JPS5858889B2 - Three-phase distribution line disconnection detection device - Google Patents

Three-phase distribution line disconnection detection device

Info

Publication number
JPS5858889B2
JPS5858889B2 JP12426276A JP12426276A JPS5858889B2 JP S5858889 B2 JPS5858889 B2 JP S5858889B2 JP 12426276 A JP12426276 A JP 12426276A JP 12426276 A JP12426276 A JP 12426276A JP S5858889 B2 JPS5858889 B2 JP S5858889B2
Authority
JP
Japan
Prior art keywords
phase
current
line
value
absolute value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12426276A
Other languages
Japanese (ja)
Other versions
JPS5349240A (en
Inventor
一郎 荻巣
光弘 桑原
宏幸 三宅
志延 直原
元彦 嶋田
信明 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, Kansai Denryoku KK filed Critical Nissin Electric Co Ltd
Priority to JP12426276A priority Critical patent/JPS5858889B2/en
Publication of JPS5349240A publication Critical patent/JPS5349240A/en
Publication of JPS5858889B2 publication Critical patent/JPS5858889B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は配電線の断線検出装置に関する。[Detailed description of the invention] The present invention relates to a disconnection detection device for a power distribution line.

高圧配電線において、断線を起こしたときは、その回線
を速やかEどしや断することが必要である。
When a break occurs in a high-voltage distribution line, it is necessary to immediately disconnect the line.

そのために断線を起こしたとき速やかに変電所で検出す
ることが要望される。
Therefore, it is required to promptly detect a disconnection at a substation.

そのためには、分岐線の末端に断線を検出する装置を設
備しておき、これによって断線が検出されたとき、その
回線を強制的に接地させて変電所の地絡検出リレーを動
作させるようにすることが考えられる。
To do this, a device is installed at the end of the branch line to detect a disconnection, and when a disconnection is detected, the line is forcibly grounded and the ground fault detection relay at the substation is activated. It is possible to do so.

これによれば、地絡検出リレーの動作によって、断線を
起こした回線をしゃ断することができるようになるが、
この方式では、各分岐線の末端に断線を検出する装置を
設備しなければならないため、多数のこの種装置が必要
となって、設備費が高くつくし又保守点検が面倒となる
欠点がある。
According to this, a broken line can be cut off by the operation of a ground fault detection relay.
In this method, a device for detecting wire breakage must be installed at the end of each branch line, so a large number of devices of this kind are required, resulting in high equipment costs and troublesome maintenance and inspection.

そしてこの種の断線を検出する方法としては、零相電圧
、逆相電圧を検出し、及び電圧の低下などを検出するこ
とによって断線を検出することが考えられるがいずれも
その構成は極めて面倒である。
Possible methods for detecting this type of wire breakage include detecting zero-sequence voltage, negative-sequence voltage, and detecting a drop in voltage, but the configuration of either method is extremely complicated. be.

この発明は、配電線の断線を変電所において簡単にかつ
確実に検出することを目的とする。
An object of the present invention is to easily and reliably detect a break in a power distribution line at a substation.

この発明で64、変電所において、配電線の相電流及び
線間電流(一つの相電流と他の相電流のベクトル差)を
用いることによって配電線の断線を検出するようにして
いる。
In this invention, a break in a distribution line is detected in a substation by using the phase current and line current (vector difference between one phase current and another phase current) of the distribution line.

前述のように相電流、線間電流によって断線を検出しよ
うとする場合、断線を起こした相の相電流、線間電流は
変化するが、健全相のこれらの電流も変化する。
As described above, when attempting to detect a wire breakage using the phase current and line current, the phase current and line current of the phase in which the wire breakage occurred changes, but these currents of the healthy phase also change.

そして断線以外でも、単相負荷の開放時或いは三相負荷
の開放時にも、これらの電流は変化し、その変化量はそ
れぞれ別の値となることが多い。
In addition to disconnection, these currents change when a single-phase load or a three-phase load is opened, and the amount of change often takes on different values.

今これらの各電流につき、変化前後の電流値、その電流
変化分のベクトル差及び絶対値の差(スカラー差)につ
いて実際に求めたところ、次のような結果が得られた。
Now, for each of these currents, the current values before and after the change, the vector difference and the difference in absolute value (scalar difference) of the current change were actually determined, and the following results were obtained.

ここにそれぞれ抵抗値10オームの平衡負荷Zを、線間
電圧100vの三相配電線の負荷とし、第1図に示すよ
うにa相が断線した場合、第2図に示すように単相負荷
が開放された場合及び第3図に示すようσこ三相負荷が
開放された場合(いずれの図1ζおいても×印の個所で
線路が開放されたものとする。
Here, each balanced load Z with a resistance value of 10 ohms is assumed to be a load on a three-phase distribution line with a line voltage of 100 V, and if the a phase is disconnected as shown in Figure 1, the single-phase load becomes as shown in Figure 2. When the line is opened, and when the three-phase load is opened as shown in Figure 3 (in both Figures 1 and 1, it is assumed that the line is opened at the location marked with an x).

)の、変化前及び変化後の各相の相電流及び線間電流を
実測したところ、第1表に示すような結果が得られた。
), the phase current and line current of each phase before and after the change were actually measured, and the results shown in Table 1 were obtained.

(Iab−Ia −Ib )とする。他の相も同様)。(Iab-Ia-Ib). The same applies to other phases).

又これらの値について相電流及び線間電流の変化分をベ
クトル差及びスカラー差として計算した結果、第2表及
び第3表のような結果となった。
Further, as a result of calculating the changes in the phase current and line current as vector differences and scalar differences for these values, the results shown in Tables 2 and 3 were obtained.

これらの各位にもとずき、ひとつの相電流のベクトル差
又はスカラー差と、他の相の間の線間電流のベクトル差
又はスカラー差との比を計算Iどよって求めたところ、
次のような結果が得られた。
Based on these positions, we calculated the ratio of the vector difference or scalar difference in one phase current to the vector difference or scalar difference in line current between the other phases.
The following results were obtained.

すなわち第4表は相電流のスカラー差と線間電流**の
スカラー差との比を示し、第5表は相電流のスカラー差
と線間電線のベクトル差との比を示し、第6表64相電
流のベクトル差と線間電流のベクトル差との比を示す。
That is, Table 4 shows the ratio between the scalar difference in phase current and the scalar difference in line current**, Table 5 shows the ratio between the scalar difference in phase current and the vector difference in line wire, and Table 6 shows the ratio between the scalar difference in phase current and the vector difference in line wire. The ratio between the vector difference of 64-phase currents and the vector difference of line-to-line currents is shown.

ここで第4表に示す比を検討するに、第1図のようにa
相が断線した場合、a相の相電流の断線前後の変化分と
、b相及びC相間の線間電流の変化分との比が無限大と
なるのに対してb相の相電流の変化分とC相、a相間の
線間電流との比並びにC相の相電流の変化分とa相、b
相間の線間電流との比はいずれも成る有限値をとるよう
になる。
Now, when considering the ratios shown in Table 4, as shown in Figure 1, a
When a phase is disconnected, the ratio of the change in the phase current of the a phase before and after the disconnection to the change in the line current between the b and C phases becomes infinite, whereas the change in the phase current of the b phase The ratio of the line current between the C phase and the a phase, and the change in the phase current of the C phase and the a phase, b phase
The ratio to the line current between phases takes on a finite value.

そして第2図、第3図のように単相又は三相開放時にお
いても前記した比はいずれも零又は成る有限値をとるよ
うになる。
As shown in FIGS. 2 and 3, even when a single phase or three phases are open, the ratios described above all take zero or finite values.

これらから前記した比が無限大となるか或いは成る有限
値もしくは零となるかが判別できれば、a相の断線時が
、単相又は三相開放時と区別されて判別検出できるよう
になるっそして単相又は三相開放時における前記した比
はいずれも2以下であってa相断線時の比の無限大に比
較すれば遥かに小さく、換言すれば、両者の比の差は充
分大きいので、両者の比を区別して検出することが極め
て容易となる。
If it can be determined from these whether the above-mentioned ratio is infinite, a finite value, or zero, it will be possible to distinguish and detect when the A-phase is disconnected from when it is single-phase or three-phase open. The above-mentioned ratios when a single phase or three phases are open are all 2 or less, which is much smaller than the infinite ratio when the A phase is disconnected.In other words, the difference between the two ratios is sufficiently large, so It becomes extremely easy to distinguish and detect the ratio between the two.

以下第5表第6表に示す各比についても全く同様のこと
が言える。
The same thing can be said about each ratio shown in Tables 5 and 6 below.

なお、ひとつの相の相電流のベクトル差と他の相の間の
線間電流のスカラー差との比については上記表には示し
ていないが、第3表に示すように△Ibcが第1図の場
合にのみ零となり、他の場合の各線間電流の差が成る有
限値をとっていること及び第2表に示すように△Iaが
有限値をとっていることからすれば、ΔIa/△Ibc
の比が無限大となり、△rb7△Ica及び△Ic/△
Iabが成る有限値をとることは明らかであるから、上
記したと全く同様のことがいえることは容易に理解でき
よう。
Note that the ratio between the vector difference in phase current of one phase and the scalar difference in line current between other phases is not shown in the above table, but as shown in Table 3, △Ibc is the first Considering that it is zero only in the case shown in the figure, and that it takes a finite value that is the difference between the line currents in other cases, and that △Ia takes a finite value as shown in Table 2, △Ia/ △Ibc
The ratio of becomes infinite, △rb7△Ica and △Ic/△
Since it is clear that Iab takes a finite value, it is easy to understand that exactly the same thing as above can be said.

以上の説明はa相の断線を検出する場合についてであっ
たが、b相又はC相の断線の検出も上記したのと同じ手
法lζよって検出できるということはいうまでもない。
The above explanation has been about the case of detecting a disconnection in the a phase, but it goes without saying that a disconnection in the b phase or C phase can also be detected by the same method lζ as described above.

以上の説明に基き、この発明では、三相の相電流と線間
電流とをもって、変化前後の相電流の変化分及び線間電
流の変化分をもって上記した比を求めることによって断
線の発生を検出する。
Based on the above explanation, the present invention detects the occurrence of wire breakage by calculating the above ratio using the phase current of the three phases and the line current, and the change in the phase current and the change in the line current before and after the change. do.

ここに相電流及び線間電流のスカラー差は相電流の絶対
値の差及び線間電流の絶対値の差としてそれぞれ求める
ことができるし、又相電流及び線間電流のベクトル差は
、相電流のベクトル差の絶対値及び線間電流のベクトル
差の絶対値としてそれぞれ求めることかできるので、こ
れらの演算回路を用いることによって所要の断線の発生
が検出できるようlどなる。
Here, the scalar difference between the phase current and the line current can be obtained as the difference in the absolute value of the phase current and the difference in the absolute value of the line current, respectively, and the vector difference between the phase current and the line current can be calculated as the difference in the absolute value of the phase current and the difference in the absolute value of the line current, respectively. Since the absolute value of the vector difference between the line currents and the absolute value of the vector difference between the line currents can be obtained, the occurrence of the required disconnection can be detected by using these arithmetic circuits.

第4図は上記した第4表tど従う構成を示すもので、入
力端子1 、2 、3Gζそれぞれa相、b相及びC相
の相電流が与えられる。
FIG. 4 shows a configuration according to the above-mentioned Table 4, and phase currents of the a phase, b phase and C phase are applied to the input terminals 1, 2, and 3Gζ, respectively.

端子1に与えられたa相の相電流Ia?j絶対値記憶回
路4と絶対値検出回路5に入る。
A-phase current Ia given to terminal 1? j Enters the absolute value storage circuit 4 and absolute value detection circuit 5.

絶対値検出回路5は各瞬時の相電流Iaの絶対値を検出
し、絶対値記憶回路は正常時、つまり断線を起こす以前
の相電流Iaの絶対値を記憶している。
The absolute value detection circuit 5 detects the absolute value of the phase current Ia at each instant, and the absolute value storage circuit stores the absolute value of the phase current Ia at a normal time, that is, before a disconnection occurs.

したがって断線が発生したとき、絶対値検出回路5の検
出値はIa’lであり、絶対値記憶回路4の記憶値Lt
l■aである。
Therefore, when a disconnection occurs, the detected value of the absolute value detection circuit 5 is Ia'l, and the stored value Lt of the absolute value storage circuit 4
It is l■a.

端子2,3に与えられたb相及びC相の相電流Ib 、
Icは線間電流検出回路6に入り、ここで線間電流r
bcが検出される。
Phase current Ib of phase B and phase C applied to terminals 2 and 3,
Ic enters the line current detection circuit 6, where the line current r
bc is detected.

そしてこの電流値は絶対値記憶回路7及び絶対値検出回
路81こ与えられる。
This current value is then applied to the absolute value storage circuit 7 and the absolute value detection circuit 81.

これらはさきの各回路4,5とほぼ同じであり、絶対値
検出回路8は各瞬時の線間電流Ibcの絶対値のに倍値
(Kは常数)を検出し、絶対値記憶回路7は断線を起こ
す以前の線間電流Ibcの絶対値のに倍値を記憶してい
る。
These circuits are almost the same as the previous circuits 4 and 5, and the absolute value detection circuit 8 detects the double value (K is a constant) of the absolute value of the line current Ibc at each instant, and the absolute value storage circuit 7 A double value of the absolute value of the line current Ibc before the disconnection occurs is stored.

したがって断線が発生したとき、絶対値検出回路8の検
出値1iK I Ib’c lであり、絶対値記憶回路
7の記憶値はKIIbclである。
Therefore, when a disconnection occurs, the detected value of the absolute value detection circuit 8 is 1iK I Ib'cl, and the stored value of the absolute value storage circuit 7 is KIIbcl.

前記した各回路4,5゜7.8の出力は加減算回路9に
与えられ、断線が発生したときに(4次式の演算が行な
われる。
The outputs of each of the circuits 4, 5.7.8 described above are given to the addition/subtraction circuit 9, and when a disconnection occurs, a calculation of the quartic equation is performed.

(1Ial−lIa’l ) K(IIbcl−II
b’cl )上式の第1項はa相が断線したときの、a
相の相電流の変化分がスカラー差として表わされた値で
あり、第2項は同じくa相が断線したときのす。
(1Ial-lIa'l) K(IIbcl-II
b'cl) The first term in the above equation is a when the a phase is disconnected.
The change in the phase current of the phases is a value expressed as a scalar difference, and the second term is also the value when the a phase is disconnected.

C相の線間電流の変化分がスカ、ラー差として表わされ
た値のに倍値である。
The amount of change in the C-phase line current is twice the value expressed as the scalar difference.

この演算結果値(4零レベル検出器10に与えられ、こ
こで零値と比較される。
This calculation result value (4) is given to the zero level detector 10, where it is compared with the zero value.

ここで第4表に示した例の場合では、前記したKの値を
2より大きい値に設定しておいたとすれば、零レベル検
出器10によって加減算回路9の演算結果値が零より大
きいことを検出したとき、a相において断線が発生した
とすることができるようになる。
In the case of the example shown in Table 4, if the value of K mentioned above is set to a value greater than 2, then the zero level detector 10 detects that the calculation result value of the addition/subtraction circuit 9 is greater than zero. When this is detected, it can be determined that a disconnection has occurred in the a phase.

第5図は第5表に従う構成を示す。FIG. 5 shows a configuration according to Table 5.

この場合は線間電流の変化分はベクトル差として求める
必要があり、そのため線間電流検出回路6からの出力は
その交流量記憶回路11に入り、ここで正常時の線間電
流の交流量Ibcを記憶する。
In this case, it is necessary to obtain the change in the line current as a vector difference, so the output from the line current detection circuit 6 is input to the AC amount storage circuit 11, where the line current alternating current amount Ibc during normal operation is remember.

この記憶値と線間電流検出回路6からの各瞬時の出力値
とが加減算回路12に入力される。
This stored value and each instantaneous output value from the line current detection circuit 6 are input to the addition/subtraction circuit 12.

そしてa相の断線時には加減算回路12はI b c−
I b’cの演算を行なう。
When the a-phase is disconnected, the addition/subtraction circuit 12 is I b c-
Perform the calculation of Ib'c.

この出力は絶対値検出回路13によって、さぎの演算値
の絶対値を検出し、これをに倍して出力する。
The absolute value of this output is detected by the absolute value detection circuit 13, and this is multiplied by 2 and output.

したがってその出カイ直LtK I Ibc−Ib’c
となる。
Therefore, the output directly LtK I Ibc-Ib'c
becomes.

この値は線間電流の変化分をベクトル差とし、それにに
倍したものにほかならない。
This value is nothing but the vector difference multiplied by the change in line current.

回路4.5.13の出力は加減算回路14に与えられ、
断線が発生したときには次式の演算が行なわれる。
The output of circuit 4.5.13 is given to addition/subtraction circuit 14,
When a wire break occurs, the following calculation is performed.

(l Ia l−I Ia’l ) −K I Ibc
−Ib’cこの演算結果は零レベル検出器10に与えら
れ、零値と比較されるのであるが、第5表の場合にはK
の値を0.73より大きい値lζ設定しておけば、前記
した演算結果が零より大きくなったとき、a相が断線し
たことが判明する。
(l Ia l-I Ia'l) -K I Ibc
-Ib'c This calculation result is given to the zero level detector 10 and compared with the zero value, but in the case of Table 5, K
If the value of is set to a value lζ larger than 0.73, when the above-mentioned calculation result becomes larger than zero, it becomes clear that the a-phase is disconnected.

第6図は第6表に従う構成を示す。FIG. 6 shows the configuration according to Table 6.

この場合は相電流の変化分及び線間電流の変化分をいず
れもベクトル差として求める必要がある。
In this case, it is necessary to obtain both the change in phase current and the change in line current as vector differences.

そのため第5図に示す交流量記憶回路11.加減算回路
12及び絶対値検出回路13をもって線間電流Ibcの
変化分をベクトル差としたものにに倍したもの、すなわ
ちK I Ibc−Ib’c lを求めるとともに、同
じように端子1に与えられるa相の相電流を交流量記憶
回路21に与えて正常時のa相の相電流を記憶し、又そ
の出力と各瞬時の相電流とが加減算回路22に入力され
る。
Therefore, the AC amount storage circuit 11 shown in FIG. Using the addition/subtraction circuit 12 and the absolute value detection circuit 13, the change in line current Ibc is multiplied by the vector difference, that is, KI Ibc - Ib'c l is calculated and similarly applied to terminal 1. The phase current of the a-phase is applied to the alternating current amount storage circuit 21 to store the phase current of the a-phase during normal operation, and its output and each instantaneous phase current are inputted to the addition/subtraction circuit 22.

したがってa相の断線時には加減算回路22はIa−I
a’の演算を行なう。
Therefore, when the a phase is disconnected, the addition/subtraction circuit 22
Perform the calculation of a'.

そしてこの演算出力は絶対値検出回路23によって絶対
値が検出される。
The absolute value of this calculation output is detected by the absolute value detection circuit 23.

上記両紙対値出力回路13.23の出力は加減算回路2
4に与えられ、断線発生時には次式の演算が行なわれる
The output of the above-mentioned two paper pair value output circuits 13 and 23 is the addition/subtraction circuit 2.
4, and when a disconnection occurs, the following equation is calculated.

Ia−Ia’l −K I Ibc −Ib’cこの演
算結果は零レベル検出器10に与えられ零値と比較され
るのであるが、第6表の場合にはKの値を1より大きい
値に設定しておけば、前記した演算結果が零より大きく
なったとき、a相が断線したことが判明する。
Ia-Ia'l -K I Ibc -Ib'c This calculation result is given to the zero level detector 10 and compared with the zero value, but in the case of Table 6, the value of K is set to a value larger than 1. If this is set, when the above calculation result becomes greater than zero, it becomes clear that the a-phase is disconnected.

なお、上記零レベル検出器10によって零値と比較する
様説明したが、必ずしも零値にこだわるものではなく実
用性能を考慮して適当に感度を鈍くし零値以外の適切な
値と比較することもできる。
Although it has been explained that the zero level detector 10 is used to compare with the zero value, it is not necessary to be particular about the zero value, but to appropriately dull the sensitivity and compare with an appropriate value other than the zero value in consideration of practical performance. You can also do it.

以上の説明はいずれもa相の断線検出についてであった
が、b相、C相の断線検出についても第4図乃至第6図
に示す構成と同じ構成を用いることによって可能となる
ことはいうまでもない。
The above explanations have all been about the detection of disconnection in the a phase, but it is also possible to detect the disconnection in the b and c phases by using the same configuration as shown in Figures 4 to 6. Not even.

たとえばb相の断線検出のためには、端子1にb相の相
電流を、又端子2,3にはa相、C相の相電流を与える
ようにすればよい。
For example, to detect a disconnection in the b-phase, the b-phase current may be applied to terminal 1, and the a-phase and C-phase currents may be applied to terminals 2 and 3.

又図示する各回路については図示する以外の周知の回路
を利用することができるし、更にはマイクロコンピュー
タなどを使用することも可能である。
Further, for each circuit shown in the drawings, well-known circuits other than those shown in the drawings can be used, and furthermore, it is also possible to use a microcomputer or the like.

以上詳述したように、この発明によれば変電所において
、相電流、線間電流を検出するだけで断線が検出できる
ようになり、従来のように分岐線の末端のそれぞれに断
線を検出する装置を設備する必要はなくなり、結果とし
て簡単にかつ安価lこ断線の検出が可能となるし、又相
電流、線間電流の変化分の比は、断線時と非断線時とで
は格段の開きがあるので、その判別が極めて容易となる
効果がある。
As detailed above, according to the present invention, it becomes possible to detect a wire breakage at a substation simply by detecting the phase current and line current, instead of detecting a wire breakage at each end of a branch line as in the conventional method. There is no need to install any equipment, and as a result, it becomes possible to detect wire breaks easily and inexpensively, and the ratio of changes in phase current and line current is significantly different between wire breaks and non-wire breaks. This has the effect of making the discrimination extremely easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は三相線路の断線時及び非断線時の状
態を示す回路図、第4図乃至第6図はこの発明の実施例
を示すブロック線図である。 1.2,3・・・・・・相電流の入力端子、4,1・・
・・・・絶対値記憶回路、5,8・・・・・・絶対値検
出回路、6・・・・・・線間電流検出回路、IL21・
・・・・・、交流量記憶回路、13.23・・・・・・
絶対値検出回路、14゜12.24・・・・・・加減算
回路、10・・・・・・零レベル検出器。
1 to 3 are circuit diagrams showing states when the three-phase line is broken and not broken, and FIGS. 4 to 6 are block diagrams showing embodiments of the present invention. 1.2,3... Phase current input terminal, 4,1...
... Absolute value storage circuit, 5, 8 ... Absolute value detection circuit, 6 ... Line current detection circuit, IL21.
..., AC amount memory circuit, 13.23...
Absolute value detection circuit, 14°12.24...Addition/subtraction circuit, 10...Zero level detector.

Claims (1)

【特許請求の範囲】[Claims] 1 三相配電線のうちの断線検出対象のひとつの相の相
電流が変化したときの、その変化前後の相電流の変化分
とそのときの他の二相間の線間電流の変化分との比を判
定する手段を備え、前記比が一定値をこえたとき、前記
ひとつの相が断線したことを検出する三相配電線の断線
検出装置。
1. When the phase current of one phase that is subject to disconnection detection in a three-phase distribution line changes, the ratio of the change in phase current before and after that change to the change in line current between the other two phases at that time. A disconnection detection device for a three-phase distribution line, comprising means for determining the ratio, and detecting disconnection of the one phase when the ratio exceeds a certain value.
JP12426276A 1976-10-16 1976-10-16 Three-phase distribution line disconnection detection device Expired JPS5858889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12426276A JPS5858889B2 (en) 1976-10-16 1976-10-16 Three-phase distribution line disconnection detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12426276A JPS5858889B2 (en) 1976-10-16 1976-10-16 Three-phase distribution line disconnection detection device

Publications (2)

Publication Number Publication Date
JPS5349240A JPS5349240A (en) 1978-05-04
JPS5858889B2 true JPS5858889B2 (en) 1983-12-27

Family

ID=14880966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12426276A Expired JPS5858889B2 (en) 1976-10-16 1976-10-16 Three-phase distribution line disconnection detection device

Country Status (1)

Country Link
JP (1) JPS5858889B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795801B (en) * 2015-04-29 2018-02-16 南京南瑞继保电气有限公司 A kind of breaker non-three phase method of discrimination and device based on voltage

Also Published As

Publication number Publication date
JPS5349240A (en) 1978-05-04

Similar Documents

Publication Publication Date Title
US8300369B2 (en) System and method for polyphase ground-fault circuit-interrupters
US4795983A (en) Method and apparatus for identifying a faulted phase
CA1187555A (en) Protective relaying methods and apparatus
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
Gao et al. Design and evaluation of a directional algorithm for transmission-line protection based on positive-sequence fault components
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
CN110320432B (en) Single-phase line-breaking fault detection and protection method and system
Calero Rebirth of negative-sequence quantities in protective relaying with microprocessor-based relays
US3958153A (en) Method and apparatus for fault detection in a three-phase electric network
JPS5858889B2 (en) Three-phase distribution line disconnection detection device
JP2001352663A (en) Method and apparatus for detecting electrical leak in low-voltage ground electrical circuit
JPH02272365A (en) Phase detecting circuit for switching device control apparatus
US20170074941A1 (en) Detection of generator stator inter-circuit faults
JP3959573B2 (en) Power conditioner for photovoltaic power generation
Sidhu et al. A transformer protection technique with immunity to CT saturation and ratio-mismatch conditions
Roberts et al. Obtaining a reliable polarizing source for ground directional elements in multisource, isolated-neutral distribution systems
JP2916148B2 (en) Line selection relay
JPS6173516A (en) Disconnection detector
JPS6173517A (en) Disconnection detector
JPH02106126A (en) Method and apparatus for distinguishing types of failures in transmission line
CA1312651C (en) Method and apparatus for identifying a faulted phase
JPH0132735B2 (en)
JPH04138384A (en) Detector for disconnection and open phase
JPH04236124A (en) Method for detecting small ground fault of high-voltage distribution line
JPH0638095B2 (en) Improvement of disconnection failure detection method