JPH01311585A - Discharge type surge absorbing element - Google Patents

Discharge type surge absorbing element

Info

Publication number
JPH01311585A
JPH01311585A JP14262888A JP14262888A JPH01311585A JP H01311585 A JPH01311585 A JP H01311585A JP 14262888 A JP14262888 A JP 14262888A JP 14262888 A JP14262888 A JP 14262888A JP H01311585 A JPH01311585 A JP H01311585A
Authority
JP
Japan
Prior art keywords
discharge
trigger
gap
airtight container
type surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14262888A
Other languages
Japanese (ja)
Other versions
JPH057835B2 (en
Inventor
Yoshiro Suzuki
鈴木 吉朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP14262888A priority Critical patent/JPH01311585A/en
Publication of JPH01311585A publication Critical patent/JPH01311585A/en
Publication of JPH057835B2 publication Critical patent/JPH057835B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To increase the current withstand quantity and reduce the discharge delay time by connecting a trigger discharging piece made of a material with the good creeping discharge characteristic in parallel with a discharging gap. CONSTITUTION:A trigger discharging piece 5 is formed in an airtight container 3, a discharging gap 4 and the trigger discharging piece 5 are connected in parallel. The trigger discharging piece 5 is formed by depositing a material with the good creeping discharge characteristic on the inner face of an envelope 3a constituting the airtight container 3 in a film shape by means of deposition, flame coating, coating or the like. When a material mainly made of nickel oxide is used for the material constituting the trigger discharging piece 5, the creeping discharge is easily formed in particular. The trigger discharging piece 5 may be formed on part of the inner face of the envelope 3a as well as on the whole area of the inner face of the envelope 3a.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気密容器に封入した放電間隙に於ける放電現
象を利用した放電型サージ吸収素子に係り、特に、気中
放電に対するトリガ手段として沿面放電を用いることに
より、応答特性の向上を図った放電型サージ吸収素子に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a discharge-type surge absorption element that utilizes a discharge phenomenon in a discharge gap enclosed in an airtight container, and is particularly applicable as a trigger means for an air discharge. The present invention relates to a discharge type surge absorbing element that improves response characteristics by using creeping discharge.

[従来の技術] 従来、電子機器に侵入する過渡的な異常電圧や誘導雷等
のサージから電子回路部品を保護するため、電圧非直線
抵抗体より成るバリスタや気密容器に封入した放電間隙
の放電現象を利用したガスアレスタ等、種々のサージ吸
収素子が用いられている。
[Prior art] Conventionally, in order to protect electronic circuit components from transient abnormal voltages and surges such as induced lightning that enter electronic equipment, varistors made of voltage nonlinear resistors and discharge gaps sealed in airtight containers have been used. Various surge absorbing elements are used, such as gas arresters that utilize this phenomenon.

上記従来のサージ吸収素子のうち、放電型サージ吸収素
子lの一種であるガスアレスタは、第5図(A)に示す
如く、放電特性の良好な金属等より成る放電電極2.2
を、絶縁物より成゛る外囲体3aの両端に封着して気密
容器3を形成すると共に、上記気密容13に放電ガスを
充填し、上記放電電極2.2間に放電間隙4を形成した
構造を有している。また、上記ガスアレスタには、第5
図(B)に示す如く、棒状の放電電極2.2を対向させ
て放電間隙4を形成し、これを、ガラス管等を加工した
気密容器3に放電ガスと共に封入し、上記放電電極2.
2よりリード線6.6を導出した構造のものもある。
Among the conventional surge absorbing elements described above, a gas arrester, which is a type of discharge type surge absorbing element l, has a discharge electrode 2.2 made of a metal or the like with good discharge characteristics, as shown in FIG. 5(A).
are sealed to both ends of an outer envelope 3a made of an insulating material to form an airtight container 3, and the airtight container 13 is filled with discharge gas to form a discharge gap 4 between the discharge electrodes 2 and 2. It has a formed structure. In addition, the gas arrester has a fifth
As shown in Figure (B), the rod-shaped discharge electrodes 2.2 are placed opposite each other to form a discharge gap 4, which is sealed together with a discharge gas in an airtight container 3 made of a processed glass tube or the like.
There is also a structure in which a lead wire 6.6 is led out from 2.

上記放電型サージ吸収素子にサージが印加されると、放
電間隙に気中放電、即ちグロー放電を経てアーク放電が
生成し、アーク放電の大電流を通じてサージが吸収され
る。
When a surge is applied to the discharge type surge absorbing element, an arc discharge is generated in the discharge gap through an air discharge, that is, a glow discharge, and the surge is absorbed through the large current of the arc discharge.

[発明が解決しようとする課題〕 上述の如く、放電型サージ吸収素子は、気中放電によっ
てサージを吸収するものであるため、大きな電流耐量を
有する反面、放電遅れ時間が太きく、急峻な立ち上がり
特性を有するサージに対しては、残留サージが発生して
サージ防護を十分に行い得ないという問題がある。
[Problems to be Solved by the Invention] As described above, the discharge type surge absorption element absorbs surges through aerial discharge, and therefore has a large current withstand capacity, but has a long discharge delay time and a steep rise. There is a problem in that a residual surge is generated in response to a surge having characteristics, and surge protection cannot be provided sufficiently.

本発明は、上述の点に鑑み案出されたもので、気中放電
を利用したサージ吸収素子の長所を生かし、且つ短所を
改良することにより、電流耐量が大きく、しかも放電遅
れ時間が小さくて、急激に立ち上がるサージに対しても
十分な防護機能を発揮し得る放電型サージ吸収素子の実
現を目的とするものである。
The present invention has been devised in view of the above-mentioned points, and takes advantage of the advantages of the surge absorption element using air discharge and improves the disadvantages, thereby achieving a large current withstand capacity and a short discharge delay time. The purpose of this invention is to realize a discharge-type surge absorbing element that can exhibit a sufficient protective function even against rapidly rising surges.

[課題を解決するための手段] 上述の目的を達成するため種々検討の結果、沿面放電の
放電遅れ時間が極めて小さいことに着目し、これを気中
放電に対するトリガ手段として用いることによって本発
明の完成に至ったものである。
[Means for Solving the Problem] As a result of various studies to achieve the above-mentioned object, we focused on the fact that the discharge delay time of creeping discharge is extremely small, and by using this as a trigger means for aerial discharge, we have achieved the present invention. It has been completed.

従って、本発明の放電型サージ吸収素子は、放電電極を
対向させて該電極間に放電間隙を形成し、上記放電間隙
に、沿面放電特性の良好な物質より成るトリガ放電子を
並列接続し、これを放電ガスで満たされた気密容器に封
入したものである。上記沿面放電特性が良好な物質とし
ては、酸化ニッケルを主成分としたものが好適である。
Therefore, the discharge type surge absorbing element of the present invention has discharge electrodes facing each other to form a discharge gap between the electrodes, and a trigger discharge electron made of a material having good creeping discharge characteristics is connected in parallel to the discharge gap. This is sealed in an airtight container filled with discharge gas. As the above-mentioned material having good creeping discharge characteristics, a material containing nickel oxide as a main component is suitable.

また、上記トリガ放電子は、少なくともその表面に補助
放電電極を有し、上記補助放電電極と放電電極との間に
形成される補助放電間隙が上記放電電極間の放電間隙よ
りも狭い構成としてもよい。
The trigger discharge electron may have an auxiliary discharge electrode on at least its surface, and the auxiliary discharge gap formed between the auxiliary discharge electrode and the discharge electrode may be narrower than the discharge gap between the discharge electrodes. good.

更に、上記トリガ放電子を形成する位置は、気密容器内
の任!の箇所とすることが可能であり、例えば、気密容
器の内面や、放電電極間に介在させた絶縁体の表面に形
成し得る。
Furthermore, the position where the trigger emission electrons are formed can be determined at any position within the airtight container! For example, it can be formed on the inner surface of an airtight container or on the surface of an insulator interposed between discharge electrodes.

[作用] 上述の如く構成された放電型サージ吸収素子にサージが
印加されると、直ちに、放電電極間のトリガ放電子表面
に於いて沿面コロナ放電が発生してサージ吸収が開始さ
れる。上記沿面コロナ放電は、トリガ放電として作用し
、放電に伴う電子及びイオンのプライミング効果によっ
て、放電間隙に於ける気中放電へと移行する。このため
、放電間隙にグロー放電を経てアーク放電が生成し、ア
−り放電の大電流を通してサージが吸収される。
[Operation] When a surge is applied to the discharge type surge absorbing element configured as described above, a creeping corona discharge is immediately generated on the trigger discharge surface between the discharge electrodes, and surge absorption is started. The creeping corona discharge acts as a trigger discharge, and due to the priming effect of electrons and ions accompanying the discharge, it transitions to an air discharge in the discharge gap. Therefore, arc discharge is generated in the discharge gap through glow discharge, and the surge is absorbed through the large current of the arc discharge.

また、トリガ放電子の表面に補助放電電極を設けて補助
放電間隙を形成した場合には、トリガ放電子の表面で発
生した沿面コロナ放電は、まず幅の狭い補助放電間隙に
於ける気中放電へと移行し、更に、この気中放電は放電
電極間の放電間隙へ転移する。この場合、上記沿面放電
から補助放電間隙の気中放電への移行時間は\補助放電
間隙が放電電極間の放電間隙より幅狭なので、補助放電
電極が存在しないときに於ける沿面放電から上記放電間
隙の気中放電ぺの移行時間より非常に短いものとなる。
In addition, when an auxiliary discharge electrode is provided on the surface of the trigger discharge electron to form an auxiliary discharge gap, the creeping corona discharge generated on the surface of the trigger discharge electron first becomes an air discharge in the narrow auxiliary discharge gap. Further, this aerial discharge transfers to the discharge gap between the discharge electrodes. In this case, the transition time from the above-mentioned creeping discharge to the air discharge in the auxiliary discharge gap is \Since the auxiliary discharge gap is narrower than the discharge gap between the discharge electrodes, the transition time from the creeping discharge in the absence of the auxiliary discharge electrode to the above-mentioned discharge This is much shorter than the transition time of the air discharge in the gap.

しかも、上記補助放電間隙から放電間隙への気中放電の
転移は、補助放電間隙に於ける気中放電が沿面放電にく
らべて多量の電子及びイオンを発生させるので、そのプ
ライミング効果によって極めて短時間に行われる。従っ
て、上記沿面放電から放電間隙の気中放電への移行時間
が短縮される。
Moreover, the transition of the air discharge from the auxiliary discharge gap to the discharge gap takes a very short time due to its priming effect, since the air discharge in the auxiliary discharge gap generates a larger amount of electrons and ions than the creeping discharge. It will be held in Therefore, the transition time from the creeping discharge to the air discharge in the discharge gap is shortened.

更に、トリガ放電子を気密容器の内面に形成すれば、ト
リガ放電子を支持する部材を別途用意する必要がない、
また、トリガ放電子の形成位置を、放電電極間に介在さ
せた絶縁体の表面とすれば、沿面コロナ放電の放電経路
が短くなる。
Furthermore, if the trigger discharge electron is formed on the inner surface of the airtight container, there is no need to separately prepare a member to support the trigger discharge electron.
Furthermore, if the trigger discharge electrons are formed on the surface of the insulator interposed between the discharge electrodes, the discharge path of the creeping corona discharge becomes shorter.

[実施例] 以下、図面に基づき本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail based on the drawings.

[実施例1] 第1図は、本発明の一実施例に係る放電型サージ吸収素
子を示す断面図である。図に於いて放電型サージ吸収素
子1は、ニッケルや鉄、あるいはこれらの合金等、放電
特性の良好な金属材料より成る放電電極2.2をセラミ
ック等の絶縁物より成る外囲体3aの両端に封着して気
密容器3を形成すると共に、対向させた上記放電電極2
.2間を放電間隙4と成し、更に、上記気密容器3の内
面にトリガ放電子5を形成して上記放電間隙4とトリガ
放電子5とを並列接続した構造を有している。上記気密
容器3中には、希ガスや窒素ガスあるいは六弗化硫黄ガ
ス等より成る放電ガスが封入され、気密容器3を構成す
る放電電極2.2の外面にリード線6.6が接続される
[Example 1] FIG. 1 is a sectional view showing a discharge type surge absorbing element according to an example of the present invention. In the figure, a discharge type surge absorbing element 1 has a discharge electrode 2.2 made of a metal material with good discharge characteristics, such as nickel, iron, or an alloy thereof, connected to both ends of an envelope 3a made of an insulating material such as ceramic. to form an airtight container 3, and the discharge electrodes 2 facing each other.
.. A discharge gap 4 is formed between the two, and a trigger discharge electron 5 is formed on the inner surface of the airtight container 3, and the discharge gap 4 and the trigger discharge electron 5 are connected in parallel. A discharge gas made of rare gas, nitrogen gas, sulfur hexafluoride gas, etc. is sealed in the airtight container 3, and a lead wire 6.6 is connected to the outer surface of the discharge electrode 2.2 constituting the airtight container 3. Ru.

上記トリガ放電子5は、沿面放電特性が良好な物質を気
密容器3を構成する外囲体3aの内面に、蒸着、溶射、
塗布等の手段によって、膜状に被着させて形成したもの
で、その端部を放電電極2゜2と接続することによって
放電間隙4と並列接続したものである。この場合、上記
トリガ放電子5を構成する物質は、沿面放電特性が良好
なものであれば何んでもよいが、酸化ニッケルを主成分
とするものを用いた場合に、特に沿面放電の形成が容易
となる。また、上記トリガ放電子5は、外囲体3a内面
の全域に形成する他、外囲体3a内面の一部に、例えば
線状に形成しても同様のトリガ効果が得られるものであ
る。
The trigger emission electrons 5 are produced by depositing, thermal spraying, or spraying a material having good creeping discharge characteristics on the inner surface of the envelope 3a constituting the airtight container 3.
It is formed by applying it in the form of a film by means such as coating, and is connected in parallel to the discharge gap 4 by connecting its end to the discharge electrode 2°2. In this case, the material constituting the trigger discharge electrons 5 may be any material as long as it has good creeping discharge characteristics, but when a material containing nickel oxide as a main component is used, the formation of creeping discharge is particularly difficult. It becomes easier. Furthermore, in addition to forming the trigger discharge electrons 5 over the entire inner surface of the outer envelope 3a, the same triggering effect can also be obtained by forming them in a linear shape, for example, on a part of the inner surface of the outer envelope 3a.

また、上記トリガ放電子5は、トリガ効果を増大させる
ため、第2図に示す如く、その表面に補助放電電極7を
形成した構造としてもよい。上記放電補助電極7は、銅
やニッケルあるいはアルミニウム等、放電特性の良好な
金属がその材質として通しており、特にトリガ放電子5
が酸化ニッケルを主成分とし、且つ補助放電電極7とし
てニッケルを用いる場合には、酸化ニッケルを気密容器
3に被着する工程で同一原料を用いて同時に形成するこ
とが可能で、工程の簡略化を図ることができる。また、
上記補助放電電極7は、補助放電電極7と放電電極2と
の間に形成される補助放電間隙8が、放電電極2,2間
の放電間隙4よりも幅が狭くなる様な位置に設ける必要
がある。これは、粒子状あるいは粒子が集合した塊状の
金属を複数個トリガ放電子5の表面に疎らに被着するこ
とにより容易に形成できるものである。この場合、補助
放電電極7の形成方法によっては、その材料となる金属
が、トリガ放電子5を構成する沿面放電特性が良好な物
質に混じる場合があるが、導電性を生じさせない程度の
混入量であれば支障がないものである。
Further, in order to increase the triggering effect, the trigger discharge electron 5 may have a structure in which an auxiliary discharge electrode 7 is formed on the surface thereof, as shown in FIG. The discharge auxiliary electrode 7 is made of a metal with good discharge characteristics, such as copper, nickel, or aluminum.
When the main component is nickel oxide and nickel is used as the auxiliary discharge electrode 7, it is possible to form the nickel oxide at the same time using the same raw material in the process of depositing the nickel oxide on the airtight container 3, which simplifies the process. can be achieved. Also,
The auxiliary discharge electrode 7 needs to be provided at a position such that the auxiliary discharge gap 8 formed between the auxiliary discharge electrode 7 and the discharge electrode 2 is narrower than the discharge gap 4 between the discharge electrodes 2. There is. This can be easily formed by sparsely depositing a plurality of metal particles or lumps of metal on the surface of the trigger discharge electron 5. In this case, depending on the method of forming the auxiliary discharge electrode 7, the metal used as its material may be mixed with the material having good creeping discharge characteristics that constitutes the trigger discharge electron 5, but the amount of the metal mixed in is such that it does not cause conductivity. If so, there is no problem.

[実施例2] 第3図は、本発明の他の実施例に係る放電型サージ吸収
素子を示す断面図である0本実施例の放電型サージ吸収
素子1は、放電間隙4を隔てて対向させた放電電極2,
2間に、セラミック等の絶縁体9を配置し、該絶縁体9
の表面にトリガ放電子5を被着形成して上記放電間隙4
とトリガ放電子5とを並列接続し、これを、ガラス等の
絶縁物より成る気密容器3に放電ガスと共に封入して、
放電電極2.2に接続されたリード線6,6を導出した
ものである。本実施例の他の構成は実施例1と同様であ
る。本実施例の場合、絶縁体9の表面に於ける放電電極
2,2間の沿面距離は、気密容器3の内面に於ける沿面
距離よりも短くなる。
[Example 2] FIG. 3 is a cross-sectional view showing a discharge type surge absorbing element according to another example of the present invention. The discharge type surge absorbing element 1 of this example is arranged so that the discharge type surge absorbing element 1 faces each other across a discharge gap 4. discharge electrode 2,
An insulator 9 such as ceramic is placed between the insulator 9 and the insulator 9.
Trigger discharge electrons 5 are formed on the surface of the discharge gap 4.
and a trigger discharge electron 5 are connected in parallel, and this is sealed together with a discharge gas in an airtight container 3 made of an insulating material such as glass.
The lead wires 6, 6 connected to the discharge electrode 2.2 are drawn out. The other configuration of this embodiment is the same as that of the first embodiment. In the case of this embodiment, the creepage distance between the discharge electrodes 2 on the surface of the insulator 9 is shorter than the creepage distance on the inner surface of the airtight container 3.

[実施例3] 第4図は、本考察の更に他の実施例に係る放電型サージ
吸収素子を示す断面図である。本実施例の放電型サージ
吸収素子1は、ニッケルや銅あるいはアルミニウム等、
放電特性の良好な金属材料を棒状や板状に加工して、そ
の表面に酸化バリウムや六硼化ランタン等のエミツタ材
を被着して一対の放電電極2.2を形成し、その一端に
デュメット線(銅被覆鉄ニツケル合金線)や42−6合
金線等より成るリード線6.6を接続している。
[Example 3] FIG. 4 is a sectional view showing a discharge type surge absorbing element according to still another example of the present study. The discharge type surge absorbing element 1 of this embodiment is made of nickel, copper, aluminum, etc.
A metal material with good discharge characteristics is processed into a rod or plate shape, and an emitter material such as barium oxide or lanthanum hexaboride is applied to the surface of the metal material to form a pair of discharge electrodes 2.2. A lead wire 6.6 made of dumet wire (copper-coated iron-nickel alloy wire), 42-6 alloy wire, etc. is connected.

更に、上記リード線6.6を同一方向に揃え、上記放電
電極2.2を略平行に対向配置して上記放電電極2.2
間に放電間隙4を形成し、該放電間隙4にトリガ放電子
5を並列接続して、これを放電ガスと共にガラス製の気
密容器3に封入し、該気密容器3の一端を貫通させて上
記リード線6゜6を外部へ導出している。
Further, the lead wires 6.6 are aligned in the same direction, and the discharge electrodes 2.2 are arranged substantially parallel to each other so that the discharge electrodes 2.2
A discharge gap 4 is formed between them, a trigger discharge electron 5 is connected in parallel to the discharge gap 4, and this is sealed together with a discharge gas in an airtight container 3 made of glass, and one end of the airtight container 3 is penetrated. A lead wire 6°6 is led out to the outside.

上記トリガ放電子5は、気密容器3の一端の内面に被着
形成したものであり、リード線6.6を介して放電電極
2,2と接続して放電間隙4と並列接続している0本実
施例の他の構成は実施例1と同様である。
The trigger discharge electron 5 is formed by adhering to the inner surface of one end of the airtight container 3, and is connected to the discharge electrodes 2, 2 via lead wires 6.6 and connected in parallel to the discharge gap 4. The other configuration of this embodiment is the same as that of the first embodiment.

本実施例の場合、放電電極2.2が気密容器3と接触し
ていないため、放電電極2.2の表面が熔融する程度の
温度に上記電極2.2を加熱しても、上記気密容器3が
熱変形する恐れがない、従って、トリガ放電子が酸化ニ
ッケルを主成分とし、且つ放電電極2.2を構成する材
料としてニッケルを選定したときには、例えば、減圧し
た酸化雰囲気中で高周波加熱する等して上記放電電極2
゜2の表面を溶融、飛散させ、これを酸化させて酸化ニ
ッケルとして気密容器3の内面へ被着させることができ
る。この場合、加熱温度や酸化雰囲気の濃度等の条件を
制御してニッケルの一部が酸化されない状態で被着する
様にすれば、このニッケルによって補助放電電極7をも
同時に形成可能となる。また、上記補助放電電極7は、
リード線6゜6やエミツタ材を構成する金属、例えば銅
やバリウム等を飛散させて上記トリガ放電子5の表面に
被着させることによっても形成できる。この場合、エミ
ツタ材が、例えば酸化バリウム等、放電電極2.2に被
着された原料(炭酸バリウム)を加熱分解し、その分解
不純物(二酸化炭素)を空気と共に排気して形成される
ものであるときには、加熱条件を調整するだけで、補助
放電電極7及びエミツタ材を同一工程で形成できる。従
って、これらの場合にあっては、トリガ放電子5や補助
放電電極7を形成するための材料や工程を別途用意する
必要がなく、製造の簡易化が図れるものである。
In the case of this embodiment, since the discharge electrode 2.2 is not in contact with the airtight container 3, even if the electrode 2.2 is heated to a temperature that melts the surface of the discharge electrode 2.2, the airtight container 3 is not likely to be thermally deformed. Therefore, when the trigger discharge electrons have nickel oxide as a main component and nickel is selected as the material constituting the discharge electrode 2.2, for example, high-frequency heating is performed in a reduced pressure oxidizing atmosphere. Similarly, the discharge electrode 2
The surface of .degree. 2 can be melted and scattered, oxidized, and applied to the inner surface of the airtight container 3 as nickel oxide. In this case, if conditions such as the heating temperature and the concentration of the oxidizing atmosphere are controlled so that part of the nickel is deposited without being oxidized, it is possible to simultaneously form the auxiliary discharge electrode 7 using this nickel. Further, the auxiliary discharge electrode 7 is
It can also be formed by scattering a metal constituting the lead wire 6.6 or the emitter material, such as copper or barium, and depositing it on the surface of the trigger discharge electron 5. In this case, the emitter material is formed by thermally decomposing a raw material (barium carbonate), such as barium oxide, deposited on the discharge electrode 2.2, and exhausting the decomposed impurities (carbon dioxide) together with air. In some cases, the auxiliary discharge electrode 7 and the emitter material can be formed in the same process by simply adjusting the heating conditions. Therefore, in these cases, there is no need to separately prepare materials and processes for forming the trigger discharge electron 5 and the auxiliary discharge electrode 7, and manufacturing can be simplified.

[発明の効果] 以上詳述の如く、本発明の放電型サージ吸収素子は、沿
面放電特性が良好な物質より成るトリガ放電子を放電間
隙と並列接続しているので、サージが印加されると直ち
にトリガ放電子の表面に於いて沿面コロナ放電が発生し
、これがトリガとなって、上記沿面放電は、放電間隙に
於ける気中放電、即ち、グロー放電を経てアーク放電へ
と移行する。従って、本発明の放電型サージ吸収素子は
、そのサージ吸収特性が沿面放電の連応性とアーク放電
の大電流耐量性とを併せ持つものとなり、急峻なサージ
に対し、十分な防護機能を発揮し得るものとなる。この
場合酸化ニッケルを主成分とする材料でトリガ放電子を
形成すれば、酸化ニッケルの沿面放電特性が優れている
ことから、トリガ効果が特に大きなものとなる。
[Effects of the Invention] As detailed above, the discharge type surge absorbing element of the present invention has trigger discharge electrons made of a material with good creeping discharge characteristics connected in parallel with the discharge gap, so that when a surge is applied, Immediately, a creeping corona discharge occurs on the surface of the trigger discharge electron, and this serves as a trigger, and the creeping discharge changes to an air discharge in the discharge gap, that is, a glow discharge, and then to an arc discharge. Therefore, the discharge-type surge absorption element of the present invention has surge absorption characteristics that combine the continuity of creeping discharge and the large current withstand capability of arc discharge, and can exhibit a sufficient protective function against steep surges. Become something. In this case, if the trigger discharge electrons are formed using a material containing nickel oxide as a main component, the trigger effect will be particularly large because nickel oxide has excellent creeping discharge characteristics.

また、トリガ放電子の表面に補助放電電極を設けて放電
電極間の放電間隙より幅の狭い補助放電間隙を形成する
ことによって、沿面コロナ放電は、補助放電間隙に於け
る気中放電へ移行し、更に放電電極間の放電間隙へ転移
する。この場合、上記放電の移行時間が、補助放電間隙
が狭いことと、補助放電間隙の気中放電によるブライミ
ング効果が大きいことによって短縮されるため、トリガ
放電子に於ける放電時間が短いものとなる。従って、沿
面放電に起因するトリガ放電子の劣化が防止され、寿命
特性が向上する。
In addition, by providing an auxiliary discharge electrode on the surface of the trigger discharge electron to form an auxiliary discharge gap narrower than the discharge gap between the discharge electrodes, creeping corona discharge can transition to air discharge in the auxiliary discharge gap. , and further migrates to the discharge gap between the discharge electrodes. In this case, the transition time of the discharge described above is shortened due to the narrow auxiliary discharge gap and the large briming effect due to the aerial discharge in the auxiliary discharge gap, so the discharge time in the trigger discharge is shortened. . Therefore, deterioration of the trigger discharge electrons due to creeping discharge is prevented, and the life characteristics are improved.

更に、トリガ放電子を気密容器の内面に形成することに
よって、トリガ放電子を支持する部材を別途容易する必
要がなくなるので、製造が簡単なものとなる。また、放
電電極間に介在させた絶縁体の表面にトリガ放電子を形
成することによって、沿面コロナ放電の放電経路が短く
なるため、放電の移行時間が短縮され寿命特性が向上す
る。
Furthermore, by forming the trigger discharger on the inner surface of the airtight container, there is no need to prepare a separate member to support the trigger discharger, so that manufacturing becomes simple. Furthermore, by forming trigger discharge electrons on the surface of the insulator interposed between the discharge electrodes, the discharge path of the creeping corona discharge becomes shorter, so that the discharge transition time is shortened and the life characteristics are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の断面図、第2TI!Jは
、トリガ放電子の構成例を示す拡大断面図、第3図は、
本発明の他の実施例の断面図、第4図は、本発明の更に
他の実施例の断面図であり、第5図(A)、  (B)
は、従来例の断面図である。 l・・・放電型サージ吸収素子、2.2・・・放電電極
、3・・・気密容器、4・・・放電間隙、5・・・トリ
ガ放電子、7・・・補助放電電極、8・・・補助放電間
隙、9・・・絶縁体。 特許出願人 岡谷電機産業株式会社
FIG. 1 is a sectional view of one embodiment of the present invention, 2nd TI! J is an enlarged sectional view showing an example of the configuration of the trigger discharge electron, and FIG.
FIG. 4 is a sectional view of still another embodiment of the present invention, and FIGS. 5(A) and 5(B)
is a sectional view of a conventional example. l...Discharge type surge absorption element, 2.2...Discharge electrode, 3...Airtight container, 4...Discharge gap, 5...Trigger discharge electron, 7...Auxiliary discharge electrode, 8 ...Auxiliary discharge gap, 9...Insulator. Patent applicant: Okaya Electric Industry Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)放電電極を対向させて該電極間に放電間隙を形成
し、これを放電ガスで満たされた気密容器に封入した放
電型サージ吸収素子に於いて、上記放電間隙に、沿面放
電特性が良好な物質より成るトリガ放電子を並列接続し
て上記気密容器に封入したことを特徴とする放電型サー
ジ吸収素子。
(1) In a discharge type surge absorbing element in which discharge electrodes are opposed to each other to form a discharge gap between the electrodes and this is enclosed in an airtight container filled with discharge gas, the discharge gap has creeping discharge characteristics. 1. A discharge type surge absorbing element characterized in that trigger discharge electrons made of a good material are connected in parallel and sealed in the airtight container.
(2)沿面放電特性の良好な物質が、酸化ニッケルを主
成分としたものであることを特徴とする請求項1に記載
の放電型サージ吸収素子。
(2) The discharge type surge absorbing element according to claim 1, wherein the material having good creeping discharge characteristics is mainly composed of nickel oxide.
(3)トリガ放電子が、少なくともその表面に補助放電
電極を有し、上記補助放電電極と放電電極との間に形成
される補助放電間隙が上記放電電極間の放電間隙よりも
狭い構成を有することを特徴とする請求項1又は2に記
載の放電型サージ吸収素子。
(3) The trigger discharge electron has an auxiliary discharge electrode on at least its surface, and the auxiliary discharge gap formed between the auxiliary discharge electrode and the discharge electrode is narrower than the discharge gap between the discharge electrodes. The discharge type surge absorbing element according to claim 1 or 2, characterized in that:
(4)トリガ放電子を気密容器の内面に形成したことを
特徴とする請求項1、2又は3に記載の放電型サージ吸
収素子。
(4) The discharge type surge absorbing element according to claim 1, 2 or 3, wherein the trigger discharge electron is formed on the inner surface of the airtight container.
(5)トリガ放電子を、放電電極間に介在させた絶縁体
の表面に形成したことを特徴とする請求項1、2又は3
に記載の放電型サージ吸収素子。
(5) Claim 1, 2 or 3, characterized in that the trigger discharge electrons are formed on the surface of an insulator interposed between the discharge electrodes.
The discharge type surge absorption element described in .
JP14262888A 1988-06-09 1988-06-09 Discharge type surge absorbing element Granted JPH01311585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14262888A JPH01311585A (en) 1988-06-09 1988-06-09 Discharge type surge absorbing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14262888A JPH01311585A (en) 1988-06-09 1988-06-09 Discharge type surge absorbing element

Publications (2)

Publication Number Publication Date
JPH01311585A true JPH01311585A (en) 1989-12-15
JPH057835B2 JPH057835B2 (en) 1993-01-29

Family

ID=15319764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14262888A Granted JPH01311585A (en) 1988-06-09 1988-06-09 Discharge type surge absorbing element

Country Status (1)

Country Link
JP (1) JPH01311585A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246679A (en) * 1988-08-05 1990-02-16 Okaya Electric Ind Co Ltd Discharge type surge absorption element and manufacture thereof
JPH03171582A (en) * 1989-11-29 1991-07-25 Meguro Denki Seizo Kk Lightning arrester of gas discharge type
JPH0645048A (en) * 1992-04-06 1994-02-18 Kondo Denki:Kk Surge absorbing element
WO2001063710A1 (en) * 2000-02-22 2001-08-30 Dehn + Söhne Gmbh + Co.Kg Pressure-resistant encapsulated air-gap arrangement for the draining off of damaging perturbances due to overvoltages
KR100361558B1 (en) * 1998-04-27 2003-04-11 빙린 양 Surge absorber without chip
US8238069B2 (en) 2008-02-05 2012-08-07 Murata Manufacturing Co., Ltd. ESD protection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998488A (en) * 1982-11-29 1984-06-06 日本電信電話株式会社 Gas-filled arrester tube
JPS62295376A (en) * 1986-06-13 1987-12-22 岡谷電機産業株式会社 Discharge type surge absorber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998488A (en) * 1982-11-29 1984-06-06 日本電信電話株式会社 Gas-filled arrester tube
JPS62295376A (en) * 1986-06-13 1987-12-22 岡谷電機産業株式会社 Discharge type surge absorber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246679A (en) * 1988-08-05 1990-02-16 Okaya Electric Ind Co Ltd Discharge type surge absorption element and manufacture thereof
JPH057836B2 (en) * 1988-08-05 1993-01-29 Okaya Electric Industry Co
JPH03171582A (en) * 1989-11-29 1991-07-25 Meguro Denki Seizo Kk Lightning arrester of gas discharge type
JPH0645048A (en) * 1992-04-06 1994-02-18 Kondo Denki:Kk Surge absorbing element
KR100361558B1 (en) * 1998-04-27 2003-04-11 빙린 양 Surge absorber without chip
WO2001063710A1 (en) * 2000-02-22 2001-08-30 Dehn + Söhne Gmbh + Co.Kg Pressure-resistant encapsulated air-gap arrangement for the draining off of damaging perturbances due to overvoltages
US6788519B2 (en) 2000-02-22 2004-09-07 Dehn + Soehne Gmbh + Co.Kg Pressure-resistant encapsulated air-gap arrangement for the draining off of damaging perturbances due to overvoltages
US8238069B2 (en) 2008-02-05 2012-08-07 Murata Manufacturing Co., Ltd. ESD protection device

Also Published As

Publication number Publication date
JPH057835B2 (en) 1993-01-29

Similar Documents

Publication Publication Date Title
US4317155A (en) Surge absorber
JPH01311585A (en) Discharge type surge absorbing element
US5235247A (en) Discharge tube with activation layer
JP2745386B2 (en) Method of manufacturing discharge type surge absorbing element
JPH03194878A (en) Discharge type surge absorption element
JP2819388B2 (en) Discharge type surge absorbing element and method of manufacturing the same
JP2004111311A (en) Surge absorber
JPH0246679A (en) Discharge type surge absorption element and manufacture thereof
JPH0992429A (en) Surge absorbing element
JP3431047B2 (en) Surge absorber for power supply
JPH054232Y2 (en)
JPH0246680A (en) Surge absorption element
JP2534954B2 (en) Discharge type surge absorber and method for manufacturing the same
JPH0132713Y2 (en)
JP2701052B2 (en) Surge absorbing element
JPH0132712Y2 (en)
JPH071750Y2 (en) Discharge type surge absorber
JPH0536460A (en) Discharge type surge absorbing element
JP2615221B2 (en) Gas input / discharge arrester
JPH0216554Y2 (en)
JP2022138781A (en) Surge protection element and manufacturing method thereof
JPH0132714Y2 (en)
JPH08138828A (en) Manufacture of discharge type surge absorbing element and discharge type surge absorbing element
JPH0226154Y2 (en)
JPH11224761A (en) High voltage surge absorber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 16