保腸する地絡回線選択継電器として次に
述べる方式のものがある。
In a shared multi-circuit transmission line in which many transmission lines are co-extended on the same tower, the mutual inductance between each conductor of the transmission line is unbalanced, and the fault current of other lines (hereinafter referred to as MA) A zero-phase current (hereinafter referred to as zero-phase OC) circulates between the lines of the induced system due to the induction of the load current. If the induced system is a high resistance grounding system, the current capacity of the neutral point resistor is generally 100A ~
400A/25, and since the zero-phase circulation subcircuit OC becomes negligibly large for 1jjQ, it is difficult to provide highly sensitive and reliable ground fault protection. As a countermeasure against this problem, there has conventionally been the following system as a ground fault line selection relay that protects two parallel lines of a shared multi-line high resistance grounding system from ground fault failures.

1線地絡時に測定可能な健全相循環電流に対してベクト
ル定数(以下補償定数と称す)を掛けて零相循環亜流を
演算する。次に地絡回線選択継電器の入力電流となる回
線間零相差電流c以下零相差電流と称す)は故障電流と
零相循環電流が合成されたもので零相差電流から上記零
相循環電流の演算値を差し引き故障電流成分のみを検出
し、この検出値を地絡回線選択継電器の新たな入力電流
とすることで零相循環電流による彫物を取除いた故障回
線選択をする。この従来方式は、後に詳細を述べるが、
負荷電流に逆相成分があるとこれが継霜、5の誤差電流
となって検出感度を低下させる問題がある。
A zero-phase circulating subcurrent is calculated by multiplying the measurable healthy phase circulating current at the time of a one-wire ground fault by a vector constant (hereinafter referred to as a compensation constant). Next, the line-to-line zero-sequence difference current c (hereinafter referred to as zero-sequence difference current), which is the input current of the ground fault line selection relay, is a combination of the fault current and the zero-sequence circulating current, and the above zero-sequence circulating current can be calculated from the zero-sequence difference current. By subtracting the value and detecting only the fault current component, and using this detected value as the new input current of the ground fault line selection relay, the fault line is selected without engravings caused by zero-phase circulating current. This conventional method will be described in detail later, but
If there is a negative phase component in the load current, there is a problem in that this becomes a residual frost, an error current of 5, and lowers the detection sensitivity.

本発明の目的は、負荷電流に逆相成分が存在するときに
も確実に地絡相を検出できる共架多回線系統用地絡回線
選択電器を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a ground fault line selection appliance for a shared multi-line system that can reliably detect a ground fault phase even when a reverse phase component exists in the load current.

以下、従来方式の問題点も含めて本発明の詳細な説明を
する。
The present invention will be described in detail below, including the problems of the conventional method.

外す、共架多回線系統の()^環電流VCは仄の性′改
がある。
There is a slight change in the ring current VC of the shared multi-circuit system.

性質1・・・起誘導系統の負荷電流の誘4によって被誘
導系統に発生する回線間a、 、 b 、 C相及び零
相循環電流下ac 、よりc 、 ICc 、工OC(
以下循環電流と称す)は起誘導系統の負荷電流に比例し
、その比例定数は共架多回線系統の電線配置や電線の太
さ及び起誘導系統の運用状態から決定さn、る。
Property 1...The inter-line a, , b, C phase and zero-phase circulating currents generated in the induced system due to the induction of the load current in the induced system are ac, from c, ICc, and OC (
The circulating current (hereinafter referred to as circulating current) is proportional to the load current of the induction system, and its proportionality constant is determined from the wire arrangement and wire thickness of the shared multi-circuit system and the operational status of the induction system.

性質2・・・次の(1)式で定義する零相循環電流下o
cと2組の相循環電流から正相分を除外した蛍との比で
るるベクトル定数(補償定数)Ka 、Kb 、 Kc
は上述の性質lから明らかなように起誘導系統の負荷電
流の太きさや位相とは無関係に共架多回線系統の電線配
置や電線の太さ及び起銹専系絖の運用状態から決定され
る。
Property 2: Under the zero-sequence circulating current defined by the following equation (1)
The vector constants (compensation constants) Ka, Kb, Kc are the ratio between c and the firefly obtained by excluding the positive phase component from the two sets of phase circulating currents.
As is clear from the above property, it is determined from the wire arrangement and wire thickness of the shared multi-circuit system, and the operational status of the induction system, regardless of the thickness and phase of the load current in the induction system. Ru.

但し、a、−εj7d7r 上述の補償定数Ka 、 Kb 、 Kc は第1図に
示す超高圧共架系統では次の第1表のようになる。
However, a, -εj7d7r The above-mentioned compensation constants Ka, Kb, and Kc are as shown in Table 1 below in the ultra-high pressure shared system shown in FIG.

第1図は、平行2回線の超高圧系統回線1,2と、亮砥
抗接地系統回線3,4が鉄塔5に共架された送電系統を
示し、超高圧系統回線IA〜ICと2A〜2Cとは逆相
配置であシ、同相配論の高抵抗接地系枕回線3a〜3C
と4a〜4Cとの回線111には超高圧系統(超誘導系
統)の負荷電流の誘導によって常時伽環茄、流が元生す
る。なお、A。
Figure 1 shows a power transmission system in which two parallel ultra-high voltage system lines 1 and 2 and clear grounding system lines 3 and 4 are co-extended on a steel tower 5, with ultra-high voltage system lines IA~IC and 2A~ 2C has a reverse phase arrangement, and high resistance grounding system pillow circuits 3a to 3C with in-phase arrangement.
In the lines 111 between and 4a to 4C, a constant current is generated due to the induction of the load current of the super high voltage system (super induction system). In addition, A.

B、C及びa、b、c(は相を示し、W 、 W’ 、
 D 。
B, C and a, b, c (indicate the phase, W, W',
D.

」ア及びσ、Hは電線配置を示すもので、w=6m。"A, σ, and H indicate the wire arrangement, w=6m.

W’=8m 、 D−8m 、 ff=8.5m 、 
d=3m 、 H=20mである。′!た、電線の木さ
けIIJl&i) 1 、2が610111! 44体
、回線3.4が610 、A I 4体である。
W'=8m, D-8m, ff=8.5m,
d=3m, H=20m. ′! 1, 2 are 610111! There are 44 bodies, 610 lines 3.4, and 4 AI bodies.

第1図に例示する超高圧共架系において、被誘導系統1
線地絡、例えばa相地絡が起きた場合、該被誘導系統の
健全相になるC相、C相回糾闇差′亀流(以下差電流と
称す) よりcl 、 ■cdは但し、よりc 、 I
CcはC相、C相の循環電流よりL; 、 ■OLはC
相、C相の負荷1流となり、健全相差電流には故障電流
成分(は含1れない。この(2)式中、負荷電流成分よ
りり、工(3Lけ被誘導系統の平行2回線内のT分岐負
荷によって生、  しる。これを正相、逆相成分子ab
 、工2Lで表現すると(零相成分は無いとする)、 (2)式は、 」1 但し、a・−・・ 、a−・j÷“ となる。このC相及びC相差電流から正相成分工ILの
影響を取り除く/8:めに次の演カニを行なう。
In the ultra-high pressure shared system illustrated in Fig. 1, the guided system 1
When a line ground fault occurs, for example, an A-phase ground fault, the C phase becomes a healthy phase of the induced system, and the C phase circulation difference 'torque current (hereinafter referred to as difference current) cl, ■cd, however, From c, I
Cc is L from the circulating current of C phase and C phase; , OL is C
The fault current component (1) is not included in the healthy phase difference current.In this equation (2), from the load current component, This is generated by the T-branch load of the positive phase and negative phase components ab
, expressed in terms of 2L (assuming there is no zero-sequence component), Equation (2) becomes ``1. However, a..., a-・j÷''. From this C-phase and C-phase difference current, the positive Eliminate the influence of phase component engineering IL/8: Do the following demonstration.

Ibd −aICd = (I’bc + a2I+ 
t、 + a 工2L )−a(工CC+a工IL +
 a2■2L)=(よりc−aIcc )−1−(a 
−1)J−2L・・・・・・・・・(4) ここで、C相地絡時の零相循環電流を演19.するため
に(])式のKaと(4)式の(よりc −aICd 
)とを4i[ける。
Ibd −aICd = (I'bc + a2I+
t, + a Engineering 2L ) - a ( Engineering CC + a Engineering IL +
a2■2L)=(more c-aIcc)-1-(a
-1) J-2L・・・・・・・・・(4) Here, calculate the zero-sequence circulating current at the time of C-phase ground fault. In order to do this, Ka of the equation (]) and (from c −aICd of the equation (4)
) and 4i[.

その演算値Aは A = Ka (Ibd −aICd )= Ka (
(I’bc −a工C(3)+(a 4 )I2L )
=工oc+(a−1)Ka工2 t、     −・−
(5Jとなる。このAを正相分除外法による零相循環電
流の演算値と称す。b相、C相地絡時も同様の演博で求
められ、次の第2表に示すようになる。
The calculated value A is A = Ka (Ibd - aICd) = Ka (
(I'bc -aC(3)+(a4)I2L)
= ko oc + (a-1) Ka ko 2 t, -・-
(5J. This A is called the calculated value of the zero-sequence circulating current by the positive-sequence exclusion method. It can be obtained by the same operation when the B-phase and C-phase ground faults occur, and as shown in Table 2 below. Become.

第2表 次に、1線地絡時の零相差電流Iodは故障147.流
Iyと零相循環電流工○Cとの和となり、工Od−工F
十工OC・・・・・・・(6)このうち零相差電流Io
clに含まれる零相循環電流Iocを補償するために上
述の零相循環電流雛の演初値Aを用いて次の演算を行な
い、継電器入力Iinを求める。
Table 2 Next, the zero-sequence difference current Iod when one wire is grounded is fault 147. It is the sum of current Iy and zero-phase circulating current work ○C, and work Od - work F
Juko OC・・・・・・(6) Of these, zero-sequence difference current Io
In order to compensate for the zero-sequence circulating current Ioc included in cl, the following calculation is performed using the above-mentioned initial value A of the zero-sequence circulating current to obtain the relay input Iin.

l1n−工od −A =IF十工oc−(工oc+ (a −1) Ka、工
2L+=1F −(a −1)Ka工2 L   =−
=−・・−・(7)このように、従来方式において、負
荷電流に逆相成分工2Lがなけnば、上述の(7)式の
演算によって故障′亀渾工F成分が損なわれることなく
検出さn、これを地絡回線選択継電器の入力電流工in
とすれば零相循環電流が大きくとも地絡1川線を正しく
検出することができる、しかし、負荷電、流に逆相成分
工2Lがあるときは継¥@、器入力に誤差電流分が含捷
れ、継電器感度が低下するわ 本発明は負荷電流の逆相成分の影響を除外したもので、
3端子系統への適用を考慮したもので、以下に原理的に
説明する。
l1n-work od -A = IF 10 work oc- (work oc+ (a -1) Ka, work 2L+ = 1F - (a -1) Ka work 2 L = -
=-...- (7) In this way, in the conventional method, if the load current does not have the negative phase component 2L, the fault 'Kameho F component will be damaged by the calculation of equation (7) above. If the input current of the ground fault line selection relay is not detected,
If so, even if the zero-sequence circulating current is large, it is possible to correctly detect a ground fault in the 1st line.However, if there is a negative sequence component in the load current or current, an error current component will be added to the input of the device. The present invention excludes the influence of the negative phase component of the load current,
This is intended to be applied to a three-terminal system, and the principle will be explained below.

地絡回線選択継を器は、自端の回線間零相差亀流(以下
零相差電流と称す)の大きさと方向によって故障回線を
判別するものである。このため、相手端近傍故障では相
手端が先行しゃ断するまで自端の零相差電流がないため
、相手端が先行しゃ断して自端がしゃ断するいわゆるシ
リー7・トリップとなる。第2図(a) 、 (b) 
、 (0)は平行2回m3端子系統でのシリー7・トリ
ップの一例を示す図である。同図中、6a〜6fはしゃ
断器、7a、7b。
A ground fault line selection switch identifies a faulty line based on the magnitude and direction of the zero-sequence difference current (hereinafter referred to as zero-sequence difference current) between the lines at its own end. Therefore, in the case of a fault near the other end, there is no zero-sequence difference current at the own end until the other end is cut off in advance, resulting in a so-called Series 7 trip in which the other end is cut off first and the own end is cut off. Figure 2 (a), (b)
, (0) is a diagram showing an example of Series 7 trip in a parallel two-time m3 terminal system. In the figure, 6a to 6f are circuit breakers, and 7a and 7b.

7Cは自端及び夫々の相手端の電気所母線、8は電源、
9aは回線3のT分岐負荷、9b、9cけ相手端母#7
’b、7cに接続された負荷を示す。
7C is the electric station busbar of the own end and each other end, 8 is the power supply,
9a is the T-branch load of line 3, 9b and 9c are the opposite end motherboard #7
'b, shows the load connected to 7c.

同図(a)は相手端近傍のF点で地絡故障が発生した場
合を示し、目端と他方の相手端の零相差電流は零に近い
ため回線選択継電器は応動できない。このため第2図(
至)に示すように、相手端のしゃ断器6Cによって最先
行しゃ断(又は第1トリツプ)する。しゃ断器6Cが開
になると、自端及び相手端の零相差′歯、流は増加する
が、相手端の零相差1柱流が地絡継’taI器の整定値
を越え自端の零相差電流が地絡継@器の整定値を越えな
い場合は第2図(C)に示すように他方の相手端のしゃ
断器6eがしゃ断する(第2トリツプ)。その後、図示
しないが自端の地絡継m、器が動作し、故障除去される
(第3 ト リ ツ )′ ) 。
Figure (a) shows a case where a ground fault occurs at point F near the other end, and the line selection relay cannot respond because the zero-sequence difference current between the end and the other end is close to zero. For this reason, Figure 2 (
As shown in (to), the first trip (or first trip) is made by the breaker 6C at the other end. When the breaker 6C opens, the flow increases due to the zero phase difference between the own end and the opposite end, but the zero phase difference flow at the opposite end exceeds the set value of the earth fault joint, and the zero phase difference at the own end increases. If the current does not exceed the set value of the earth fault relay, the breaker 6e at the other end is disconnected (second trip) as shown in FIG. 2(C). Thereafter, although not shown, the ground fault joint at its own end operates and the fault is removed (third trick)').

こうしたシリース・トリップを考慮して、負荷電流の逆
相成分の影響を除外するのに、まず相手端が先行しゃ断
するまでは次の方法によって継電器入力電流を得る。
Considering such series tripping and excluding the influence of the negative sequence component of the load current, first obtain the relay input current by the following method until the other end is cut off in advance.

第2図に示したT分岐負荷によって系統健全時に差電流
に現われる負荷電流の逆相成分を工2Lとすると、零相
循環電流が完全に補償された1*市1器入力電流工in
 (以下工inは零相循環電流が完全に補償された継電
器入力電流とする)は前述の(7)式%式%(8 となる。但し、Iin 、 I2Lは系M、健全時の−
itを意味し、a相地絡前の継電器入力電流と負?f!
r電流の逆相成分である。
If the negative phase component of the load current that appears in the differential current due to the T-branch load shown in Figure 2 when the system is healthy is 2L, then the zero-sequence circulating current is completely compensated for 1 * city 1 unit input current in
(Hereinafter, Iin is the relay input current for which the zero-sequence circulating current is completely compensated.) is the formula (7) above, % (8). However, Iin and I2L are system M, and - when in good condition.
It means relay input current before a phase ground fault and negative? f!
r is the negative phase component of the current.

次に、a相地絡時でかつ相手端先行しゃ断する前の入力
電流工1nは(7)式よシ エin  −工F  +  (a  −1)  Ka 
 −I2L       −−−−−=−(97となる
。1線地絡時に負荷電流の逆相成分を目端の電流から測
定することは不可能であるが、高抵抗接地系統では1線
地絡時の線間電圧は系統健全時と殆んど変らないので、
T分岐負荷の大きさが地絡故障発生@級で変化がないと
仮定すれば、それによって差電流に現われる逆相成分も
地絡前後でほぼ一定値に保たれる( I2L = 工2
L )。
Next, the input current 1n at the time of a phase ground fault and before the other end is cut off first is calculated by equation (7):
−I2L −−−−−=−(97) It is impossible to measure the negative phase component of the load current from the current at the end of the eye when a one wire ground fault occurs, but in a high resistance grounding system, one wire ground fault The line voltage during this time is almost the same as when the system is healthy, so
Assuming that the magnitude of the T-branch load does not change when the ground fault occurs, the negative phase component appearing in the differential current will also be kept at a nearly constant value before and after the ground fault (I2L = 2
L).

従って、地絡故障発生前後の継電器入力電流工inの変
化分を△Iinとすると、(8)、(9)式から△工j
−n=]In −l1n =Iy+(a−1)Ka工zt、−(a−1)KaIz
b=工p+(a−1)KaΔ工2L #■F                      
  ・・・・・・・・・(101イリし、△工2L=工
2L−工2Lキ0とする。
Therefore, if the change in relay input current in before and after the occurrence of a ground fault is △Iin, then from equations (8) and (9), △work j
-n=]In -l1n =Iy+(a-1) Kazt, -(a-1)KaIz
b = engineering p + (a-1) KaΔ engineering 2L #■F
・・・・・・・・・(101 iris, △work 2L=work 2L - work 2L key 0.

となる。この(1(9式の演算値△工inは負荷電流の
逆相成分及び零相循環電流成分が除外され、故障′耐流
成分のみとなる。この電流△工inを新ためて継電器入
力電流とすれば地絡回線を判別できる。
becomes. This calculated value △workin of equation 1 (9) excludes the negative phase component and zero-sequence circulating current component of the load current, and becomes only the fault current component.This current △workin is newly calculated as the relay input current. If so, you can identify the ground fault line.

以上の方法で相手端先行しゃ断前丑で(外部故障も含む
)は負荷電流の逆相成分の影響を除外することができる
。ところが、第2 [1(b)に示すようVC1相手端
が先行しゃ断した場合、平行2回線の線路インピーダン
スが不平衡となり自端での差回路に生じる負荷電流は大
きく変化し、自端での差電流に現われる負荷電流通相分
の地絡故障発生前後の変化分Δ工2Lが零とならずに0
0式中の(a−1)KaΔ工2L  が継電器入力電流
に誤差電流分として残る。このため、相手端が先行しゃ
断した後はさらに次の方法によって継電器入力電流を得
る、負荷電、流の力率が100(Xに近いと、1線地絡
時の地絡相を基準とした負荷電流の正相分工ILと故障
電流成分IFとの位相関係は同相又は逆位相となる。3
端子系統(’tri源1端子、負荷2端子)で相手端先
行しやlei l、た場合に自端の差′屯ぴ;、にすと
われる11荷′d、流)E相分の変化方向は地絡発生位
抽′による最先行しゃ断端予励に示す第3図に対応づけ
た以下の第3表に示す辿シ、電強t1話が最先行しゃ断
すると相手嬬子の負荷端は2端子とも故障回線に対して
同方向■となる。そのベクトル図を第4図(a)に示す
。また、負荷端が受は潮流の状態で最先行し−や断する
と、相手端子の負荷端及びR1,部端とも故障回線に対
して反対力向Oとなる。そのベクトル図を第4図(b)
に示す。第4図(a) 、 (b)中、立。
By the above method, it is possible to exclude the influence of the negative phase component of the load current before the other end is cut off (including external failures). However, if the other end of VC1 is cut off in advance as shown in 2nd [1(b)], the line impedance of the two parallel lines becomes unbalanced, and the load current generated in the difference circuit at its own end changes greatly, and the The change ∆2L before and after the occurrence of a ground fault fault due to the load current that appears in the differential current does not become zero and becomes 0.
(a-1) KaΔme2L in equation 0 remains as an error current in the relay input current. Therefore, after the other end is cut off in advance, the relay input current is obtained by the following method. If the power factor of the load current and current is close to 100 ( The phase relationship between the positive phase component IL of the load current and the fault current component IF is in phase or in opposite phase.3
In a terminal system (1 source terminal, 2 load terminals), if the other end is leading or lei l, the difference between the own end is 11 loads, which are held at the end, and the flow) E phase change. The direction is shown in Table 3 below, which corresponds to the figure 3 shown in Figure 3 for the first cutoff and pre-excitation of the cutoff by drawing the ground fault occurrence position. Both terminals are in the same direction (■) with respect to the faulty line. The vector diagram is shown in FIG. 4(a). Further, if the load end is the first in the state of power flow and is broken, both the load end and the R1 end of the mating terminal will have an opposite force direction O with respect to the faulty line. The vector diagram is shown in Figure 4(b).
Shown below. Figure 4 (a), (b) middle, standing.

Eb 、 12:cはa 、 ’b 、 c相電圧、−
Vo(da相地絡時の零相電圧、△IILは相手端先行
しゃ断時の負荷電流正相分の変化分であるCまた、第3
図(a+ 、 (b) 。
Eb, 12:c is a, 'b, c phase voltage, -
Vo (zero-sequence voltage at the time of a phase ground fault, △IIL is the change in the positive phase portion of the load current when the other end is cut off in advance, and C
Figures (a+, (b).

(c)中、実線矢印はしゃ断器6 a 、 6 ’b 
、 6 Cが開く前の回線3の負荷電流方向、破線矢印
は咳し、や断器が開いた後の該回線の負荷知、流、変化
方向を示す。
(c) Inside, solid arrows indicate circuit breaker 6a, 6'b
, 6 The load current direction of the line 3 before C is opened, and the dashed arrow indicates the load current, current, and change direction of the line after the breaker is opened.

第  3  表 以上から、(101式の継電器入力電流△Iinに対し
て、相手端先行しゃ断時に自端の差電流に現われる負荷
間、流圧相分の変化分△工ILに比例したMを、以下の
第4表に示すように電源端継電器へは恥工I L 。
From Table 3 above, (with respect to the relay input current △Iin of formula 101, M, which is proportional to the change in the flow pressure phase between the loads and the current pressure phase that appears in the differential current at its own end when the other end is cut off in advance, is As shown in Table 4 below, the power supply end relay is connected to the relay.

負荷端継電器へは−nΔ工+t、を加えれば故障M電流
] 工FとΔ工ILとは同方向のため負荷電流の逆相分があ
っても故障回線を正しく判定することができる。
If -nΔwork+t is added to the load end relay, the failure M current can be obtained.] Since the workpiece F and the deltaworkIL are in the same direction, it is possible to correctly determine the faulty line even if there is a reverse phase component of the load current.

第  4  表 n;定数 ところが、第5図に示すように、負荷端7cが最先行し
ゃ断(第1 ) リップ)すると、相手端の負荷端継電
器には第4図(至)に示すように故障電流IFに対して
負荷電流の正相分の変化分△工tLを反対位置で印加す
るため誤不動作、誤動作する虞れがある。このため、負
荷端継電器に限り第1トリツプ(最先行しゃ断)を検出
すると(検出方法については後述)電源端トリップ(第
2トリツプ)までタイマによる動作遅延をかける。一方
、電源端継電器は、故障電流工Fに対して印加する負荷
電流正相分の変化分△工ILは四方向のため正動作する
のでその必要はない。電源端継電器によって第2トリツ
プされると、負荷端継電器は故障@加工Fと負荷電流正
相分の変化分△工ILは同方向となるので正動作する(
第4図a参照)。
Table 4: Constant However, as shown in Fig. 5, if the load end 7c is cut off first (first lip), the load end relay at the other end will have a failure as shown in Fig. 4 (to). Since the positive phase change ΔtL of the load current is applied at the opposite position to the current IF, there is a risk of malfunction or malfunction. Therefore, when the first trip (earliest cutoff) is detected only in the load end relay (the detection method will be described later), the operation is delayed by a timer until the power end trip (second trip). On the other hand, the power supply end relay is not necessary because the change in the positive phase portion of the load current Δwork IL applied to the faulty current switch F operates in a positive direction because it operates in four directions. When the second trip is caused by the power supply terminal relay, the load terminal relay operates normally because the fault @ machining F and the load current positive phase change △ machining IL are in the same direction (
(See Figure 4a).

以上の方法で、零相循環電流や負荷電流に影響されるこ
となく故障回線を正しく選択することができるが、この
ためには負荷電流の正相分を検出する必要がある。その
方法を以下に説明する。
With the above method, it is possible to correctly select a faulty line without being affected by the zero-sequence circulating current or the load current, but for this purpose it is necessary to detect the positive-sequence component of the load current. The method will be explained below.

循環電流の件ノmとして前述の性質1,2に加えて次の
性質3がある。
In addition to properties 1 and 2 described above, the following property 3 exists as a matter of circulating current.

性′ej3・・・・・・次のりυ式に定義する補償定数
1丑、Ll)。
Compensation constant 1x, Ll) defined by the following equation υ.

LCは、起g24系統の潮流の太ささ、位相に無関係で
あシ、電線配置と短線の太さ及び起誘導系統の運用状態
によって定する。
LC is unrelated to the thickness and phase of the power flow of the originating G24 system, and is determined by the wire arrangement, the thickness of the short wires, and the operational status of the originating and guiding system.

但し、a・−・′jξ” 第1図の電線配置から計算された循環電流によって補償
定数La 、 Lb 、 Lc  を求めた結果を第5
表に示す。
However, the results of determining the compensation constants La, Lb, and Lc using the circulating current calculated from the wire arrangement shown in Figure 1 are shown in the fifth column.
Shown in the table.

第5表 被誘導系統のC相地絡時に健全相のb相及びC相差電流
Ibd 、 Icdを測定すると前述q(3)式となる
。C相差電流Icdを1200遅らせてb相差電流Ib
dから引算すると逆相成分が除去されて次の(2)式に
なる。
Table 5 When the b-phase and C-phase difference currents Ibd and Icd of healthy phases are measured when a C-phase ground fault occurs in the induced system, the above equation q(3) is obtained. Delay C phase difference current Icd by 1200 to obtain b phase difference current Ib
When subtracted from d, the negative phase component is removed and the following equation (2) is obtained.

■bσ−a2■c(1=(よりc +a2工+L +a
 I2L )−a2(Icc + a工IL + a2
I2L)=(よりc −a2ICc )+(a2−1 
>工IL・・・・・・・・・0々 前述の性質3から021式に定数Laを乗することによ
って零相循環電流と負荷正相分との和を得ることができ
る。この演算値をBとすると、B=La(工M −a2
■cd ) = La ((よりc−a2■cc )+(a2−1 
)工+1.)= La (Ibc−a2ICc )+(
a2−1 )La工IL=工oc + (a2−1 )
 La1lL==−−−、(14となる。この演算値B
を逆相分除去法による零相循環電流の演算値と称する。
■ bσ - a2 ■ c (1 = (from c + a2 engineering + L + a
I2L)-a2(Icc+a-IL+a2
I2L) = (from c - a2ICc ) + (a2-1
>Work IL...0 From property 3 described above, the sum of the zero-sequence circulating current and the load positive-sequence component can be obtained by multiplying the equation 021 by the constant La. Letting this calculated value be B, B=La(EngM −a2
■cd) = La ((from c-a2■cc)+(a2-1
) engineering +1. )=La(Ibc-a2ICc)+(
a2-1) La ko IL = ko oc + (a2-1)
La1lL==---, (14. This calculated value B
is called the calculated value of the zero-sequence circulating current by the negative phase component removal method.

b相及びC相地絡時も同様に演算値Bが求められ、こn
ら演算値Ea。
The calculated value B is obtained in the same way when the b-phase and C-phase ground fault occurs.
The calculated value Ea.

Bb 、 Bcは第6表に示すようになる。Bb and Bc are as shown in Table 6.

第6表 :=−(く2−1)L役T1し −(伐−1)トユI2
L    ・・・・・・・・・ α4゛となる。故に(
B−A)を(a2−1) LaIu、で除すると となる。各相循環′電流工oc 、工ac 、 I’b
c 、 ICeはは?!同相のため定数KaとLaは共
役に近い関係となる。よって、叫式右辺第2項の絶対値
はとなる。また、負荷電流の逆相分の含有率ll2L/
IILIはたかだか5〜l(1%のためq!〕)式から
負荷電流の正相分を検出することができる。ここで、(
lrI1式の11f4について地絡故障発生前後の変化
分△Cをとると、 中△I+L            ・・・・・・・・
・(17+となシ、相手端先行しゃ断時の差電流に担わ
れる負荷電流正相分の変化分△工ILを検出することが
できる。b相、C相地絡時も同様に考えて、これらの演
算値は第7表に示ず通シとなる。
Table 6: =-(ku2-1) L role T1 -(boring-1) Toyu I2
L ・・・・・・・・・ α4゛. Therefore (
B-A) is divided by (a2-1) LaIu. Each phase circulation' current oc, ac, I'b
c, What about ICe? ! Since they are in phase, the constants Ka and La have a nearly conjugate relationship. Therefore, the absolute value of the second term on the right side of the equation is as follows. In addition, the content rate of the reverse phase component of the load current ll2L/
IILI can detect the positive phase component of the load current from the equation of at most 5~1 (q because it is 1%!). here,(
Taking the change △C before and after the occurrence of the ground fault for 11f4 of the lrI1 formula, we get: Medium △I+L ・・・・・・・・・
・(17+) It is possible to detect the change in the positive phase portion of the load current △work IL carried by the difference current when the other end is cut off in advance.Considering the same way when the B phase and C phase are grounded, These calculated values are not shown in Table 7 and are constant.

(以下余白) 以上、3端子系の代表的構成である電源1端子。(Margin below) The above is a typical configuration of a three-terminal system with one power supply terminal.

負荷2端子の例について原理的に説明したが、3端子系
で電源2端子、角荷1端子の場合は電Ilネ端継市器に
限り第1トリツプ(最先行しゃ断)を検出すると第2ト
リツプ甘でタイマーによシ重す作間#をかけるし、2端
子系の場合FiηL源端、部端端g%t、器共にタイマ
ー限時の必要はない。
We explained the principle of an example with two load terminals, but in the case of a three-terminal system with two power supply terminals and one square load terminal, when the first trip (earliest cutoff) is detected only in the power supply terminal connection, the second If the trip is too sweet, the timer is overloaded with #, and in the case of a two-terminal system, there is no need to time the timer for both the FiηL source end, the terminal end, and the device.

以下に、本発明の一実旋例として共架多回線用地絡回線
選択継′@I器を送電端に設置した場合を第6図に基づ
いて説明する。同図は第2図に示す3婦子系統を3相表
示したもので、第1図及び第2図と同一部分は同一符号
で示しであるe第6 は+中、1()は中性点抵抗器、
31a 〜31 c及び41a 〜4]Of”’j変流
器を示しこれらを同一相で差回路接続して間流検出部1
1によって差電流を検出する。−回線間差司、流検出器
11のiia、 、 i、tb 、 iic及びilr
/lはa。
Below, as an example of the present invention, a case where a common multi-line ground fault line selection joint '@I device is installed at the power transmission end will be described with reference to FIG. 6. This figure shows the three-phase representation of the three-female lineage shown in Figure 2, and the same parts as in Figures 1 and 2 are indicated by the same symbols. point resistor,
31a to 31c and 41a to 4]Of'''j current transformers are shown and connected in a differential circuit with the same phase to form the intercurrent detection section 1.
1 to detect the difference current. - interline controller, current detector 11 iia, , i, tb, iic and ilr
/l is a.

b、c相及び零相差部、流の検出部を示す。15は第1
のデータ変換器を示し電流検出器11によって検出され
たアナログ童のa、b、c相及び零相差を流Ia、d 
、■−bd、 、 Icd、 、 Iod (こ′fL
らを信号S1と称す)を一定周期でサンプリング及びア
ナログ−ディジタル(A/D)変換してディジタル%S
4 (Ia(1゜Ibd 、 :rcd )及びS5 
(Iod )r出力する。1ZiJ4!圧(・C山部で
あり母Itii7aに接続さ7した@1の1t4圧検出
部1゛5(相電圧検出用変成器)と第2の1↓・、圧検
出部1.4 (零相電圧検出用変成器)から成る。、1
6はIn2のデータ変換器を示し、電圧検出部12によ
って検出されたアナログ鍛のa、b、c相和:圧F2a
b, c phase, zero phase difference section, and flow detection section are shown. 15 is the first
The a, b, c phase and zero phase difference of the analog current detected by the current detector 11 are shown as Ia, d.
, ■-bd, , Icd, , Iod (ko'fL
(referred to as signal S1) is sampled and analog-to-digital (A/D) converted at a constant period to obtain digital signal S1.
4 (Ia(1°Ibd, :rcd) and S5
Output (Iod)r. 1ZiJ4! Pressure (・C mountain part and connected to the mother Itii7a 1t4 pressure detection section 1゛5 (phase voltage detection transformer) and the second 1↓・, pressure detection section 1.4 (zero phase (voltage detection transformer).,1
6 indicates a data converter of In2, and the analog force a, b, c phase sum detected by the voltage detection unit 12: pressure F2a
.

Eb 、 IDC(S2)及び零相電圧VO(S3)を
A/D勿喚しテテイジタル%’ S6(Ea、 、 E
l) 、 Ec )及び57(VO)を出力する。
Eb, IDC (S2) and zero-sequence voltage VO (S3) are A/D-ready and digital %' S6 (Ea, , E
l), Ec) and 57 (VO).

17は第1のフィルタ部であり、第1のデータ変換器1
5(7)出力S< (Iad 、■bd、ICd )の
ディジタル量を入力して夫々2つの相の回線間差電流か
ら正相分を除外しそれらの量S8を出力ず為。ディジタ
ル量S8は次の3つのlになる。
17 is a first filter section, and the first data converter 1
5(7) Input the digital quantities of output S<(Iad, ■bd, ICd), exclude the positive phase components from the line difference currents of the two phases, and output those quantities S8. The digital quantity S8 is the following three l's.

18il−1第1の補償定数設定部であり、前述の(1
)式に示す補償定数Ka 、 Kb 、 Kc  を設
定することが可能でありかつそれらの値5sffi出力
する。19は第1の演算部であり、フィルタ部17の出
力S8に設定部18の出力S9から正相分除外法による
零相循環電流の演算値SIOを求める。このSIOは次
の3つの演算値である。
18il-1 is the first compensation constant setting section, and is the above-mentioned (1
) It is possible to set the compensation constants Ka, Kb, and Kc shown in the formula, and output these values 5sffi. Reference numeral 19 denotes a first calculating section, which calculates a calculated value SIO of the zero-sequence circulating current using the positive-sequence component exclusion method from the output S8 of the filter section 17 and the output S9 of the setting section 18. This SIO is the following three calculated values.

2()は第2のフィルタ部であり、第1のデータ変換部
15の出力S4を入力して夫々2つの相の回線間差電流
から逆相分を除外した量Sl+を出力する。
2() is a second filter section which inputs the output S4 of the first data conversion section 15 and outputs an amount Sl+ obtained by excluding the negative phase component from the line difference current of the two phases.

このS11は次の3つの量である。This S11 is the following three quantities.

21は第2の補償定数設定部であり、01)式に示す補
償定数La 、 Lb 、 Lc を設定することが可
能であり、それらの値SI2を出力する。22は第2の
演14、部であり、フィルタ部20の出力S11と設定
部21の出力SI2から逆相分際外法による零相循環電
流の演算値S1sを求める。この5tsid次の3つの
演算値である。
21 is a second compensation constant setting unit, which can set compensation constants La, Lb, and Lc shown in equation 01), and outputs their values SI2. Reference numeral 22 denotes a second function 14, in which a calculated value S1s of the zero-phase circulating current is obtained from the output S11 of the filter section 20 and the output SI2 of the setting section 21 by the reverse phase boundary method. These are the following three calculated values of 5tsid.

23は地絡相検出部であシ、1線地絡時の地絡相を判別
するものである。その1例を示すと第2のデータ変換器
16の出力S6であるa、b、c相電圧のディジタル量
を入力して次の演算を行なう。
Reference numeral 23 denotes a ground fault phase detection unit, which determines the ground fault phase when a one-wire ground fault occurs. As an example, the following calculation is performed by inputting the digital quantities of the a, b, and c phase voltages, which are the output S6 of the second data converter 16.

世し、 IEI2は絶対値の二乗 m はスカラー係数 さらに、地絡相検出部2:(け上述のL1〜L6がら次
の第8表に示す判定式により地絡相を判別して1線地絡
時の地絡相判別信号SI4を出力する。その特性は第7
図に示さnる。
In addition, IEI2 is the square of the absolute value, m is a scalar coefficient. Outputs the ground fault phase discrimination signal SI4 at the time of a fault.The characteristics are shown in the seventh
As shown in the figure.

j@8表 271は地絡故障検出部であ、す、その1例を示すと第
2のデータ変換器1(iの出力S7すなわち零相電圧の
ディジタル量を入力しその大きさが一定値以上Kfxる
ことによって地絡故障を検出し、地絡故障検出信号S1
5を出力する、 25は第1の選択部であり、地絡相検出部2.ツの判別
信号S+4と演算部]9の演勢値Shoを入力し、地絡
相判別信号SI4によって系統1線地絡時の正相分除外
法による零相()u環電流の演算値S、。を次の第9表
のように選択して出力S16を得る。
j@8 Table 271 is a ground fault detection section. One example is the input of the output S7 of the second data converter 1 (i, that is, the digital quantity of the zero-phase voltage, whose magnitude is a constant value. By performing the above Kfx, a ground fault is detected, and a ground fault detection signal S1
25 is a first selection section, which outputs ground fault phase detection section 2.5. The calculation value Sho of the zero-phase ()u ring current is calculated by the positive-sequence exclusion method at the time of a ground fault in one line of the system, using the ground fault phase discrimination signal SI4. ,. is selected as shown in Table 9 below to obtain output S16.

第  9  表 20はPJ3の演算部であり、系に*、1 線地絡時に
相手端先行しゃ断時呼での回紳選択地絡継7tj’、 
6の入力小゛流△Iinを演算する。この演−q部2(
)へは、選択部25の出力S!6になる系統1線地絡時
の正相分除外法による零相循環電流の演算値と、第1の
データ変換部15の出力S5になる零相差箪流工○dの
ディジタル針及び地絡故障検出部24の出力316にな
る地絡故障検出信号を入力して前述の(itl1式の演
11をし、その演算1直△工in (SI7 )  を
出力する。
Table 9 shows the calculation section of PJ3, which includes *, 1 line ground fault, circuit selection ground fault connection 7tj' in the call when the other end is cut off in advance when the line is ground faulted,
The input small current ΔIin of 6 is calculated. This performance-q part 2 (
) is the output S! of the selection unit 25. 6, the calculated value of the zero-sequence circulating current by the positive-sequence exclusion method at the time of the system one-wire ground fault, and the digital needle and ground fault of the zero-sequence differential tunnel flow machine ○d, which becomes the output S5 of the first data converter 15. The ground fault detection signal, which is the output 316 of the fault detection unit 24, is input, and the above-mentioned equation (11) is performed, and the calculation 1 shift Δwork in (SI7) is output.

すなわち零相差電流Iodから正相分除外法による零相
循環電流の演算値Aを差し引き、さらにその値について
信号SI5によって地絡故障発生を知り、地絡故障発生
前後の変化分を演算する。これを式で示すと次のC+式
となる。
That is, the calculated value A of the zero-sequence circulating current by the positive-sequence exclusion method is subtracted from the zero-sequence difference current Iod, and the occurrence of a ground fault is detected from the signal SI5, and the change before and after the occurrence of the ground fault is calculated. Expressing this as a formula, it becomes the following C+ formula.

△工in= (Iod−A ) −(工od−A)キI
F                 ・・・・・・・
・・・・・脅但し、工od −Aは系統餌食時の釦を示
し、(工OC1,−A ”Iは系統1線地絡時の桁を示
す。
△Work in = (Iod-A) - (Work od-A) Ki I
F・・・・・・・・・
However, od -A indicates the button when the system is preyed upon, and OC1, -A "I" indicates the digit when the system 1 line is grounded.

27は第2の選択部であり、地絡相判別信号SI4及び
演算部22の演算値St3を入力し、地絡相判別信号S
I4によって系統1紳:tllj、絡時の逆相分際外法
による零相循諜)電流の演算値S18を次の第1(1表
のように選択して出力818とする。
27 is a second selection unit, which inputs the ground fault phase discrimination signal SI4 and the calculated value St3 of the calculation unit 22, and outputs the ground fault phase discrimination signal S
I4 selects the calculated value S18 of the zero-phase circulating current in the system 1 (tllj) using the negative phase boundary method at the time of a circuit as shown in Table 1, and outputs 818.

第  10   表 28は第4の演算部であシ、地絡故障発生前後の負荷電
流正相分の変化分△Cを検出し、その値S19を出力す
る。この演算部28へは選択部25の出力S16ンこな
る系統1線地絡時の正相分除外法による零相循環電流の
演算値Aと、選択部27の出力31gになる系統1紳地
絡時の逆相分際外法による零相伏1埠′目1流の演算値
Bと、地絡故障検出部24の出力SI。
Table 10 shows the fourth calculation unit, which detects the change ΔC in the positive phase portion of the load current before and after the occurrence of the ground fault, and outputs the value S19. The calculation unit 28 receives the output S16 of the selection unit 25, which is the calculated value A of the zero-sequence circulating current by the positive-sequence exclusion method at the time of a system 1 line ground fault, and the output 31g of the system 1 line ground fault, which is the output 31g of the selection unit 27. Calculated value B of zero-phase fall 1st pier' 1st flow by reverse phase division method at the time of fault and output SI of ground fault detection section 24.

になる地絡故障検出信号と、設定部2」の出力S12に
々る補償定数La 、 Lb 、 Lc  と、地絡相
検出部2:(の出力S14になる地絡相判別信号とを入
力し、地絡相に応じて回線間差電流に現わ扛る負荷電流
正相分の故j樗発生mI後の変化分△Cを前述の第7表
に従って求め、この値S19を出力する。
Input the ground fault fault detection signal that becomes the output, the compensation constants La, Lb, and Lc that are output from the output S12 of the setting section 2, and the ground fault phase discrimination signal that becomes the output S14 of the ground fault phase detection section 2. , the change ΔC after the occurrence of mI in the positive phase component of the load current which appears in the line difference current according to the ground fault phase is determined according to the aforementioned Table 7, and this value S19 is output.

29は相手端先行しゃ断検出部であり、演算部2Hの出
力S19になる負荷重、流上相分の故障先生前後の変化
分ΔCを入力し、この絶対価が一定値以上の場合には相
手端先行しゃ断(イ)りと判定して信号S21を出力す
るし、絶対値が一定値未満で相手端先行しゃ断無しと判
定するときには信号S20を出力する。
Reference numeral 29 denotes a preceding cutoff detection unit at the other end, which inputs the load weight and the upstream phase change amount ΔC before and after the failure, which becomes the output S19 of the calculation unit 2H, and when this absolute value is above a certain value, the other end It outputs a signal S21 when it determines that the leading end is cut off (a), and outputs a signal S20 when it determines that there is no leading cutting off at the other end because the absolute value is less than a certain value.

3()は第10地絡回線選択部であり、演算部26の出
力SI7になるΔI:hn (00)式参照)ト、デー
タ変換部■6の出力S7になる零相電圧■○のディジタ
ル幇と、相手端先行しゃ断検出部2!Jの出力S20に
なる相手端先行しゃ断なし信号と金入力し、系統1純地
絡でかつ相手端が先行しゃ断されない期間捷での地絡回
線の選択を行なって地絡回線判別信号S22 v S2
3  を出力する。この選択部3oにおいて、地絡故障
が発生して相手端が先行しゃ断する首での期間の演算部
26からの入力SI7からの久方△工inは曲成から ム■inキエF            ・・・叩り・
・・v9となり、はぼ故障電流成分のため相手端先行し
ゃ断なし信号S20の成立条件で地絡回線の判定を行な
う。その1例として、次のa’y 、 w式がら岑相亀
1モ■0を極性−:圧として△工inの有効分が一定値
±ε以上又は以下の判定から地絡回線を一!I′I]別
する。
3() is the 10th ground fault line selection section, and the output SI7 of the calculation section 26 is ΔI:hn (refer to equation (00)). And the other end advance cutoff detection part 2! Input the signal with no prior cutoff at the other end which becomes the output S20 of J, and select the ground fault line in the period when the system 1 is pure ground fault and the other end is not cut off in advance, and send the ground fault line discrimination signal S22 v S2.
Outputs 3. In this selection section 3o, the input from the calculation section 26 of the period during which the other end is cut off in advance when a ground fault occurs is inputted from the input SI7. Hit・
. . v9, and since it is a fault current component, the ground fault line is determined based on the condition that the other end prior cut-off signal S20 is established. As an example, the following a'y, w formula is used to determine whether the ground fault line is fixed by determining whether the effective component of △ is greater than or equal to a certain value ±ε, with 0 being the polarity -: pressure. I'I] Separate.

イqし、(△工in −Vo )はベクトル内積値、1
■例 は絶対価を示す。
q, (△work in −Vo) is the vector inner product value, 1
■Example shows absolute value.

選択部30はこの(ハ)式成立で回線3の地絡、ψυ式
成立で回線4の地絡と判定し、回線3の地絡では地絡回
線判別信号S22を出方し、回線4の地絡では判別信号
S23を出力する。
The selection unit 30 determines that there is a ground fault in line 3 when formula (c) is established, and determines that there is a ground fault in line 4 when formula (ψυ) is established, and outputs a ground fault line discrimination signal S22 in the case of a ground fault in line 3. In the case of a ground fault, a determination signal S23 is output.

31は第2の地絡回線選択部であり、演算部26の出力
817になるΔ工in (脅式参照)と、データ変換部
16の出力S7になる零相電圧■○のディジタル景と、
演算部28の出力SI9になる△C(第7表参照)と、
検出部29の出力S2+になる相手端先行しゃ断有り信
号を入力し、系統1線地絡でかつ相手端が先行しゃ断さ
れた後の地絡回線の遼択を行ない、地絡回線判別信号S
24及びS25  を出力する。
31 is a second ground fault line selection section, which has a digital view of Δworkin (refer to the equation) which becomes the output 817 of the calculation section 26, and zero-sequence voltage ■○ which becomes the output S7 of the data conversion section 16;
ΔC which becomes the output SI9 of the calculation unit 28 (see Table 7),
The other end pre-cut signal which becomes the output S2+ of the detection unit 29 is inputted, and the ground fault line after the system 1 line ground fault and the other end has been pre-cut is selected, and the ground fault line discrimination signal S is input.
24 and S25 are output.

この選択部31では選択部30と同様に、地絡故障が発
生してかつ相手端先行しゃ断後の継tit器入方電流を
第4表の値Δ工1nとし、継電器へ印加する負荷電流正
相分の方向は電源端と負荷端とでは反対位相とし、相手
端先行しゃ断有り信号の成立を条件として地絡回線の判
定を行なう。その1例とし1次の127)式及び(ハ)
式から地絡回線の判別に行なう。
In this selection unit 31, similarly to the selection unit 30, the relay incoming current after a ground fault occurs and the other end is cut off first is set to the value Δf1n in Table 4, and the load current applied to the relay is The directions of the phase components are set to be in opposite phases at the power source end and the load end, and a ground fault circuit is determined on the condition that a signal indicating a prior cutoff at the other end is established. As an example, the first-order equation 127) and (c)
Use the formula to determine whether there is a ground fault line.

演儂:部3Jけこのψフ式成立で回線3の地絡と判定U
7てその判別信号S24を出力し、脅式成立で(ロ)線
4の地絡と判定してその判定信号S25を出力する。
Performance: Part 3 J Kekono ψ F formula is established, and it is determined that line 3 is ground fault U
7, outputs the determination signal S24, and when the threat equation is established, it is determined that there is a ground fault in the wire 4 (b), and outputs the determination signal S25.

これら7痒択部30と31の出力のうち、回線3の地絡
回線判別信号S22.S24はオアゲート3:3による
論+−+J!和を取って回線3のしゃ断器6aのトリッ
プ指令S27とされるし、回線4の地絡回線判別信号S
23゜Szsはオアゲート34による論坤和を取って回
線4のしゃ断器6bのトリップ指令S28とさfLる。
Among the outputs of these seven selection units 30 and 31, the ground fault line discrimination signal S22 of line 3. S24 is based on ORGATE 3:3 +-+J! The sum is taken as the trip command S27 for the circuit breaker 6a of line 3, and the ground fault line discrimination signal S of line 4 is calculated.
23.degree.Szs is determined by the OR gate 34 and is then set as the trip command S28 for the circuit breaker 6b of the line 4.

但し、電源1端子、負荷2端子の3端子系での狛荷端継
電器又id:電源2端子、負荷1端子の3端子系での電
源端継鋤7器に限っては、破線ブロックで示すように、
オフディル−タイマ部32とアンドゲート35 、3t
;を用意する。該ブロック中、オフディレータイマ部3
2は相手端先行しゃ断部29の出力S21になる相手端
先行しゃ所有シの信号を入力とし、該信号S21の入力
から一定時間後(回線選択地絡継M1器の動作時間とし
ゃ断!a動作時1111の和に相当)にオン信号S26
を出力する。アンドゲート35及び36はオフディレー
タイマ部32の出力S26の成立を条件にオアゲート3
:号及び34の出力を夫々回l#、3の新たなトリップ
指令(S27)、やびININ種線新たなトリップ指令
(S28 )とする。こうしたオンディレータイマ部に
よる条件付加を必要とするのは、負荷端最先行しゃ断で
相手端である負荷端継電器につ諭て故障電流工Fと負荷
電流の正相分の変化分△lI+r、との位相関係が反対
位イ11になるためで、’fg源端部端るじゃlすT(
第2トリツプ)まで負荷端g?b、器をロックする必要
性による。
However, limited to power end relays in a 3-terminal system with 1 power supply terminal and 2 load terminals, or 7 power supply end relays in a 3-terminal system with 2 power supply terminals and 1 load terminal, these are indicated by broken line blocks. like,
Off-deal timer section 32 and AND gate 35, 3t
Prepare; In this block, off-delay timer section 3
2 inputs the signal of the other end's leading switch which becomes the output S21 of the other end's leading cutter 29, and after a certain period of time from the input of the signal S21 (the operating time of the line selection ground fault relay M1 and the cutting!a operation). (equivalent to the sum of 1111), the on signal S26
Output. The AND gates 35 and 36 are connected to the OR gate 3 on the condition that the output S26 of the off-delay timer section 32 is satisfied.
The outputs of : and 34 are respectively set as a new trip command (S27) of 1# and 3, and a new trip command (S28) of the ININ type line. It is necessary to add conditions using the on-delay timer section because when the load end is cut off first, the change in the fault current F and the positive phase component of the load current △lI+r is determined by the load end relay, which is the other end. This is because the phase relationship of
2nd trip) up to the load end g? b. Due to the need to lock the vessel.

なお、実施例において、17〜36で示さτしる各部/
ilT轡処理回路はコンピュータによるディジタルni
f算で実施可能であるCまた、実施例で(は3端子系統
を例にとってi9明したが2端子系統にも適用できるの
は勿論、超高圧共架系に限らず高抵抗接地系統のみから
なる共架系や平行4回線にも:IQb用できる。
In addition, in the examples, each part indicated by τ from 17 to 36/
The illumination processing circuit is a computer-generated digital
In addition, in the example (i9), we took a three-terminal system as an example, but it can of course be applied to a two-terminal system as well. It can also be used for IQb systems and parallel 4-line systems.

以上のとおり、本発明により、ば、共架多回線系統での
高抵抗接地系統に発生する苓相イ胎」名)電流及び負荷
電流の逆411成分に殆んど影響されることなく地絡回
線を選択できる効果がある。
As described above, according to the present invention, ground faults can be eliminated almost unaffected by the reverse 411 component of current and load current that occur in high-resistance grounding systems in shared multi-circuit systems. This has the effect of allowing you to select the line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超高圧共架系の電線配置図、第2図(a)。 (至)、(C)は平行2回線3端子系統での7リースト
リツプを説明するための系統状態図、第3図(al 、
 (b) 。 ((3)は最先行しゃ断端予励の自端負荷相流正相分の
変化方向を示す図、第4図(a)は相手負荷端最先行し
ゃ断時の自端の電流ベクトル図、第4図(b)は相手電
源端最先行しゃ断時の自端の’CIL流ベクトル図、@
5図は負荷端最先行しゃ断時の相手端地絡回線選択継電
器の応動を説明するためのタイムチャートとその系統状
態図、第6図は本発明の一実施例を示す共架多回線系統
用地絡回線選択継電器のブロック図、第7図は地絡相判
別特性図である。 LA、IB、IC,2A、2B、2C・・・超υ)圧送
を線、3 al 3bt 3C+ 4 al 4 br
 40・・・高抵抗接地系統送電線、5・・・鉄塔、6
a。 tj ’F) 、 (5(2、6d 、 6 e、 6
 f ・・・しやuh <=、7 a 、 7 b 、
 70−−−母線、8m m e BE ili、9a
。 gb、gc・・−負荷、10・・・中性点接地抵抗器、
月・・・回線間差電流検出器、12・拳・電圧検出部、
13・・拳相電圧検出用変成器、14・・・零相間、圧
検出用変成器、15 、16・・拳データ変換器、17
 、20・・・フィルタ部、18 、21・・・補償定
数設定部、t−st 、 22・・・演算部、23・・
・地絡相検出部、24・・・地絡故障検出部、25 、
27・・・スW択部、26 、28・・・演算部、29
・・・相手端先行しゃ断検出部、30 、3]・・・地
絡回線選択部、32・・・オフディレータイマ部。 第2図 (a) (C) 9a 第3図 (a) (b) (C)
Figure 1 is an electric wire layout diagram of an ultra-high voltage shared system, and Figure 2 (a). (to), (C) is a system state diagram for explaining a 7-lead strip in a parallel 2-line 3-terminal system, Figure 3 (al,
(b). ((3) is a diagram showing the change direction of the positive phase component of the load phase flow at the own end when the leading cutoff is pre-excited, Figure 4 (a) is a current vector diagram at the own end when the opposite load end is cut off first, Figure 4 (b) is the 'CIL flow vector diagram of the own end when the other end's power supply end is cut off first, @
Figure 5 is a time chart and system state diagram for explaining the response of the other end ground fault line selection relay when the load end is cut off first, and Figure 6 is a shared multi-line system site diagram showing an embodiment of the present invention. A block diagram of the fault line selection relay, and FIG. 7 is a ground fault phase discrimination characteristic diagram. LA, IB, IC, 2A, 2B, 2C... Super υ) Pressure feeding line, 3 al 3bt 3C+ 4 al 4 br
40... High resistance grounding system transmission line, 5... Steel tower, 6
a. tj 'F), (5(2, 6d, 6 e, 6
f...Shiya uh <=, 7 a, 7 b,
70---Bus bar, 8m e BE ili, 9a
. gb, gc...-load, 10...neutral point grounding resistor,
Month: line difference current detector, 12/fist/voltage detection section,
13... Transformer for fist phase voltage detection, 14... Transformer for zero phase and pressure detection, 15, 16... Fist data converter, 17
, 20... Filter section, 18, 21... Compensation constant setting section, t-st, 22... Calculation section, 23...
- Ground fault phase detection unit, 24... Ground fault detection unit, 25,
27... SW selection section, 26, 28... Calculation section, 29
. . . Opposite end advance cutoff detection unit, 30, 3] . . . Ground fault line selection unit, 32 . . . Off-delay timer unit. Figure 2 (a) (C) 9a Figure 3 (a) (b) (C)

Claims (1)

【特許請求の範囲】 共架多回線電力系統において、高抵抗接地系統の回線間
者a、b、c相差電流工ad 、 Ibd 、 ICd
及び回線間零相差亀流工odを検出する回線間差電流検
出器(11)と、高抵抗接地系統の母線の各a。 b、c相電圧F;a 、 Eb 、 EEc及び零相電
圧■○を検出する電圧検出部(12)と、上記差電流I
ad、■’bd。 Icdのうちの2つの相の差電流から正相分を除外した
童S8を得る第1のフィルタ部(17)と、零相循環電
流工OCと2組の相循環電流から正相分を除外した量と
の比とした補償定数Ka 、 Kb 、 Kc  と上
記量S8から正相分除外法によシ零相循環電流の演算値
Aa 、 Ab 、 ACを求める第1の演算部(19
)と、上記差電流Iad 、よりd、ICdのうちの2
つの相の差電流から逆相分を除外した窟Soを得る第2
のフィルタ部(20)と、零相循環電流と2絹の相循環
亀流から逆相分を除外した量との比とした補償定数La
 、 Lb 、 Lcと上記量Soから逆相分際外法に
より零相循環電流の演算値Ba 、 Bb 、 Bcを
求める第2の演算部(22)と、上記電圧検出部(12
)の検出出力から1線地絡時の地絡相判別信号S+tを
得る地絡相検出部(23)と、上記電圧検出部(12)
の検出出力から地絡故障検出信号S15を得る地絡故障
検出部(24)と、上記判別信号SI4、と第1の演算
部(19)の演算値Aa 、 Ab 、 ACから当接
地絡相の演算値を選択した出力SI6を得る第1の選択
部(25)と、この選択出力816と上記−ニ相差電流
■○dから上記地絡故障検出信号SI5が与えられる地
絡故障前後の継電器入力を流■inの変化分△工inを
演算する第3の演算部(26)と、上記判別信号S+4
と第2の演算部(22)の演算値1”la 、 Bb 
、 Bc から当接地絡相の演算値を選択した出力SI
8を得る第2の選択部(27)と、上配地絡相検出伊号
S14が与えられたときに上記イ包号S16゜S’s 
、 SI5及び補償定数La 、 Lb 、 Lc カ
ラー111.i13故障発生前後の負荷電流正相分の変
化分△Cを求める第4の演算部(28)と、この変化分
△Cの絶対値が一定値以上のとき相手端先行しゃ有りと
して信号S21を出力し相手端先行しゃ断無しには16
号S20を出力する相手端先行しゃ断検出部(29)と
、上記変化分Δ工inの有効分が苓相霜、圧■0を極性
として一定値範囲内にあることから相手端先行しや断無
しの信号S20ズバ与えられ、る捷での地絡回線の選択
をする地絡回線選択部(3(1)と、上記変化分△工i
nの有効分と△Cが零相電圧Voを極性として一定値範
囲内にあることから上記相手端先行しゃ所有シの信号S
KIが与えられた後の地絡回線の選択をする第2の地絡
回線選択部(31)と、−上記第1.第2の地絡回線選
択部(30)、 (3] )の論理和出力から夫々の回
線の地絡回線判別信号を得る論理回路部とを備えたこと
を特徴とする共架多回線系統用地絡回線選択継電器。
[Claims] In a shared multi-line power system, phase difference currents a, b, c between lines of a high resistance grounding system ad, Ibd, ICd
and an inter-line difference current detector (11) for detecting a zero-phase difference between lines (OD), and each of the bus bars of the high resistance grounding system. b, c phase voltage F; a, Eb, EEc and a voltage detection unit (12) that detects the zero-sequence voltage ■○, and the above-mentioned difference current I
ad,■'bd. A first filter section (17) that obtains a signal S8 that excludes the positive sequence component from the difference current between two phases of Icd, and a zero-phase circulating current generator OC and the two sets of phase circulating currents that exclude the positive sequence component. A first calculation unit (19
) and the above difference current Iad, d, 2 of ICd
The second step is to obtain So, which excludes the negative phase component from the difference current between the two phases.
filter section (20), and a compensation constant La, which is the ratio of the zero-phase circulating current to the amount obtained by excluding the negative phase component from the two-phase circulating current.
, Lb, Lc and the above-mentioned quantity So by the negative phase boundary method to obtain the calculated values Ba, Bb, Bc of the zero-sequence circulating current, and the voltage detection section (12).
), which obtains a ground fault phase discrimination signal S+t at the time of a one-wire ground fault from the detection output of
A ground fault detection section (24) which obtains a ground fault detection signal S15 from the detection output of the ground fault detection section (24), and a ground fault detection section (24) which obtains a ground fault detection signal S15 from the above-mentioned discrimination signal SI4 and the calculated values Aa, Ab, AC of the first calculation section (19) A first selection unit (25) that obtains an output SI6 with a selected calculated value, and a relay input before and after a ground fault fault to which the ground fault detection signal SI5 is given from this selection output 816 and the -two-phase difference current ■○d. A third calculation unit (26) that calculates the change in △in and the above-mentioned discrimination signal S+4.
and the calculated values 1"la, Bb of the second calculation unit (22)
, Output SI with the calculated value of the ground fault phase selected from Bc
A second selection unit (27) that obtains 8, and when the upper earth fault detection number S14 is given, the above-mentioned number S16°S's
, SI5 and compensation constants La, Lb, Lc color 111. i13 A fourth calculation unit (28) that calculates the change △C of the positive phase portion of the load current before and after the occurrence of a fault, and when the absolute value of this change △C is a certain value or more, it determines that the other end is leading and sends a signal S21. 16 for output and no preceding cutoff at the other end
The other end leading cutoff detection unit (29) outputs the signal S20, and the effective part of the above change Δworkin is within a certain value range with polarity 0 as the polarity. A ground fault line selection unit (3 (1) and the above variation △ work
Since the effective part of n and △C are within a certain value range with the zero-sequence voltage Vo as the polarity, the above-mentioned signal S of the opposite end is in possession
a second ground fault line selection unit (31) that selects a ground fault line after the KI is given; A shared multi-line system site characterized by comprising: a logic circuit section that obtains a ground fault line discrimination signal for each line from the OR output of the second ground fault line selection section (30), (3)) Fault line selection relay.
JP5190783A 1983-03-28 1983-03-28 Ground-fault selecting relay for common trestle multichannelsystem Granted JPS59178921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5190783A JPS59178921A (en) 1983-03-28 1983-03-28 Ground-fault selecting relay for common trestle multichannelsystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5190783A JPS59178921A (en) 1983-03-28 1983-03-28 Ground-fault selecting relay for common trestle multichannelsystem

Publications (2)

Publication Number Publication Date
JPS59178921A true JPS59178921A (en) 1984-10-11
JPH0517772B2 JPH0517772B2 (en) 1993-03-10

Family

ID=12899943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5190783A Granted JPS59178921A (en) 1983-03-28 1983-03-28 Ground-fault selecting relay for common trestle multichannelsystem

Country Status (1)

Country Link
JP (1) JPS59178921A (en)

Also Published As

Publication number Publication date
JPH0517772B2 (en) 1993-03-10

Similar Documents

Publication Publication Date Title
Kezunovic et al. Design, modeling and evaluation of protective relays for power systems
US4390835A (en) Fault identification in electric power transmission systems
US4433353A (en) Positive sequence undervoltage distance relay
JPS59178921A (en) Ground-fault selecting relay for common trestle multichannelsystem
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JPH08265957A (en) Matrix operation type system protector
US20230129666A1 (en) Coordination of protective elements in an electric power system
JPS59165909A (en) Parallel multichannel ground-fault protecting system
JPH0442726A (en) Ground fault indicator for distribution line
JPS619121A (en) Parallel multichannel system ground-fault channel selective relay
JP2721166B2 (en) Ground fault distance relay method
US2390813A (en) Relay
JPS633536B2 (en)
JPS59204418A (en) Trestle multichannel ground-fault protecting relay
JPH02266817A (en) Power system-protective relay
JPH0437651B2 (en)
JPH0452695B2 (en)
JPS6173516A (en) Disconnection detector
JPS6236453B2 (en)
JPH0389810A (en) Grounded line selecting relay for multiple line system
JPS631810B2 (en)
JPS5858889B2 (en) Three-phase distribution line disconnection detection device
JPH0210654B2 (en)
JPH0210650B2 (en)
JPH0359657B2 (en)