JPH02272365A - Phase detecting circuit for switching device control apparatus - Google Patents

Phase detecting circuit for switching device control apparatus

Info

Publication number
JPH02272365A
JPH02272365A JP9587589A JP9587589A JPH02272365A JP H02272365 A JPH02272365 A JP H02272365A JP 9587589 A JP9587589 A JP 9587589A JP 9587589 A JP9587589 A JP 9587589A JP H02272365 A JPH02272365 A JP H02272365A
Authority
JP
Japan
Prior art keywords
phase
zero
signal
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9587589A
Other languages
Japanese (ja)
Inventor
Kazuo Yamada
和夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP9587589A priority Critical patent/JPH02272365A/en
Publication of JPH02272365A publication Critical patent/JPH02272365A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve accuracy of an operating time by detecting rise and fall points of rectangular wave pulse signal upon receipt of the rectangular wave pulse signal and detecting phases of the signals inputted in accordance with the time when the above detections are made. CONSTITUTION:In phase detecting circuits 2, 3, when a zero phase current or zero phase voltage is inputted, they are detected for every zero cross point of the AC signal, i.e. every time when positive zero cross points and negative zero cross points are appeared, and the waveforms are reversed in phase pulse generating circuits 27, 37 to output the rectangular wave pulse signal. Then, the phase detection is made by the phase detecting circuits 2, 3 based on the rise and fall points of this rectangular wave pulse, and the phase difference is calculated by a CPU 4.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、例えばS OG (S torage  
0vercurrent Ground )型等の開閉
器制御装置の位相検出回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention is applicable to, for example, SOG (Storage
The present invention relates to a phase detection circuit for a switch control device such as a 0vercurrent Ground) type switch control device.

(ロ)従来の技術 一般に、三相負荷に結合され、過大電流と地絡電流を検
出し、地絡電流が所定レベルえ越えると、その検知によ
りトリップコイルに電流を流して、開閉器を断させるよ
うにし、また過電流が検知された場合には、電源断を条
件にトリップコイルに電流を流して開閉器を断させるよ
うにしたsOG型の開閉器制御装置がある。この種の開
閉器制御装置には、検出した零相電圧、零相電流の位相
を検出し、これらの位相差を求める位相検出回路を備え
、その位相差が整定範囲内であるか否かを判別する機能
も備えている。従来の位相検出回路は、電流電圧や零相
電流の正の零クロス点を検出し、この零クロス点を基に
、位相や周波数を検出していた。
(b) Conventional technology Generally, the device is connected to a three-phase load, detects excessive current and ground fault current, and when the ground fault current exceeds a predetermined level, current is applied to the trip coil to disconnect the switch. There is also an sOG type switch control device which, when an overcurrent is detected, causes a current to flow through a trip coil to disconnect the switch on the condition that the power is cut off. This type of switch control device is equipped with a phase detection circuit that detects the phase of the detected zero-sequence voltage and zero-sequence current and determines the phase difference between them, and determines whether or not the phase difference is within the setting range. It also has a distinguishing function. Conventional phase detection circuits detect positive zero-crossing points of current voltage or zero-sequence current, and detect phase and frequency based on these zero-crossing points.

(ハ)発明が解決しようとする課題 上記従来の位相検出回路は、正の零クロス点を検出し、
この零クロス点を基準に位相差や周波数を検出するもの
であるから、第5図の(a)に示すように、例えばt点
で異常が発生した場合を想定すると、これを判断し得る
のは、次の正の零クロス点(O印で示す立上がり点)で
あるから、区間X。
(c) Problems to be Solved by the Invention The above conventional phase detection circuit detects a positive zero crossing point,
Since the phase difference and frequency are detected based on this zero cross point, if we assume that an abnormality occurs at point t, for example, as shown in Figure 5 (a), it is possible to determine this. is the next positive zero cross point (the rising point indicated by the O mark), so it is the section X.

が無駄となり、このX、は50Hzで最高20m5ec
となり、動作時間精度を上げ得ないという問題があった
is wasted, and this X is a maximum of 20m5ec at 50Hz.
Therefore, there was a problem that the operating time accuracy could not be improved.

この発明は、上記問題点に着目してなされたもので、上
記した期間X1を小さくし、動作時間精度をより、向上
させた開閉器制御装置の位相検出回路を提供することを
目的としている。
The present invention has been made in view of the above-mentioned problems, and aims to provide a phase detection circuit for a switch control device in which the above-mentioned period X1 is reduced and operating time accuracy is further improved.

(ニ)課題を解決するための手段及び作用この発明の開
閉器制御装置の位相検出回路は、三相母線の零相電流を
検出する零相電流検出器と、この零相電流検出器よりの
信号を受けて信号処理する第1の信号処理回路と、前記
三相母線の零相電圧を検出する零相電圧検出器と、この
零相電圧検出器よりの信号を受けて信号処理する第2の
信号処理回路と、前記零相電圧と零相電流の位相差を検
出する位相検出回路と、前記第1の信号処理回路及び第
2の信号処理回路及び位相検出回路の出力がそれぞれ予
め整定される整定値を越えたか否かを判別する手段と、
この判別手段による判別結果がいずれも整定値以上であ
るとの判別出力に応じて前記母線の開閉器を遮断させる
手段とを含む開閉器制御装置において、入力される交流
信号の零クロス点を検出する毎に波形反転する矩形波パ
ルス信号を出力する位相パルス回路と、この位相パルス
回路から出力される矩形波パルス信号を受けて矩形波パ
ルス信号の立上がり点と立下がり点を検出し、これらの
検出時点に基づいて入力される結果の位相を検出する位
相検出手段を特徴的に備えている。
(d) Means and operation for solving the problem The phase detection circuit of the switch control device of the present invention includes a zero-sequence current detector that detects the zero-sequence current of the three-phase bus, and a a first signal processing circuit that receives a signal and processes the signal; a zero-phase voltage detector that detects the zero-phase voltage of the three-phase bus; and a second signal processing circuit that receives the signal from the zero-phase voltage detector and processes the signal. The outputs of the signal processing circuit, the phase detection circuit that detects the phase difference between the zero-sequence voltage and the zero-sequence current, the first signal processing circuit, the second signal processing circuit, and the phase detection circuit are each set in advance. means for determining whether or not the set value has been exceeded;
In the switch control device, the switch control device includes means for shutting off the switch of the bus bar in response to a discrimination output indicating that all discrimination results by the discrimination means are equal to or higher than a set value. A phase pulse circuit that outputs a rectangular wave pulse signal whose waveform is inverted every time the pulse signal is inverted, and a phase pulse circuit that receives the rectangular wave pulse signal output from this phase pulse circuit and detects the rising and falling points of the rectangular wave pulse signal. It is characteristically equipped with phase detection means for detecting the phase of the input result based on the detection time point.

この位相検出回路では、零相電流等が入力されると、そ
の交流信号の零クロス点毎に、っまり正零クロス点、負
零クロス点が到来する毎に、これを検出して、位相パル
ス発生回路は、波形反転し、第5図の(b)に示す如き
矩形波パルス信号を出力する。そして、位相検出回路は
、この矩形波パルス立上がり点(O印)、と立下がり点
(△印)を基礎に位相検出を行う。そのため、例えば時
点tで異常が発生した場合、次の立下がり点t2より、
この検出動作に入るため、期間X2は期間XIより短く
なり、例えば50Hzで最高10m5ecとなり、従来
の位相検出回路より、動作時間精度を向上できる。
In this phase detection circuit, when a zero-phase current, etc. is input, it detects each zero-crossing point of the AC signal, each time a positive zero-crossing point and a negative zero-crossing point arrive, and detects the phase. The pulse generating circuit inverts the waveform and outputs a rectangular wave pulse signal as shown in FIG. 5(b). Then, the phase detection circuit performs phase detection based on the rising point (O mark) and falling point (Δ mark) of this rectangular wave pulse. Therefore, for example, if an abnormality occurs at time t, from the next falling point t2,
In order to enter this detection operation, the period X2 becomes shorter than the period XI, for example, a maximum of 10 m5ec at 50 Hz, and the operating time accuracy can be improved compared to the conventional phase detection circuit.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(E) Examples The present invention will be explained in more detail with reference to Examples below.

第2図は、この発明が実施されるSOG型の開閉器制御
装置のブロック図である。同図において、6600Vの
電源系統1に、零相電流検出器(零相変流器)2、及び
零相電圧検出器3が結合されており、それぞれ零相電流
及び零相電圧が検出されるようになっている。零相電流
検出器2で検出された零相電流は電圧信号に変換され、
入カドランス21、過入力保護回路22、テスト切替回
路23、フィルタ回路24、実効値平滑回路25及びレ
ベル変換回路26を介して、CPU4に人力されている
。また、同様に零相電圧検出器3で検出された零相電圧
は、電圧変換器3a、入カドランス31、過入力保護回
路32、テスト切替回路33、フィルタ34、実効値平
滑回路35及びレベル変換回路36をCP U 4に入
力されている。
FIG. 2 is a block diagram of an SOG type switch control device in which the present invention is implemented. In the figure, a 6600V power supply system 1 is connected to a zero-sequence current detector (zero-sequence current transformer) 2 and a zero-sequence voltage detector 3, which detect zero-sequence current and zero-sequence voltage, respectively. It looks like this. The zero-sequence current detected by the zero-sequence current detector 2 is converted into a voltage signal,
It is manually input to the CPU 4 via an input voltage transformer 21, an over-input protection circuit 22, a test switching circuit 23, a filter circuit 24, an effective value smoothing circuit 25, and a level conversion circuit 26. Similarly, the zero-phase voltage detected by the zero-phase voltage detector 3 is transmitted to the voltage converter 3a, the input voltage transformer 31, the over-input protection circuit 32, the test switching circuit 33, the filter 34, the effective value smoothing circuit 35, and the level converter 3a. The circuit 36 is input to the CPU 4.

過入力保護回路22.32は検出された零相電流及び零
相電圧のレベル以上を越えると、これを抑えるための機
能を有する回路であり、テスト切替回路23.33は通
常監視時にそれぞれ過入力保護回路22.32からの零
相電流検出信号及び零相電圧検出信号をフィルタ回路2
4.34に入力し、自己試験時に検出信号に代えて試験
信号をフィルタ回路24.34に入力する。フィルタ回
路24.34は高調波成分を除去するために設けられて
いる。実効値平滑回路25.35は検出信号等を直流分
に変換するための回路であり、レベル変換回路26.3
6は、CPU4への取込みに適合するための信号に変換
する回路である。位相パルス回路27.37は、それぞ
れフィルタ回路24.34から出力される交流信号を受
け、その交流信号の零クロスを検出し、検出毎にハイと
ローの波形レベルが反転される矩形波パルス信号を出力
し、CPU4に入力する。CPU4は、この矩形波パル
ス信号を受けて、パルス信号の立上がり点、立下がり点
を算出し、位相検出を行い、位相差や周波数を検出する
機能を備えている。
The over-input protection circuits 22 and 32 are circuits that have the function of suppressing the detected zero-sequence current and zero-sequence voltage when they exceed the levels, and the test switching circuits 23 and 33 protect against over-input during normal monitoring. The filter circuit 2 filters the zero-sequence current detection signal and zero-sequence voltage detection signal from the protection circuit 22.32.
4.34, and a test signal is input to the filter circuit 24.34 instead of the detection signal during the self-test. Filter circuits 24 and 34 are provided to remove harmonic components. The effective value smoothing circuit 25.35 is a circuit for converting the detection signal etc. into a DC component, and the level conversion circuit 26.3
6 is a circuit that converts the signal into a signal suitable for import into the CPU 4. The phase pulse circuits 27 and 37 each receive the AC signal output from the filter circuits 24 and 34, detect the zero cross of the AC signal, and generate a rectangular wave pulse signal in which the high and low waveform levels are inverted at each detection. is output and input to the CPU 4. The CPU 4 has a function of receiving this rectangular wave pulse signal, calculating the rising point and falling point of the pulse signal, performing phase detection, and detecting the phase difference and frequency.

整定回路5は、零相電流■。の整定値、零相電流■。の
整定値及び整定時間Tを整定するための回路であり、D
G試験スイッチ6aは、地絡試験を行うための手動スイ
ッチ、SO試験スイッチ6bは、過電流試験を行うため
の手動スイッチである。表示部7には、■。レベル表示
、電源表示、予報表示を備えている。出力部8には、地
絡検出によるDG表示、過電流によるSO表示を備えて
おり、また、地絡時のトリップ用のリレー、過電流時の
トリップ用のリレー、予報用リレー、異常リレー等を備
えている。
The setting circuit 5 is a zero-sequence current■. Setting value of, zero-sequence current■. This is a circuit for setting the setting value and setting time T of D.
The G test switch 6a is a manual switch for conducting a ground fault test, and the SO test switch 6b is a manual switch for conducting an overcurrent test. The display section 7 shows ■. Equipped with level display, power display, and forecast display. The output section 8 is equipped with a DG display due to ground fault detection and an SO display due to overcurrent, and also includes a relay for tripping in the event of a ground fault, a relay for tripping in the event of overcurrent, a relay for forecasting, an abnormality relay, etc. It is equipped with

また、CPU4には試験信号発生回路9及び試験回路、
診断回路IOを付設している。試験信号発生回路9は、
例えば4段階の自己試験用の電流信号L、自己試験用の
電圧信号■。を発生する。
The CPU 4 also includes a test signal generation circuit 9 and a test circuit.
Equipped with diagnostic circuit IO. The test signal generation circuit 9 is
For example, a current signal L for a four-stage self-test, and a voltage signal ■ for a self-test. occurs.

電流信号■。はテスト切替回路23に、電圧信号■oは
テスト切替回路33にそれぞれ入力される。
Current signal ■. is input to the test switching circuit 23, and the voltage signal ①o is input to the test switching circuit 33, respectively.

試験回路・診断回路10は、CPU4で実行される各種
の診断・試験機能、例えば定電圧チエツク機能、接点チ
エツク機能、TCチエツク機能、千i性機能チエツク等
を総称的に示したものである。
The test circuit/diagnostic circuit 10 is a general term for various diagnostic/test functions executed by the CPU 4, such as a constant voltage check function, a contact check function, a TC check function, and a universal function check.

このほか、この開閉器制御装置は、自身の電源部として
、フィルタ回路11、定電圧回路12、定電圧レベル変
換回路13.14を備えている。
In addition, this switch control device includes a filter circuit 11, a constant voltage circuit 12, and constant voltage level conversion circuits 13 and 14 as its own power supply section.

なお、端子P、 、P2に商用電源電圧が加えられ、端
子V、 、V、間には、電源系統1の開閉器を遮断する
ためのトリップコイルが接続される。TC検出回路15
は、端子V、 、V、にトリップコイルが接続されたこ
とを検出するための回路である。
Note that a commercial power supply voltage is applied to the terminals P, , and P2, and a trip coil for interrupting the switch of the power supply system 1 is connected between the terminals V, , and V. TC detection circuit 15
is a circuit for detecting that a trip coil is connected to terminals V, , V,.

次に、上記実施例開閉制御装置の位相検出動作について
説明する。
Next, the phase detection operation of the opening/closing control device of the above embodiment will be explained.

零相変流器2から零相電流が検出され、さらに零相電圧
検出器から零相電圧が検出されると、フィルタ回路24
.34から第3図に示す波形の電流信号1及び電圧信号
■がそれぞれ出力される。
When a zero-sequence current is detected from the zero-sequence current transformer 2 and a zero-sequence voltage is further detected from the zero-sequence voltage detector, the filter circuit 24
.. 34 outputs a current signal 1 and a voltage signal 2 having waveforms shown in FIG. 3, respectively.

これを受けて位相パルス回路27.37は、それぞれ入
力信号■、■の零クロス点を検出し、正の零クロスで立
上がり、負の零クロスで立下がる、半周期毎の矩形波パ
ルス信号(第3図■2、rp)をそれぞれ出力し、これ
らの矩形波パルス信号がCPU4に入力される。CPU
4では、位相パルス回路27.37からそれぞれ入力さ
れる矩形波パルス信号の立上がり点及び立下がり点を検
出し、例えば位相差を算出する。
In response to this, the phase pulse circuits 27 and 37 detect the zero cross points of the input signals ■ and ■, respectively, and generate a half-cycle rectangular wave pulse signal ( (2, rp) in FIG. 3 are respectively output, and these rectangular wave pulse signals are input to the CPU 4. CPU
4, the rising and falling points of the rectangular wave pulse signals respectively input from the phase pulse circuits 27 and 37 are detected, and, for example, a phase difference is calculated.

次に、この位相差算出処理動作について、第1図に示す
フロー図を参照して説明する。
Next, this phase difference calculation processing operation will be explained with reference to the flowchart shown in FIG.

CPU4では、先ず位相パルス回路27及び37から入
力されるパルス信号のいずれかにつき、立上がりがある
か否か判定する〔ステップST(以下STという)1〕
。いずれかの矩形波パルス信号が立上がった場合に、こ
のSTIの判定がYESとなり、次に、この信号が■信
号であるが否かを判定しく5T2)、第3図に例示する
ように、む、の時点で例えば電圧信号■2が立上がった
場合には、このSr1の判定がYESとなり、ここでカ
ウンタCvをスタートさせる(Sr1)。
The CPU 4 first determines whether there is a rising edge in either of the pulse signals input from the phase pulse circuits 27 and 37 [step ST (hereinafter referred to as ST) 1].
. When any of the rectangular pulse signals rises, the determination of this STI becomes YES, and then it is determined whether this signal is a ■ signal or not (5T2), as illustrated in FIG. If, for example, the voltage signal (2) rises at the point in time, the determination of Sr1 becomes YES, and the counter Cv is started here (Sr1).

次に、信号■2が立上がったか否かを判定しく5T4)
、電流信号■2の立上がりが検出されない間は、次に電
流lpが立下がったか否かをも併せ判定しく5T5)、
立上がりあるいは立下がりが検出されるまでSr1、S
r1の判定を繰り返す。
Next, check whether the signal ■2 has risen or not (5T4)
, while the rise of the current signal ■2 is not detected, it is also determined whether the current lp has fallen next (5T5),
Sr1, S until a rising or falling edge is detected.
Repeat the determination of r1.

つまり電流信号■が電圧信号Vに対して、進相にあるか
、遅相にあるかにより、信号が立下がるか、あるいは立
上がるかに相当するかのいずれであるかを判定する。
That is, depending on whether the current signal (2) is in a leading phase or a lagging phase with respect to the voltage signal V, it is determined whether the signal corresponds to falling or rising.

今、第3図に例示するように、電圧信号Vに対して電流
信号Iが遅れている場合(例えばφなる角度遅れている
場合)で電圧信号■2が立上がった後に電流信号Ipが
立上がることを想定する。
As illustrated in FIG. 3, when the current signal I lags behind the voltage signal V (for example, by an angle of φ), the current signal Ip rises after the voltage signal 2 rises. Expect it to go up.

この場合に、Sr4の判定がYESとなり、YESにな
った時点のカウンタCvの内容CV3を読込み、このC
v3のカウント値に、カウント値1当りの角度Rを乗算
し、位相角φを算出し、次の処理に進む(Sr9)。つ
まりこの場合には、Vpの立上がり点でカウントを開始
し、次に■2の立上がり点検出でカウントを停止すると
、このカウント内容が位相差φに相当するカウント値で
あり、角度信号をかけることにより、位相角φを算出す
ることができる。
In this case, the determination of Sr4 becomes YES, the content CV3 of the counter Cv at the time when it becomes YES is read, and this Cv3 is read.
The count value of v3 is multiplied by the angle R per count value 1 to calculate the phase angle φ, and the process proceeds to the next process (Sr9). In other words, in this case, if you start counting at the rising point of Vp and then stop counting when the rising point is detected in (2), the count contents are the count value corresponding to the phase difference φ, and the angle signal is applied. Thus, the phase angle φ can be calculated.

次に、例えば、電圧信号に対し、電流信号が進相の場合
は、第4図に例示するように、■、がtで立上がった後
、次に■2が立下がるまでに、■、が立下がる(tz点
)ことになる。そのため、Sr1でI、が立下がりかの
判定がなされるまで、Sr4、Sr1の判定が繰返され
、やがて■9信号が立下がると、Sr1の判定がYES
となり、この時点でカウンタのCvの内容Cvlをメモ
リに記憶する(Sr1)。このカウント値は第4図に示
すように、■2が立上がってから、■、が立下がるまで
の区間に相当するカウント値である。次に、その後、電
圧信号■2が立下がるのを待機する(Sr7)。■2の
信号が立下がると、つまりt1点に至ると、電圧信号■
2の半周期に相当するカウントCvの内容Cv□を読取
り、Cv□−Cvlの演算を行う(Sr8)。そしてこ
の演算値にRを乗じた値を位相角φとする。この場合、
この角度φは、電圧信号Vpに対して、電流信号■2が
φだけ進相であることを意味する。
Next, for example, if the current signal has a phase advance with respect to the voltage signal, as illustrated in FIG. falls (tz point). Therefore, the determination of Sr4 and Sr1 is repeated until Sr1 determines whether I falls, and eventually, when the 9 signal falls, the determination of Sr1 becomes YES.
At this point, the contents Cvl of the counter Cv are stored in the memory (Sr1). As shown in FIG. 4, this count value corresponds to the period from when 2 rises to when 2 falls. Next, after that, it waits for the voltage signal 2 to fall (Sr7). ■When the signal 2 falls, that is, when it reaches the t1 point, the voltage signal ■
The content Cv□ of the count Cv corresponding to the half period of 2 is read and the calculation of Cv□-Cvl is performed (Sr8). Then, the value obtained by multiplying this calculated value by R is set as the phase angle φ. in this case,
This angle φ means that the current signal 2 is phase advanced by φ with respect to the voltage signal Vp.

以上は、電圧信号■2を基準にし、電流信号が遅相の場
合と進相の場合を例に挙げて説明したが、電流信号IP
を基準にする場合には、立上がり検出後、Sr1で■か
の判定がNOとなり、5T11に移り、■かの判定を行
うが、この場合判定YESであり、以下電圧信号で判定
したのと同様に1と■を逆の形でSr1からSr9まで
の処理を行うことにより、電流信号■を基準にして、電
圧信号の進相の場合と遅相の場合の位相差を算出するこ
とができる。
The above has been explained based on the voltage signal ■2, taking as an example the case where the current signal is lagging phase and the case where the current signal is phase leading.
When using as a reference, after the rising edge is detected, the judgment of (①) becomes NO in Sr1, and the process moves to 5T11, and the judgment of (③) is made, but in this case, the judgment is YES, and the following is the same as the judgment made using the voltage signal. By performing the processing from Sr1 to Sr9 by reversing 1 and (2), it is possible to calculate the phase difference between the leading phase and the lagging voltage signal of the voltage signal with reference to the current signal (2).

さらに、以上は、電圧信号、電流信号とも、立上がり信
号を基準にした場合であるが、動作を開始した時点で、
立下がり信号が検出された場合には、STIの立上がり
有かの判定がNoとなり、5TIOに移り、立下がりか
否か判定し、立下がりの場合には、前記立上がりの場合
と全く逆の処理により、同様にしてやはり位相角を算出
することができる。
Furthermore, although the above is a case where both the voltage signal and the current signal are based on the rising signal, when the operation starts,
If a falling signal is detected, the determination as to whether the STI has risen is No, and the process moves to 5TIO, where it is determined whether it is falling or not. If it is falling, the process is completely opposite to that of the rising signal. Therefore, the phase angle can also be calculated in the same way.

(へ)発明の効果 この発明によれば、入力される交流信号の零クロス点を
検出する毎に波形反転する矩形波パルス信号を出力する
位相パルス回路と、この位相パルス回路から出力される
矩形波パルス信号を受けて、矩形波パルス信号の立上が
り点と立下がり点を検出し、これらの検出時点に基づい
て、入力される信号の位相を検出する位相検出手段とを
備えるものであるから、入力される交流信号の正、頁毎
に少なくとも位相検出を行うことができ、従って、位相
検出動作の途中のサイクルにおいて異常が発生した場合
においても、次の半周期の到来から安定動作のための検
出処理が行うことができるので、動作時間精度を従来の
位相検出回路に比べ、より向上させることができるとい
う利点がある。
(f) Effects of the Invention According to the present invention, there is provided a phase pulse circuit that outputs a rectangular wave pulse signal whose waveform is inverted every time a zero cross point of an input AC signal is detected, and a rectangular wave pulse signal output from this phase pulse circuit. The present invention includes phase detection means for receiving a wave pulse signal, detecting the rising point and falling point of the rectangular wave pulse signal, and detecting the phase of the input signal based on these detection times. It is possible to perform at least phase detection for each page of the input AC signal. Therefore, even if an abnormality occurs in the middle cycle of phase detection operation, it is possible to perform stable operation from the arrival of the next half cycle. Since the detection process can be performed, there is an advantage that the operating time accuracy can be further improved compared to the conventional phase detection circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例開閉制御装置の位相検出
処理動作を説明するためのフロー図、第2図は、この発
明が実施されるSOG型の開閉器制御装置のブロック図
、第3図、第4図は、上記実施例SOG型の開閉器制御
装置の位相検出動作を説明するための波形図、第5図は
、従来と本願発明の比較説明を行うための波形図である
。 1:電源系統、   2:零相電流検出器、3:零相電
圧検出器、4:cPU、 20:第1の信号処理回路、 30:第2の信号処理回路、 27・37:位相パルス回路。 特許出願人     立石電機株式会社代理人  弁理
士  中 村 茂 信 第 図 第 図 v3
FIG. 1 is a flow diagram for explaining the phase detection processing operation of a switch control device according to an embodiment of the present invention, and FIG. 2 is a block diagram of an SOG type switch control device in which the present invention is implemented. 3 and 4 are waveform diagrams for explaining the phase detection operation of the SOG type switch control device of the above embodiment, and FIG. 5 is a waveform diagram for comparing and explaining the conventional and the present invention. . 1: Power supply system, 2: Zero-phase current detector, 3: Zero-phase voltage detector, 4: cPU, 20: First signal processing circuit, 30: Second signal processing circuit, 27/37: Phase pulse circuit . Patent Applicant Tateishi Electric Co., Ltd. Agent Patent Attorney Shigeru Nakamura Figure Figure v3

Claims (1)

【特許請求の範囲】[Claims] (1)三相母線の零相電流を検出する零相電流検出器と
、この零相電流検出器よりの信号を受けて信号処理する
第1の信号処理回路と、前記三相母線の零相電圧を検出
する零相電圧検出器と、この零相電圧検出器よりの信号
を受けて信号処理する第2の信号処理回路と、前記零相
電圧と零相電流の位相差を検出する位相検出回路と、前
記第1の信号処理回路及び第2の信号処理回路及び位相
検出回路の出力がそれぞれ予め整定される整定値を越え
たか否かを判別する手段と、この判別手段による判別結
果がいずれも整定値以上であるとの判別出力に応じて前
記母線の開閉器を遮断させる手段とを含む開閉器制御装
置において、 入力される交流信号の零クロス点を検出する毎に波形反
転する矩形波パルス信号を出力する位相パルス回路と、
この位相パルス回路から出力される矩形波パルス信号を
受けて矩形波パルス信号の立上がり点と立下がり点を検
出し、これらの検出時点に基づいて入力される信号の位
相を検出する位相検出手段を備えたことを特徴とする開
閉器制御装置の位相検出回路。
(1) A zero-phase current detector that detects the zero-phase current of the three-phase bus; a first signal processing circuit that receives and processes signals from the zero-phase current detector; and a zero-phase current detector that detects the zero-phase current of the three-phase bus; a zero-sequence voltage detector that detects voltage; a second signal processing circuit that receives a signal from the zero-sequence voltage detector and processes the signal; and a phase detector that detects a phase difference between the zero-sequence voltage and the zero-sequence current. a circuit, a means for determining whether or not the outputs of the first signal processing circuit, the second signal processing circuit and the phase detection circuit each exceed a predetermined value, and a determination result by the determination means; and a means for shutting off the switch of the bus bar in response to a determination output that the voltage is equal to or higher than a set value, the switch control device includes a means for shutting off the switch of the busbar in response to a determination output that the voltage is equal to or higher than a set value. a phase pulse circuit that outputs a pulse signal;
Phase detection means receives the rectangular wave pulse signal output from the phase pulse circuit, detects the rising and falling points of the rectangular wave pulse signal, and detects the phase of the input signal based on these detection points. A phase detection circuit for a switch control device, characterized by comprising:
JP9587589A 1989-04-14 1989-04-14 Phase detecting circuit for switching device control apparatus Pending JPH02272365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9587589A JPH02272365A (en) 1989-04-14 1989-04-14 Phase detecting circuit for switching device control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9587589A JPH02272365A (en) 1989-04-14 1989-04-14 Phase detecting circuit for switching device control apparatus

Publications (1)

Publication Number Publication Date
JPH02272365A true JPH02272365A (en) 1990-11-07

Family

ID=14149517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9587589A Pending JPH02272365A (en) 1989-04-14 1989-04-14 Phase detecting circuit for switching device control apparatus

Country Status (1)

Country Link
JP (1) JPH02272365A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1494035A1 (en) * 2003-07-04 2005-01-05 Siemens Aktiengesellschaft Apparatus and method for determining the relative phase shift between a current and a voltage
CN102095937A (en) * 2010-12-17 2011-06-15 南京邮电大学 Method for quickly measuring instantaneous phase of alternating current electrical signal
CN102095929A (en) * 2010-12-17 2011-06-15 南京邮电大学 Method for rapidly measuring frequency of alternating-current signals
CN102095934A (en) * 2010-12-17 2011-06-15 南京邮电大学 Measuring method for phase difference of alternating current signals
CN102095935A (en) * 2010-12-17 2011-06-15 南京邮电大学 Method for measuring instantaneous phase of alternating current electrical signal
CN102095936A (en) * 2010-12-17 2011-06-15 南京邮电大学 Method for measuring phase difference of alternating-current electric signals quickly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1494035A1 (en) * 2003-07-04 2005-01-05 Siemens Aktiengesellschaft Apparatus and method for determining the relative phase shift between a current and a voltage
WO2005003794A1 (en) * 2003-07-04 2005-01-13 Siemens Aktiengesellschaft Device and method for determining relative phase displacement between a current and voltage
CN102095937A (en) * 2010-12-17 2011-06-15 南京邮电大学 Method for quickly measuring instantaneous phase of alternating current electrical signal
CN102095929A (en) * 2010-12-17 2011-06-15 南京邮电大学 Method for rapidly measuring frequency of alternating-current signals
CN102095934A (en) * 2010-12-17 2011-06-15 南京邮电大学 Measuring method for phase difference of alternating current signals
CN102095935A (en) * 2010-12-17 2011-06-15 南京邮电大学 Method for measuring instantaneous phase of alternating current electrical signal
CN102095936A (en) * 2010-12-17 2011-06-15 南京邮电大学 Method for measuring phase difference of alternating-current electric signals quickly

Similar Documents

Publication Publication Date Title
JP2903863B2 (en) Inverter device
US20070014062A1 (en) Apparatus and method for identifying a loss of a current transformer signal in a power system
US5627712A (en) Transformer differential relay
CN110320432B (en) Single-phase line-breaking fault detection and protection method and system
JPH02272365A (en) Phase detecting circuit for switching device control apparatus
JP3519760B2 (en) Islanding detection device
JPH027831A (en) Protective circuit for inverter
JP3213444B2 (en) Inverter islanding detection method
JP2923572B2 (en) Change width detector
JPH02188125A (en) Switchgear controller
JP2010252563A (en) Method and device for protecting inverter
US20220334151A1 (en) Open-phase detection circuit and power conversion apparatus
JP3022152B2 (en) Islanding detection method
JPS61189119A (en) Disconnection detector
JPH02188127A (en) Switchgear controller
RU2119706C1 (en) Method for protecting high-voltage lines
JPH071978B2 (en) Inverter open phase detection circuit
JP2003079053A (en) Power factor improvement device
JPH10304554A (en) Malfunction detector and protective device for ac-to-dc converter
JPH05264636A (en) Device for detecting trouble section of distribution line
JP2000217242A (en) Protective relay
JPS6321152Y2 (en)
JPH07322507A (en) Detection apparatus of single operation of distributed power supply
JPH0921834A (en) System linkage system
JPH02188124A (en) Switchgear controller