JPS59177880A - Lightning tube - Google Patents

Lightning tube

Info

Publication number
JPS59177880A
JPS59177880A JP5337483A JP5337483A JPS59177880A JP S59177880 A JPS59177880 A JP S59177880A JP 5337483 A JP5337483 A JP 5337483A JP 5337483 A JP5337483 A JP 5337483A JP S59177880 A JPS59177880 A JP S59177880A
Authority
JP
Japan
Prior art keywords
discharge
electrode
voltage
oxide
detonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5337483A
Other languages
Japanese (ja)
Other versions
JPH036635B2 (en
Inventor
笠原 正孝
秋山 忠克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP5337483A priority Critical patent/JPS59177880A/en
Publication of JPS59177880A publication Critical patent/JPS59177880A/en
Publication of JPH036635B2 publication Critical patent/JPH036635B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は不活性ガスを管内に気密封止したガス入り、放
電管に係り、特に放電開始を短時間に行い。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a gas-filled discharge tube in which an inert gas is hermetically sealed, and particularly to a discharge tube that starts discharge in a short time.

通信装置等を雷サージから保護するのに利用して良好な
避雷管に関する。
This invention relates to a lightning arrester that is suitable for use in protecting communication equipment, etc. from lightning surges.

(2)技術の背景 従来より避雷管は通信線に雷サージ(雷により発生ずる
異富高電圧)が流入すると電極間の放電により、大地に
サージを流し1通信装置を高電圧。
(2) Background of the technology Traditionally, when a lightning surge (different high voltage caused by lightning) flows into a communication line, a lightning arrester discharges between the electrodes and sends the surge to the ground, raising the voltage of the communication device.

大電流から保護する役目を有する。It has the role of protecting against large currents.

このような保護回路の構成に用いる避雷管は。What type of arrester is used to configure such a protection circuit?

繰り返しのサージに対しても目的の放電が行われ。The desired discharge is performed even in response to repeated surges.

サージが解除された後は、正常な給電々圧をたたちに回
路へ供給する必要から、避雷管の放電もただちに停止す
る必要があり、このためカス入り放電管式の避雷管にあ
っては2通常2回路より供給される電流範囲であるO〜
0.3Aでばグロー放電を行い、且つそのグロー放電維
持電圧は回路より供給される給電々圧よりも高い必要が
ある。
After the surge is released, it is necessary to immediately supply normal power supply voltage to the circuit, so the discharge of the detonator must be stopped immediately. 2 O~ which is the current range normally supplied by two circuits
At 0.3 A, glow discharge occurs, and the glow discharge sustaining voltage must be higher than the power supply voltage supplied from the circuit.

なぜなら、0〜0.3Aでアーク放電に移行してしまう
とアーク放電電圧が通常15〜25V程度であり9回路
電圧により放電しつづけてしまうからである。通當の避
雷管のアーク転移電流は0.5〜1.OAであるので、
アーク転移による続流(雷′サージにより避雷管が放電
した後回路電圧により引きつづいて放電が持続し避雷管
が過熱し2通信障害や火災が誘発されること)の問題は
心配ないが、装置の種類によっては150■程度の給電
電圧が使用される場合があり、グロー放電維持電圧が高
く、続流しにくい避雷管が要望されている。
This is because if the arc discharge occurs at 0 to 0.3 A, the arc discharge voltage is usually about 15 to 25 V, and the discharge continues at the 9-circuit voltage. The arc transition current of the current detonator is 0.5~1. Since it is OA,
There is no need to worry about follow-on current caused by arc transfer (after the arrester discharges due to a lightning surge, the discharge continues due to the circuit voltage, causing the arrester to overheat and cause a communication failure or fire), but the equipment Depending on the type, a power supply voltage of about 150 μm may be used, and there is a demand for a detonator that has a high glow discharge sustaining voltage and is difficult to follow.

(3)従来技術と問題点 第1図は2極避雷管を示す。電極部1,2は鉄ニツケル
コバルト合金(コバール)や42ニッケル合金(42ア
ロイ)などが用いられ、絶縁体7はガラス又はセラミッ
クが用いられ、内部6に不活性ガスを封入して、8.8
′の部分に銀源封着等の既知の封着技術により気密封止
されている。
(3) Prior art and problems Figure 1 shows a two-pole arrester. The electrode parts 1 and 2 are made of iron-nickel-cobalt alloy (Kovar), 42-nickel alloy (42 alloy), etc., the insulator 7 is made of glass or ceramic, and the inside 6 is filled with an inert gas.8. 8
' is hermetically sealed using a known sealing technique such as silver source sealing.

電極対向面3,4はコバール、4270イのような電極
素材そのままのものや、放電時の表面エネルギーを考慮
してナトリウム、バリウム等のアルカリ金属やアルカリ
土類金属の酸化物、又は炭酸塩等を表面に被着したもの
も市販されている。
The electrode facing surfaces 3 and 4 may be made of the electrode material as it is, such as Kovar or 4270I, or an oxide of an alkali metal or alkaline earth metal such as sodium or barium, or carbonate, taking into consideration the surface energy during discharge. There are also commercially available products that have the surface coated with

前記の電極表面が電極金属素材のままの避雷管にあって
は、繰り返しのサージを受けた場合には。
In the case of a detonator whose electrode surface is made of the electrode metal material, if it is subjected to repeated surges.

電極金属がスパッタリングして絶縁体内壁に付着するこ
とに起因して電極間の絶縁不良となり、性能が劣化する
。叉、アルカリ金属、アルカリ土類金属を被着したもの
は繰り返しのサージに対しては強いが、放電維持電圧が
40〜80Vと低いため、保護されるべき装置の給電々
圧が100■程度の場合には前述した続流がおこり、使
用不可である。
The electrode metal sputters and adheres to the inner wall of the insulator, resulting in poor insulation between the electrodes and deteriorating performance. On the other hand, those coated with alkali metals and alkaline earth metals are strong against repeated surges, but because the discharge sustaining voltage is as low as 40 to 80V, the power supply voltage of the equipment to be protected is around 100V. In this case, the following flow described above will occur, making it unusable.

さらにガラス質を表面に被着させ、放電維持電圧を比較
的高くする構成のものも市販されているが、製造方法が
難しく且つ、くり返しのサージを印加すると初期に比べ
放電開始電圧が大きくハラツいてしまい、一定電圧での
放電か行われなくなり、保護されるべき装置にサージか
入ってしまい装置が壊れてしまう等の欠点がある。
In addition, there are products on the market that have a structure in which a glass material is deposited on the surface and the discharge sustaining voltage is relatively high, but the manufacturing method is difficult, and when repeated surges are applied, the discharge starting voltage becomes much erratic compared to the initial stage. This has drawbacks such as discharging at a constant voltage and causing surges to enter the equipment to be protected, resulting in damage to the equipment.

(4)発明の目的 本発明は従来技術に於ける問題点を解決するため、放電
維持電圧が高(て続流しな(、繰り返しのサージ反復に
おいても放電開始電圧か変動しない避雷管を提供するこ
とを目的としている。
(4) Purpose of the Invention In order to solve the problems in the prior art, the present invention provides a detonator with a high discharge sustaining voltage (no follow-up) and whose discharge starting voltage does not change even during repeated surges. The purpose is to

(5)発明の構成 本発明では正規陰極降下電圧の高い、金属酸化物を電極
表面に固着することにより達成される。
(5) Structure of the Invention The present invention is achieved by fixing a metal oxide having a high normal cathode drop voltage to the electrode surface.

正規陰極降下電圧とは放電管がグロー放電する場合の陰
極部の電圧降下のことで陰極の材質、放電気体により値
が異る。
The normal cathode drop voltage is the voltage drop at the cathode when the discharge tube performs glow discharge, and the value varies depending on the material of the cathode and the discharge body.

(6)発明の実施例 以下に本発明の詳細な説明する。(6) Examples of the invention The present invention will be explained in detail below.

第1図に於て外径を3mmとし、高さをllmrnの2
極避雷管を用い、電極として42アロイ。
In Figure 1, the outer diameter is 3 mm and the height is llmrn.
A polar detonator is used, and 42 alloy is used as the electrode.

絶縁体7としてアルミナセラミックを用い、封入ガスと
してアルゴン30%とネオン70%の混合ガスを用いて
放電開始電圧がDC300V程度になるよう放電ギャッ
プ5のキョリを考慮して封入する。8.8′の封止部は
通常の方法により鑞付する。即ち、アルミナセラミック
7の両端面をMメ o−MnMnシタズし、銀源により電極1.2とを約8
00℃の電気炉で過熱して気密封止する。
Alumina ceramic is used as the insulator 7, and a mixed gas of 30% argon and 70% neon is used as the filling gas, taking into account the width of the discharge gap 5 so that the discharge starting voltage is about 300 V DC. 8. The seal at 8' is soldered by conventional methods. That is, both end faces of the alumina ceramic 7 are made Mmeo-MnMn, and the electrodes 1.2 and 2 are separated by about 80% by silver source.
It is heated in an electric furnace at 00°C and hermetically sealed.

この製造仮定に於て5本発明では電極を6[J付ずろ過
程で次の様な処理を行う。
Under this manufacturing assumption, in the present invention, the electrode is subjected to the following treatment in the 6 [J adjustment process.

(1,1酸化ウランを電極対向面に密着形式する方法酢
酸ウラニル粉末を水に溶かして1011i量%の水溶液
を作り、第2図に示す如く、筆塗により電極対向面3.
4に酢酸ウラニル水溶液9を塗布する。
(Method of applying uranium 1,1 oxide to the electrode facing surface) Dissolve uranyl acetate powder in water to make a 1011i aqueous solution, and as shown in FIG.
4 is coated with uranyl acetate aqueous solution 9.

これを常温で乾燥する。次にこの電極を用いてすると熱
分解により酢酸ウランは分)Wし、酢酸基を遊離し、酸
化ウランとなるが分解される雰囲気によりUO,U20
3.UOg 、U205 、UO3の種々の形をとるこ
とができ9本発明の場合もこれらの酸化物のいくつかの
混合物である。示差熱分析の結果によると370℃で熱
分解が完了し。
Dry this at room temperature. Next, when this electrode is used, uranium acetate is thermally decomposed into W, liberating acetic acid groups, and becoming uranium oxide, but due to the decomposition atmosphere, UO, U20
3. It can take various forms such as UOg, U205, UO3,9 and the present invention is also a mixture of some of these oxides. According to the results of differential thermal analysis, thermal decomposition was completed at 370°C.

さらに封着される温度800°Cまでの昇温過程でウラ
ン酸化物のシンタリングが行われ電極との密着のよい酸
化ウラン層が形成される。
Furthermore, in the process of increasing the temperature to 800° C. for sealing, sintering of the uranium oxide is performed to form a uranium oxide layer that has good adhesion to the electrode.

(2)酸化マンガンを電極対向面に密着形成する方法 (1)と同様に硫酸マンガンの10%水溶液を作り第2
図に示す如く筆塗し、鑞付炉中で硫酸マンガンを熱分解
してSO2,SOBを遊離させ、電極との密着のよい酸
化マンガン(MnO,Mn02)を形成させる。
(2) Method of forming manganese oxide in close contact with the surface facing the electrode In the same manner as in (1), prepare a 10% aqueous solution of manganese sulfate and use the second method.
As shown in the figure, it is painted with a brush, and manganese sulfate is thermally decomposed in a brazing furnace to liberate SO2 and SOB, forming manganese oxide (MnO, Mn02) that has good adhesion to the electrode.

本発明による正規陰極降下電圧の大きい元素の酸化物と
しては周期律表の王族すのCu、Ag。
Examples of oxides of elements having a large normal cathode drop voltage according to the present invention include Cu and Ag, which are members of the royal family of the periodic table.

V族のNb、Sb、Bi、Vl族のCr、Mo、WVl
l族のM n 、■族のIre、 Ni、Co、アクチ
ニウム系列のTh、U等があるが、これらの酸化物粉末
のみでは電極との強い密着性は得られず、いづれもシン
タリング温度か高いことから800℃以上の焼結処理を
して電極との密着性を高める必要があり、文中にば昇温
中に分解して金属になってしまうものがあり製造工程か
複雑になる。
V group Nb, Sb, Bi, Vl group Cr, Mo, WVl
There are M n of the I group, Ire, Ni, Co of the II group, and Th and U of the actinium series, but these oxide powders alone cannot provide strong adhesion to the electrode, and all of them are difficult to maintain at the sintering temperature. Because of the high temperature, it is necessary to sinter at temperatures of 800°C or higher to improve adhesion to the electrodes, and some materials decompose into metals during heating, which complicates the manufacturing process.

電極との密着性が悪いと、サージによるイオンf!li
撃で飛ばされてしまい、電極母材が表面に出てスパッタ
リングされてしまい絶縁体に付着して。
If the adhesion with the electrode is poor, ions f! li
The electrode was blown away by the blow, and the electrode base material came to the surface and sputtered, adhering to the insulator.

絶縁抵抗が劣化してしまい不可である。This is not possible because the insulation resistance will deteriorate.

電極との密着性を高めるためには1本発明による水溶液
有機溶剤溶液として、電極面にうすい被膜(〜100μ
程度)を作り、800°Cでのロー付温度で電極と焼結
することが最良である。
In order to increase the adhesion with the electrode, 1) Apply a thin film (~100μ) on the electrode surface as an aqueous organic solvent solution according to the present invention.
It is best to make the electrode at a brazing temperature of 800°C.

電極に正規陰極降下電圧の大きい元素を被着させ後に酸
化性雰囲気で酸化させる方法もあるが得られる酸化物層
が薄すぎたり、酸化量のコントロールが難しい欠点があ
る。酸化物の粒度を小さくし、焼結温度を下りる方法も
比較的良い結果か得られる。例えば、酸化マンカンの粉
末粒度(0,5〜1μ)のものを水に10重量%懸濁し
て電極に塗布したものは、硫酸マンガン水溶液として被
着した場合と比べるとくり返しの反復は硫酸マンガン水
溶液のものと比べると若干劣るがかなり良い結果が得ら
れた。密着形成の手段としてはこれら酸化物の蒸着、厚
膜プリント、スポット溶接、鑞付は等が可能である。
There is also a method of depositing an element with a large normal cathode drop voltage on the electrode and then oxidizing it in an oxidizing atmosphere, but this method has drawbacks such as the resulting oxide layer being too thin and the amount of oxidation being difficult to control. Relatively good results can also be obtained by reducing the particle size of the oxide and lowering the sintering temperature. For example, if mankan oxide powder particle size (0.5 to 1μ) is suspended in water at 10% by weight and applied to the electrode, the repeated repetition of manganese sulfate aqueous solution will be lower than when it is applied as a manganese sulfate aqueous solution. The results were quite good, although slightly inferior to the previous one. Possible means for forming close contact include vapor deposition of these oxides, thick film printing, spot welding, and brazing.

次に酸化ウラン、酸化マンガンを電極対向面に密着形成
した避雷管と従来の避雷管との電気的特性の比較結果を
示す。
Next, we will show the results of a comparison of the electrical characteristics of a detonator with uranium oxide and manganese oxide closely formed on the electrode facing surface and a conventional detonator.

ます続流テスI・であるが第3図に示す測定回路で直流
バイアス150V0.2A、サージ10×1′000μ
5.200Aで実験したとごろ、従来のアルカリ金属酸
化物使用の避雷管(10)とアルカリ土類金属の酸化物
を使用した避雷管10はいづれもi 50 m s以上
の続流か観察され不良であったが、酸化ウランを使用し
た避雷管、酸化マンガンを使用した避雷管およびガラス
質を使用した避雷管ではいずれも全く続流は観測されな
かった。
For the following current test I, the measurement circuit shown in Figure 3 was used with a DC bias of 150 V, 0.2 A, and a surge of 10 x 1'000 μ.
5. When conducting an experiment at 200 A, it was observed that both the conventional detonator (10) using an alkali metal oxide and the detonator 10 using an alkaline earth metal oxide had a follow current of more than i 50 m s. However, no follow-up current was observed in any of the detonators using uranium oxide, manganese oxide, and glass.

次に続流しなかった酸化ウラン、酸化マンガン。Next was uranium oxide and manganese oxide, which did not follow.

カラス質を使用したそれぞれの避雷管10を第4図に示
すサージ反復回路で10 x 1000 I7 S 2
0OAのサージ反復を200回印加したものの初期と反
復後の直流放電開始電圧を測定した。 その結果を第5
図に示す。初期の直流放電開始電圧はいづれも正確な比
較ができるよう同一にしである。第5図はガラス質を使
用した避雷管の反復前後の値をプロットしであるか1反
復後バラツキが大きく200V〜650■にバラクいて
いる。第6図と第7図はそれぞれ酸化ウラン酸化マンガ
ンを使用した避雷管の反復前後の直流放電開始電圧を示
すグラフであるが反復後もバラツキは少なく250v〜
370■内に分布しており、充分使用に耐えることが確
認された。
Each surge arrester 10 using glass material is connected to 10 x 1000 I7 S 2 in the surge repeating circuit shown in Fig. 4.
A surge repetition of 0OA was applied 200 times, and the DC discharge starting voltage was measured at the initial stage and after the repetition. The result is the fifth
As shown in the figure. The initial DC discharge starting voltages were all the same so that accurate comparison could be made. FIG. 5 plots the values before and after repetition of a detonator using glass material, and there is a large variation after one repetition, ranging from 200V to 650V. Figures 6 and 7 are graphs showing the DC discharge starting voltage before and after repetition of detonation arresters using uranium oxide and manganese oxide, respectively.Even after repetition, there is little variation from 250V to 250V.
It was confirmed that the distribution was within 370 square meters, and that it was sufficiently durable for use.

叉、ウラニウム化合物は核燃料規制物質に指定されてい
るが科学技術庁への届出により容易に使用できる。ここ
で使用した劣化ウラン化合物(238U)はα線のみを
放出しβ線、T線を放出しないから1人体への影響はほ
とんどなく取扱上。
On the other hand, uranium compounds are designated as nuclear fuel controlled substances, but they can be used easily if they are notified to the Science and Technology Agency. The depleted uranium compound (238U) used here emits only alpha rays and no beta rays or T rays, so it has little effect on the human body when handled.

特別の注意を払わなくともよい。このウラニlウムがα
線を放出する、伜とも直流放電開始電圧の安定に寄与し
ていると考えられる。
No special attention is required. This uranium is α
It is thought that this contributes to stabilizing the DC discharge starting voltage for emitting wires.

実施例の処理方法で正規陰極降下電圧の大きい酸化物を
種々実験した所(TiO2,pb○、  La20B 
、PbO,Co、504.Fe2O3,Cuo、Cr2
03.SnO,ZnO,CeO2)。
Experiments were conducted using various oxides with large normal cathode drop voltages (TiO2, pb○, La20B) using the treatment method in the example.
, PbO, Co, 504. Fe2O3, Cuo, Cr2
03. SnO, ZnO, CeO2).

傾向的には処理後電極と密着がよ−いもの1分子量が大
きくエネルギー吸収能力の大きいものほど良い結果が得
られた。
In terms of tendency, the better the adhesion to the electrode after treatment, the larger the molecular weight and the greater the energy absorption ability, the better the results were obtained.

さらに窒素ガス等を不活性ガスに混入して、正規陰極降
下電圧を大き(する方法もあるが、サージ反復後の直流
放電開始電圧のバラツキが大きく ′不可であった。不
活性ガス同志の混合1例えばアルゴンとネオンの混合比
の変更、ヘリウム、キセノン、クリプトン等との混合も
正規陰極降下電圧を若干大きくする組合せもあったか、
10〜30V程度でありガス化が高くなってしまいあま
り良い方法とはいえず、ガス混合比の変更は直流放電開
始電圧の調整を行える程度である。即ちカス量を多(封
入した方か反復寿命が長持らすることは知られているこ
とから、所望の直流放電開始電圧か得られる最大のカス
量を封入できるカス種類。
Furthermore, there is a method of increasing the normal cathode drop voltage by mixing nitrogen gas or the like with the inert gas, but this was not possible due to large variations in the DC discharge starting voltage after repeated surges.Mixing inert gases 1. For example, were there any combinations that slightly increased the normal cathode drop voltage, such as changing the mixing ratio of argon and neon, or mixing with helium, xenon, krypton, etc.?
Since the voltage is about 10 to 30 V, gasification becomes high, so it is not a very good method, and changing the gas mixture ratio can only adjust the DC discharge starting voltage. In other words, it is known that enclosing a large amount of debris will prolong the repeated life, so the type of debris that can enclose the maximum amount of debris to obtain the desired DC discharge starting voltage.

/′Ju合LLを選へは一番良い。/'Ju LL is the best choice.

本実施例では2極避雷管の例を示したが3極以」−の多
極避雷管にも応用できることは明白である。
In this embodiment, an example of a two-pole arrester is shown, but it is obvious that the present invention can also be applied to a multi-pole arrester with three or more poles.

(7)  発明の効果 以上よ一つcこ正規陰極効果電圧の高い金属酸化物を電
極対向面に強固に被着させることにより、続流しないく
り返しザーシ反復しても放電開始電圧の変化しない避雷
管がi47られる。
(7) One advantage of the invention is that by firmly adhering a metal oxide with a high normal cathode effect voltage to the electrode facing surface, a lightning arrester in which the discharge starting voltage does not change even after repeated flashing without following current. The tube is i47.

は第1図の電極表面に本発明に従かって酸化物形成のた
めの溶液を塗布した断面図、第3図は続流測定回路、第
4図はザーン反復回路、第5図乃生第7図は各々、従来
のガラス質を用した避雷管。
1 is a cross-sectional view of the electrode surface coated with a solution for oxide formation according to the present invention, FIG. 3 is a follow-on current measurement circuit, FIG. 4 is a Zahn repeating circuit, and FIG. Each of these is a detonation arrester using conventional glass material.

酸化ウラン、酸化マンガン使用の本発明乙こなる避雷管
の籾量と反復後の直流放電量す(コミ圧を示1°図であ
る。
The amount of paddy and the amount of DC discharge after repetition of the detonator according to the present invention using uranium oxide and manganese oxide are shown in a 1° diagram showing the rice pressure.

図中、1,2は電極、3,4は電極対同曲、5は放電キ
ャンプ、6ば不活性カス封入室、7は絶縁体、8はSa
 (=J部、10ば避雷管本体を示す。
In the figure, 1 and 2 are electrodes, 3 and 4 are electrode pairs, 5 is a discharge camp, 6 is an inert gas enclosure chamber, 7 is an insulator, and 8 is Sa
(=J section, 10 indicates the detonator main body.

1、・−1、g“j1,・-1,g“j

Claims (1)

【特許請求の範囲】[Claims] 放電々極を絶縁体の対応側端部に対向配置して気密封止
し、上記放電々極間に放電空間を形成したガス入り放電
管式の避雷管に於て、放電々極対四面に正規陰極降下電
圧の大きい元素の酸化物を密着形成したことを特徴とす
る避雷管。
In a gas-filled discharge tube type detonator, in which the discharge electrodes are arranged opposite to the opposite ends of the insulator and hermetically sealed, and a discharge space is formed between the discharge electrodes, A detonator characterized by closely forming an oxide of an element with a large normal cathode drop voltage.
JP5337483A 1983-03-29 1983-03-29 Lightning tube Granted JPS59177880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5337483A JPS59177880A (en) 1983-03-29 1983-03-29 Lightning tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5337483A JPS59177880A (en) 1983-03-29 1983-03-29 Lightning tube

Publications (2)

Publication Number Publication Date
JPS59177880A true JPS59177880A (en) 1984-10-08
JPH036635B2 JPH036635B2 (en) 1991-01-30

Family

ID=12941039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5337483A Granted JPS59177880A (en) 1983-03-29 1983-03-29 Lightning tube

Country Status (1)

Country Link
JP (1) JPS59177880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256393A (en) * 1986-04-22 1987-11-09 シ−メンス、アクチエンゲゼルシヤフト Gas discharge arrestor and manufacture of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139781A (en) * 1979-04-11 1980-10-31 Siemens Ag Electrode activator for gas discharge tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139781A (en) * 1979-04-11 1980-10-31 Siemens Ag Electrode activator for gas discharge tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256393A (en) * 1986-04-22 1987-11-09 シ−メンス、アクチエンゲゼルシヤフト Gas discharge arrestor and manufacture of the same

Also Published As

Publication number Publication date
JPH036635B2 (en) 1991-01-30

Similar Documents

Publication Publication Date Title
KR100735859B1 (en) Discharge tube
US4460497A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and selected alkali metal additives
JP2860335B2 (en) Discharge tube
JPH01124983A (en) Surge absorbing element
JP2516531B2 (en) Varistor, surge absorber, method for forming protective film, and bismuth borosilicate glass composition
JPS59177880A (en) Lightning tube
JPH01311585A (en) Discharge type surge absorbing element
JPH0132712Y2 (en)
JPH0132713Y2 (en)
JPH023271Y2 (en)
JPH0992429A (en) Surge absorbing element
JPH0216554Y2 (en)
US7301740B2 (en) Surge protector device and its fabrication method
JPH0132714Y2 (en)
JPH0536460A (en) Discharge type surge absorbing element
JPH0216553Y2 (en)
JPS6216525B2 (en)
JPS5889743A (en) Device for cleaning electric contact
JP2022138781A (en) Surge protection element and manufacturing method thereof
RU2050653C1 (en) Vacuum spark gap
JPH0219593B2 (en)
JPH0569270B2 (en)
JPH0246679A (en) Discharge type surge absorption element and manufacture thereof
JPH07130506A (en) Manufacture of resisting body nonlinear in voltage
JPH0722033B2 (en) Arrester