JPH08138828A - Manufacture of discharge type surge absorbing element and discharge type surge absorbing element - Google Patents

Manufacture of discharge type surge absorbing element and discharge type surge absorbing element

Info

Publication number
JPH08138828A
JPH08138828A JP29381494A JP29381494A JPH08138828A JP H08138828 A JPH08138828 A JP H08138828A JP 29381494 A JP29381494 A JP 29381494A JP 29381494 A JP29381494 A JP 29381494A JP H08138828 A JPH08138828 A JP H08138828A
Authority
JP
Japan
Prior art keywords
discharge
electrode
emitter layer
airtight container
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29381494A
Other languages
Japanese (ja)
Inventor
Yoshito Kasai
良人 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP29381494A priority Critical patent/JPH08138828A/en
Priority to DE19523338A priority patent/DE19523338A1/en
Priority to CN95107780A priority patent/CN1046600C/en
Priority to US08/496,363 priority patent/US5694284A/en
Publication of JPH08138828A publication Critical patent/JPH08138828A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To ensure formation of a layer and an auxiliary discharge electrode as desired without relying on gaps incidentally caused in the surface of an emitter layer by providing an exposure area on the surface of an electrode base, where no emitter layer exists, to supply material for the layer and the auxiliary discharge electrode therefrom. CONSTITUTION: A nickel electrode base 12 has barium carbonate deposited at the end 12a. It is arranged in an air-tight container 18 formed of dielectric to give heating and exhausting treatment thereto, so that an emitter layer 13 formed of barium oxide can be formed only at the end 12a of the electrode base 12 which has the base end 12b formed as an exposure area 12c where no emitter layer 13 exists. The surfaces of the emitter layer 13 and the exposure area 12c are melted and spattered to form a layer 20, which is formed of a mixture of barium oxide as dielectric and nickel oxide as semiconductor, and an auxiliary discharge electrode 22, formed of nickel, on the inner face of the air-tight container 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、気密容器内に封入し
た放電間隙における放電現象を利用してサージを吸収す
る放電型サージ吸収素子に係り、特に、放電間隙におけ
る気中放電に対して適当なトリガ手段を講じることによ
り、対サージ応答性能の向上を図った放電型サージ吸収
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge type surge absorbing element that absorbs a surge by utilizing a discharge phenomenon in a discharge gap enclosed in an airtight container, and is particularly suitable for air discharge in the discharge gap. The present invention relates to a discharge type surge absorbing element having improved surge response performance by taking various trigger means.

【0002】[0002]

【従来の技術】従来、電子機器に侵入する過渡的な異常
電圧や誘導雷等のサージから電子回路素子を保護するた
め、気密容器内に封入した放電間隙における放電現象を
利用した放電型サージ吸収素子が用いられている。この
ような放電型サージ吸収素子は、主放電たるアーク放電
を用いてサージを吸収するものであるため、電流耐量が
大きいという利点を備えている一方、対サージ応答性能
に劣るという欠点がある。このため、気密容器を誘電体
によって構成すると共に、該気密容器内に収納される構
成部材の一部を用いて気密容器内面に誘電体と半導体と
の混合物より成る層体を形成すると共に、同じく気密容
器内に収納される構成部材の一部を用いて該層体の表面
に多数の補助放電電極を散点状に配置することにより、
対サージ応答性能の向上を図る技術が存在している。
2. Description of the Related Art Conventionally, in order to protect an electronic circuit element from a surge such as a transient abnormal voltage intruding into an electronic device or an induced lightning, a discharge type surge absorption utilizing a discharge phenomenon in a discharge gap enclosed in an airtight container. The element is used. Since such a discharge type surge absorbing element absorbs a surge by using arc discharge which is a main discharge, it has an advantage that it has a large current withstanding capability, but has a drawback that it has poor surge response performance. Therefore, the airtight container is made of a dielectric material, and a layer body made of a mixture of a dielectric material and a semiconductor is formed on the inner surface of the airtight container using a part of the constituent members housed in the airtight container. By arranging a number of auxiliary discharge electrodes on the surface of the layered body in a scattered manner by using a part of the constituent members housed in the airtight container,
There are technologies for improving the surge response performance.

【0003】その一例として、図3に示す放電型サージ
吸収素子は、棒状の電極基体52aの表面にエミッタ層52
bを被着させて成る一対の放電電極52,52の下端にリー
ド線53,53を接続し、これを所定の放電間隙54を隔てて
互いに平行するよう配置し、ガラス管を加工して形成し
た気密容器56内に所定の放電ガスと共に封入し、上記リ
ード線53,53を気密容器56外に導出させると共に、上記
気密容器56の内面における少なくともリード線53,53間
に、放電電極52の一部を用いて形成した層体60が被着さ
れている。この層体60は、リード線53,53を介して上記
放電間隙54と並列接続されている。また、図4に示すよ
うに、上記層体60の表面には、上記放電電極52を材料と
して形成された導電性の粒状あるいは塊状の補助放電電
極62が多数配置されており、リード線53と補助放電電極
62との間、及び各補助放電電極62間に、上記放電間隙54
よりも格段に狭小な補助放電間隙64を形成して成る。
As an example thereof, the discharge type surge absorber shown in FIG. 3 has an emitter layer 52 on the surface of a rod-shaped electrode base 52a.
Lead wires 53, 53 are connected to the lower ends of a pair of discharge electrodes 52, 52 formed by depositing b, and the lead wires 53, 53 are arranged in parallel with each other with a predetermined discharge gap 54 formed between them to form a glass tube. The airtight container 56 is sealed together with a predetermined discharge gas, the lead wires 53, 53 are led out of the airtight container 56, and the discharge electrode 52 of the discharge electrode 52 is provided at least between the lead wires 53, 53 on the inner surface of the airtight container 56. A layered body 60 formed using a part of it is applied. The layer body 60 is connected in parallel with the discharge gap 54 via lead wires 53, 53. Further, as shown in FIG. 4, a large number of conductive granular or lump auxiliary discharge electrodes 62 formed of the discharge electrode 52 as a material are arranged on the surface of the layer body 60, and lead wires 53 and Auxiliary discharge electrode
62 and the auxiliary discharge electrodes 62, the discharge gap 54
The auxiliary discharge gap 64 is much narrower than the above.

【0004】上記放電型サージ吸収素子50は、具体的に
は以下のように製造される。まず、リード線53を接続し
たニッケル製の電極基体52aを、炭酸バリウム等のエミ
ッタ材料を満たした槽内に浸けて表面にエミッタ材料を
被着した後に、ガラス管の一端開口から管内部に挿入
し、ガラス管の開口を溶融・圧潰してリード線53の途中
部分をガラス管の融着部分に固定する。次に、ガラス管
の他端開口に排気装置を接続し、これらを高周波コイル
内に配置して高周波加熱を施すと共に、ガラス管内を排
気する。この加熱処理により、エミッタ材料の炭酸バリ
ウムが熱分解して電極基体52aの表面に酸化バリウムよ
り成るエミッタ層52bが形成されて放電電極52が完成す
る。このエミッタ層52bには、エミッタ材料の塗布ムラ
や熱分解の際に生じるヒビ割れ等に起因する隙間が生じ
ているため、このエミッタ層52bの隙間に対応した電極
基体52aの表面が上記加熱処理によって溶融する。そし
て、上記排気処理に伴うガラス管内の減圧作用により、
上記酸化バリウム及び溶融した電極基体のニッケルが周
囲に飛散してガラス管(気密容器56)の内面に層状に付
着する。
The discharge type surge absorbing element 50 is specifically manufactured as follows. First, a nickel electrode substrate 52a to which a lead wire 53 is connected is dipped in a bath filled with an emitter material such as barium carbonate to deposit the emitter material on the surface, and then inserted into the tube through one end opening of the glass tube. Then, the opening of the glass tube is melted and crushed to fix the middle portion of the lead wire 53 to the fused portion of the glass tube. Next, an exhaust device is connected to the other end opening of the glass tube, these are placed in a high-frequency coil to perform high-frequency heating, and the inside of the glass tube is exhausted. By this heat treatment, barium carbonate as an emitter material is thermally decomposed and an emitter layer 52b made of barium oxide is formed on the surface of the electrode base 52a to complete the discharge electrode 52. Since a gap is formed in the emitter layer 52b due to uneven coating of the emitter material and cracks generated during thermal decomposition, the surface of the electrode substrate 52a corresponding to the gap in the emitter layer 52b is subjected to the heat treatment. Melt by. And, by the depressurizing action in the glass tube accompanying the exhaust treatment,
The barium oxide and the molten nickel of the electrode substrate scatter around and adhere to the inner surface of the glass tube (airtight container 56) in a layered manner.

【0005】この際、上記排気工程の初期においてはガ
ラス管内に空気が残存しており、溶融・飛散したニッケ
ルは途中で酸化されるため、ガラス管の内面には半導体
としての酸化ニッケルと誘電体としての酸化バリウムの
混合物より成る層体60が形成される。つぎに、上記排気
工程の進展に伴ってガラス管内に空気がなくなると、溶
融・飛散したニッケルは酸化されないまま層体60の表面
に付着し、導電性を備えた粒状あるいは塊状の補助放電
電極62が形成されることとなる。
At this time, since air remains in the glass tube in the early stage of the exhaust process and the molten and scattered nickel is oxidized on the way, nickel oxide as a semiconductor and a dielectric are formed on the inner surface of the glass tube. Forming a layered body 60 of a mixture of barium oxide. Next, when air disappears in the glass tube as the exhaust process progresses, the molten and scattered nickel adheres to the surface of the layered body 60 without being oxidized, and the granular or lumped auxiliary discharge electrode 62 having conductivity is provided. Will be formed.

【0006】しかして、上記気密容器56を構成している
ガラスの誘電率と、層体60に含まれる酸化バリウムの誘
電率は異なるため、両誘電体間には電荷が保持され易い
状態となっており、かつ、酸化バリウムは高い光電効果
を発揮するため、上記層体60と気密容器56内面間には多
くの電荷が蓄積されている。このため、上記リード線5
3,53を介してこの放電型サージ吸収素子50に定格以上
のサージが印加されると、半導体のトンネル効果により
直ちに上記電荷が層体60内の酸化ニッケルを介して一方
のリード線53から他方のリード線53側に移動し、両リー
ド線53,53間に電流が流れてサージの吸収が開始され
る。同時に、上記層体60と放電ガスとの狭間において沿
面コロナ放電が発生し、該沿面コロナ放電を通じてもサ
ージの吸収が行われる。そして、上記層体60内における
電荷の移動や、層体60表面における沿面コロナ放電を通
じて電子やイオンが気密容器56内に放出され、この電子
及びイオンのプライミング効果によって、短時間の中に
上記沿面コロナ放電が補助放電間隙64に転移して気中放
電が生成され、該気中放電が放電間隙54に転移し、最終
的にはアーク放電の大電流を通じてサージが吸収され
る。
However, since the permittivity of the glass forming the hermetic container 56 and the permittivity of barium oxide contained in the layered body 60 are different from each other, a charge is easily held between the two dielectrics. In addition, since barium oxide exerts a high photoelectric effect, a large amount of electric charge is accumulated between the layer body 60 and the inner surface of the airtight container 56. Therefore, the lead wire 5
When a surge more than the rated value is applied to the discharge type surge absorbing element 50 via 3, 53, the electric charge is immediately transferred from the one lead wire 53 to the other via the nickel oxide in the layer body 60 by the tunnel effect of the semiconductor. To the lead wire 53 side, current flows between both lead wires 53, 53, and absorption of the surge is started. At the same time, a creeping corona discharge is generated between the layer body 60 and the discharge gas, and the surge is also absorbed through the creeping corona discharge. Then, electrons and ions are released into the airtight container 56 through the movement of charges in the layer body 60 and the surface corona discharge on the surface of the layer body 60, and the priming effect of the electrons and ions causes the surface to creep in the surface in a short time. The corona discharge is transferred to the auxiliary discharge gap 64 to generate the air discharge, the air discharge is transferred to the discharge gap 54, and finally the surge is absorbed through the large current of the arc discharge.

【0007】すなわち、この放電型サージ吸収素子50
は、上記層体60内における通電と層体60表面における沿
面コロナ放電を介して一早くサージ吸収を行うと共に、
該通電及び沿面コロナ放電を補助放電間隙64における気
中放電のトリガとして利用し、該補助放電間隙64におけ
る気中放電を放電間隙54における主放電(アーク放電)
のトリガとして利用することにより、素子全体としての
対サージ応答性能を高めることを企図しているものであ
る。特に、補助放電間隙64は放電間隙54よりも間隙長が
格段に狭小であり、また層体60からの距離も短いため、
より短時間の中に補助放電間隙64に気中放電が生成され
る。しかも、この気中放電によって沿面コロナ放電によ
るよりもはるかに多量の電子やイオンが放出されるた
め、層体60表面における沿面コロナ放電と、放電間隙54
における主放電との間に、補助放電間隙64における気中
放電を介在させることにより、放電間隙54における主放
電の生成をより迅速化することができる。
That is, this discharge type surge absorbing element 50
Is to quickly absorb surges through the electric current in the layer body 60 and the creeping corona discharge on the surface of the layer body 60,
The energization and creeping corona discharge are used as triggers for the air discharge in the auxiliary discharge gap 64, and the air discharge in the auxiliary discharge gap 64 is the main discharge (arc discharge) in the discharge gap 54.
It is intended to improve the surge response performance of the device as a whole by using it as a trigger of the. In particular, the auxiliary discharge gap 64 has a much smaller gap length than the discharge gap 54, and the distance from the layered body 60 is also shorter.
Air discharge is generated in the auxiliary discharge gap 64 in a shorter time. Moreover, since this air discharge emits much more electrons and ions than the creeping corona discharge, the creeping corona discharge on the surface of the layered body 60 and the discharge gap 54
By interposing the aerial discharge in the auxiliary discharge gap 64 with the main discharge in, the generation of the main discharge in the discharge gap 54 can be further speeded up.

【0008】[0008]

【発明が解決しようとする課題】上記層体60及び補助放
電電極62は、上記のように気密容器56内に収納される放
電電極52の一部を材料とし、かつ、放電型サージ吸収素
子の通常の製造工程を利用して形成されるため、製造工
程の簡素化や材料点数の低減を図ることができる。しか
しながら、この従来の製造方法は、偶発的に生じるエミ
ッタ層52bの隙間から電極基体52aを構成するニッケル
を溶融・飛散させるものであるため、溶融・飛散するニ
ッケルの量にバラツキが生じる可能性があり、甚だしい
場合には層体60を必要な成分(酸化バリウムとの混合比
率)、厚さや面積に形成し得ず、あるいは補助放電電極
62を十分な密度で分布させ得ない可能性があった。ま
た、放電電極52の中、放電が生ずるのは主として先端部
であり、本来は当該先端部のみにエミッタ層52bを形成
すれば足りるにもかかわらず、この従来の製造方法によ
って製造される放電型サージ吸収素子50にあっては、電
極基体52aの略全域に亘ってエミッタ層52bが形成され
てしまい、比較的高価なエミッタ材料を必要以上に消費
するものであるため、その分製造コストが嵩むこととな
る。
The layer body 60 and the auxiliary discharge electrode 62 are made of a part of the discharge electrode 52 housed in the airtight container 56 as described above, and the discharge type surge absorbing element Since it is formed using a normal manufacturing process, it is possible to simplify the manufacturing process and reduce the number of materials. However, in this conventional manufacturing method, since nickel composing the electrode base 52a is melted and scattered from the gap between the emitter layers 52b that is accidentally generated, there is a possibility that the amount of nickel that is melted and scattered varies. Yes, in extreme cases, the layered body 60 cannot be formed with the necessary components (mixing ratio with barium oxide), thickness and area, or the auxiliary discharge electrode.
It was possible that 62 could not be distributed with sufficient density. Further, in the discharge electrode 52, the discharge mainly occurs at the tip portion, and although the emitter layer 52b is originally required to be formed only at the tip portion, the discharge type electrode manufactured by the conventional manufacturing method is used. In the surge absorbing element 50, the emitter layer 52b is formed over substantially the entire area of the electrode base 52a, which consumes a relatively expensive emitter material more than necessary, which increases the manufacturing cost. It will be.

【0009】この発明は、上記従来の問題に鑑みてなさ
れたものであり、電極基体の構成物質の一部を溶融・飛
散させて層体及び補助放電電極を形成するに当たり、一
定量の物質を確実に溶融・飛散させて、必要な成分、厚
さや面積を備えた層体、及び十分な分布密度を備えた補
助放電電極を形成することができる放電型サージ吸収素
子の製造方法を実現することにある。また、不必要なエ
ミッタ材料の使用を控えることにより、製造コストの低
廉化が可能な放電型サージ吸収素子を実現することにあ
る。
The present invention has been made in view of the above-mentioned conventional problems, and a certain amount of a substance is applied when a layered body and an auxiliary discharge electrode are formed by melting and scattering a part of the substance constituting the electrode substrate. To realize a method of manufacturing a discharge type surge absorbing element capable of reliably melting and scattering to form a layered body having necessary components, thickness and area, and an auxiliary discharge electrode having sufficient distribution density. It is in. Another object of the present invention is to realize a discharge-type surge absorption element that can be manufactured at low cost by refraining from using unnecessary emitter materials.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、この発明に係る放電型サージ吸収素子の製造方法
は、リード線を接続した一対の棒状の電極基体の表面に
エミッタ材料を塗布し、両電極基体を放電間隙を隔てて
対向させた状態で誘電体より成る気密容器内に収納し、
各リード線の途中部分を気密容器に固定すると共に端部
を外部に導出し、これら全体に加熱処理を施しながら気
密容器内の排気処理を行い、上記加熱処理によって上記
エミッタ材料を熱分解して電極基体の表面に誘電体より
成るエミッタ層を形成すると共に上記電極基体の表面を
溶融させ、上記排気処理による減圧作用によって上記エ
ミッタ層の構成物質及び上記電極基体の構成物質を周囲
に飛散させ、該飛散した電極基体の構成物質の内、飛散
途中で酸化されて半導体化したものを上記エミッタ層の
構成物質と共に気密容器内面に被着させ、以て気密容器
内面の少なくともリード線間に誘電体と半導体との混合
物より成る層体を形成し、さらに飛散途中で酸化されな
い電極基体の構成物質をそのまま少なくとも上記層体の
表面に付着させて多数の粒状あるいは塊状の補助放電電
極と成し、以て上記リード線間に上記放電間隙よりも狭
小な補助放電間隙を形成し、つぎに気密容器内に放電ガ
スを充填して該気密容器を気密封止する放電型サージ吸
収素子の製造方法において、上記エミッタ材料を電極基
体の先端部側に付着させてエミッタ層を形成すると共
に、電極基体の表面におけるリード線との接続部側をエ
ミッタ層の存在しない露出部と成し、上記加熱及び排気
処理を通じて該露出部の表面を溶融・飛散させ、以て上
記層体及び補助放電電極を形成することを特徴とする。
In order to achieve the above-mentioned object, a method of manufacturing a discharge type surge absorbing element according to the present invention applies an emitter material to the surface of a pair of rod-shaped electrode bases to which lead wires are connected. , The two electrode substrates are housed in an airtight container made of a dielectric material while facing each other with a discharge gap therebetween,
The middle part of each lead wire is fixed to the airtight container and the ends are led out to the outside, the exhaust treatment in the airtight container is performed while the heat treatment is performed on the whole, and the emitter material is thermally decomposed by the heat treatment. An emitter layer made of a dielectric is formed on the surface of the electrode substrate, the surface of the electrode substrate is melted, and the constituent substance of the emitter layer and the constituent substance of the electrode substrate are scattered around by the depressurizing action by the exhaust treatment, Of the scattered constituent substances of the electrode substrate, those which are oxidized and become semiconductor during the scattering are adhered to the inner surface of the airtight container together with the constituent substances of the emitter layer, thereby forming a dielectric between at least lead wires on the inner surface of the hermetic container. A layered body made of a mixture of a metal and a semiconductor is formed, and the constituent substances of the electrode substrate that are not oxidized during the scattering are directly attached to at least the surface of the layered body. A plurality of granular or lumped auxiliary discharge electrodes, thereby forming an auxiliary discharge gap smaller than the discharge gap between the lead wires, and then filling the discharge gas into the airtight container to form the airtight container. In a method of manufacturing a discharge type surge absorption element for hermetically sealing, an emitter layer is formed by adhering the above-mentioned emitter material to a tip end side of an electrode substrate, and a side of a surface of the electrode substrate connected to a lead wire is an emitter layer. The exposed portion does not exist, and the surface of the exposed portion is melted and scattered through the heating and exhaust treatment, whereby the layer body and the auxiliary discharge electrode are formed.

【0011】また、この発明に係る放電型サージ吸収素
子は、リード線を接続した棒状の電極基体の表面にエミ
ッタ層を形成して成る一対の放電電極を、放電間隙を隔
てて対向配置し、これを放電ガスと共に誘電体より成る
気密容器内に収納し、各リード線の途中部分を気密容器
に固定すると共に端部を外部に導出し、上記気密容器内
面の少なくとも両リード線間に、上記エミッタ層及び電
極基体の構成物質を材料にして形成される誘電体と半導
体との混合物より成る層体を形成すると共に、該層体の
表面に上記電極基体の構成物質を材料にして形成される
粒状あるいは塊状の補助放電電極を散点状に多数配置し
て、上記リード線間に上記放電間隙よりも狭小な補助放
電間隙を形成して成る放電型サージ吸収素子において、
上記エミッタ層は上記電極基体の先端部側に形成され、
上記電極基体の表面における上記リード線との接続部側
は、上記エミッタ層の存在しない露出部と成されている
ことを特徴とする。上記露出部は、電極基体全体の長さ
に対して、3分の1以上の長さを占めていることが望ま
しい。また、上記電極基体及び補助放電電極をニッケル
により構成すると共に、上記エミッタ層を酸化バリウム
により構成し、さらに上記層体を酸化ニッケルと酸化バ
リウムとの混合物により構成することが望ましい。
Further, in the discharge type surge absorbing element according to the present invention, a pair of discharge electrodes formed by forming an emitter layer on the surface of a rod-shaped electrode base to which lead wires are connected are arranged to face each other with a discharge gap. This is stored in an airtight container made of a dielectric together with a discharge gas, the middle part of each lead wire is fixed to the airtight container, and the end portion is led out to the outside, and at least between both lead wires on the inner surface of the airtight container, A layered body made of a mixture of a dielectric and a semiconductor is formed by using the constituent material of the emitter layer and the electrode substrate as a material, and is formed on the surface of the layered body by the material of the electrode substrate. In a discharge-type surge absorption element comprising a large number of granular or lumped auxiliary discharge electrodes arranged in a scattered manner to form an auxiliary discharge gap narrower than the discharge gap between the lead wires,
The emitter layer is formed on the tip side of the electrode substrate,
It is characterized in that an exposed portion where the emitter layer does not exist is formed on the side of the surface of the electrode substrate where the lead wire is connected to the lead wire. It is desirable that the exposed portion occupy one-third or more of the length of the entire electrode substrate. It is desirable that the electrode substrate and the auxiliary discharge electrode are made of nickel, the emitter layer is made of barium oxide, and the layer body is made of a mixture of nickel oxide and barium oxide.

【0012】[0012]

【作用】上記製造方法にあっては、電極基体の表面全域
にエミッタ層を形成することなく、電極基体の表面(リ
ード線との接続部側)にエミッタ層の存在しない露出部
を設け、該露出部から層体及び補助放電電極形成用の材
料を供給するよう構成しているため、エミッタ層の表面
に偶発的に生じる隙間に依存することなく、意図した通
りの層体及び補助放電電極を確実に形成することができ
る。また、この製造方法によって得られる放電型サージ
吸収素子は、電極基体の先端部側のみにエミッタ層を形
成して成るため、比較的高価なエミッタ材料の使用量を
必要最小限に抑えることができ、結果的に製造コストの
低減が実現できる。
In the above-mentioned manufacturing method, the exposed portion where the emitter layer does not exist is provided on the surface of the electrode substrate (on the side where the lead wire is connected) without forming the emitter layer on the entire surface of the electrode substrate. Since the material for forming the layered body and the auxiliary discharge electrode is supplied from the exposed portion, the layered body and the auxiliary discharge electrode can be formed as intended without depending on the gap that is accidentally generated on the surface of the emitter layer. It can be reliably formed. Further, since the discharge type surge absorption element obtained by this manufacturing method has the emitter layer formed only on the tip side of the electrode substrate, the amount of relatively expensive emitter material used can be minimized. As a result, a reduction in manufacturing cost can be realized.

【0013】[0013]

【実施例】以下、添付図面に基づき、本発明の実施例を
説明する。図1は、本発明の一実施例に係る放電型サー
ジ吸収素子10を示す縦断面図である。この放電型サージ
吸収素子10は、一対の電極基体12,12の先端部12a,12
a側表面にエミッタ層13,13を被着形成して放電電極1
4,14と成し、各電極基体12,12の基端部12b,12bに
デュメット線(銅被覆鉄ニッケル合金線)や42−6合
金線等より成るリード線15,15を接続し、両放電電極1
4,14を所定の距離を隔てて平行に配置して放電間隙16
を形成すると共に、これをガラス管を加工して形成した
気密容器18内に封入し、各放電電極14,14のリード線1
5,15を気密容器18外に導出して成る。上記電極基体12
は、導電性に優れたニッケル等の金属を細長い棒状ある
いは板状に加工して成る。また、上記エミッタ層13は、
酸化バリウムや六硼化ランタン等、仕事関数の小さいエ
ミッタ物質より成り、放電開始電圧の低減や耐スパッタ
性能の向上を企図して形成される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a vertical cross-sectional view showing a discharge type surge absorber 10 according to an embodiment of the present invention. This discharge type surge absorbing element 10 is composed of a pair of electrode bases 12, 12 having tip portions 12a, 12
The discharge layer 1 is formed by depositing the emitter layers 13, 13 on the a-side surface.
4 and 14, and lead wires 15 and 15 made of Dumet wire (copper-coated iron-nickel alloy wire) or 42-6 alloy wire are connected to the base end portions 12b and 12b of the electrode bases 12 and 12, respectively. Discharge electrode 1
4 and 14 are arranged in parallel at a predetermined distance and the discharge gap 16
Of the discharge electrodes 14 and 14 and sealed in an airtight container 18 formed by processing a glass tube.
5, 5 are led out of the airtight container 18. The electrode base 12
Is formed by processing a metal such as nickel having excellent conductivity into an elongated rod shape or a plate shape. Further, the emitter layer 13 is
It is made of an emitter material having a small work function, such as barium oxide or lanthanum hexaboride, and is formed with the intention of reducing the discharge starting voltage and improving the sputtering resistance.

【0014】上記気密容器18内には、希ガスや窒素ガス
あるいは六弗化硫黄ガス等より成る放電ガスが封入され
ると共に、該気密容器18内面の下部には、酸化バリウム
等の誘電体と酸化ニッケル等の半導体との混合物より成
る層体20が、少なくとも両リード線15,15間を接続する
よう被着形成されている。また、リード線15,15と気密
容器18内面との接触部分を拡大して示す図2から明らか
なように、粒状あるいは塊状のニッケル等より成る補助
放電電極22が、層体20の表面に散点状に多数配置されて
おり、各リード線15と補助放電電極22間、及び各補助放
電電極22,22間には、上記放電間隙16よりも格段に狭小
な補助放電間隙24が形成されている。
A discharge gas composed of a rare gas, a nitrogen gas, a sulfur hexafluoride gas or the like is enclosed in the airtight container 18, and a dielectric material such as barium oxide is formed in the lower portion of the inner surface of the airtight container 18. A layer body 20 made of a mixture with a semiconductor such as nickel oxide is deposited and formed so as to connect at least both the lead wires 15 and 15. Further, as is apparent from FIG. 2 which shows an enlarged contact portion between the lead wires 15 and 15 and the inner surface of the airtight container 18, the auxiliary discharge electrode 22 made of granular or massive nickel or the like is scattered on the surface of the layer body 20. A large number of dots are arranged in a dot pattern, and between the lead wires 15 and the auxiliary discharge electrodes 22, and between the auxiliary discharge electrodes 22 and 22, an auxiliary discharge gap 24 that is much smaller than the discharge gap 16 is formed. There is.

【0015】上記気密容器18を構成しているガラスの誘
電率と、層体20に含まれる酸化バリウム等の誘電体の誘
電率は異なるため、両誘電体間には電荷が保持され易い
状態となっており、かつ、酸化バリウム等は高い光電効
果を発揮するため、上記層体20と気密容器18内面間には
多くの電荷が蓄積されている。このため、上記リード線
15,15を介してこの放電型サージ吸収素子10に定格以上
のサージが印加されると、半導体のトンネル効果により
直ちに上記電荷が層体20内の酸化ニッケル等を介して一
方のリード線15から他方のリード線15側に移動し、両リ
ード線15,15間に電流が流れてサージの吸収が開始され
る。同時に、上記層体20と放電ガスとの狭間において沿
面コロナ放電が発生し、該沿面コロナ放電を通じてもサ
ージの吸収が行われる。そして、上記層体20内における
電荷の移動や、層体20表面における沿面コロナ放電を通
じて電子やイオンが気密容器18内に放出され、この電子
及びイオンのプライミング効果によって、短時間の中に
上記沿面コロナ放電が補助放電間隙24に転移して気中放
電が生成され、該気中放電が放電間隙16に転移し、最終
的にはアーク放電の大電流を通じてサージが吸収され
る。
Since the dielectric constant of the glass forming the hermetic container 18 and the dielectric constant of the barium oxide or the like contained in the layered body 20 are different from each other, it is considered that electric charges are easily held between the two dielectrics. In addition, since barium oxide and the like exert a high photoelectric effect, a large amount of electric charge is accumulated between the layer body 20 and the inner surface of the airtight container 18. Therefore, the lead wire
When a surge of more than the rated value is applied to the discharge type surge absorbing element 10 via 15 and 15, the charges are immediately transferred from one lead wire 15 through the nickel oxide in the layer body 20 due to the tunnel effect of the semiconductor. It moves to the other lead wire 15 side, current flows between both lead wires 15 and 15, and absorption of the surge is started. At the same time, a creeping corona discharge is generated between the layer body 20 and the discharge gas, and the surge is also absorbed through the creeping corona discharge. Then, electrons and ions are released into the airtight container 18 through the movement of charges in the layer body 20 and the surface corona discharge on the surface of the layer body 20, and by the priming effect of the electrons and ions, the surface of the layer surface is shortened. The corona discharge is transferred to the auxiliary discharge gap 24 to generate the air discharge, the air discharge is transferred to the discharge gap 16, and finally the surge is absorbed through the large current of the arc discharge.

【0016】つぎに、この放電型サージ吸収素子10の製
造方法の一例について説明する。まず、リード線15,15
を接続したニッケルより成る電極基体12,12の表面に、
炭酸バリウムより成るエミッタ材料を付着させる。この
際、エミッタ材料は、電極基体12の表面全域に付着させ
るのではなく、電極基体12の先端部12a側にのみ付着さ
せ、電極基体12の基端部12b側(リード線15との接続部
側)は露出させておく。このエミッタ材料が付着される
範囲は、電極基体12の先端部12aから電極基体12全体の
長さに対して3分の2以内とするのが望ましい。
Next, an example of a method of manufacturing the discharge type surge absorber 10 will be described. First, lead wires 15 and 15
On the surface of the electrode substrates 12, 12 made of nickel connected to
Deposit an emitter material consisting of barium carbonate. At this time, the emitter material is not attached to the entire surface of the electrode base 12, but is attached only to the tip end 12a side of the electrode base 12, and the base end 12b side of the electrode base 12 (connecting portion to the lead wire 15). Side) is exposed. The range where the emitter material is attached is preferably within two-thirds of the entire length of the electrode base 12 from the tip portion 12a of the electrode base 12.

【0017】つぎに、上記リード線15,15を同一方向に
揃えて整列治具によって保持して、電極基体12,12を所
定間隔で対向させ、これを両端が開口したガラス管内に
挿入して、上記リード線15,15の下端部がガラス管の一
端開口から外部へ突出するように収納する。そして、ガ
ラス管の当該開口部分をガス炎によって加熱して溶融さ
せ、溶融部分をピンチャーによって内方向へ圧潰して封
着し、リード線15,15の途中部分をガラス管の封着部に
固定すると共に、該リード線15,15の下端部をガラス管
の外部に導出する。この際、上記ガラス管の加熱を空気
中で行うことにより、電極基体12,12の露出部12c,12
cが酸化されて表面に酸化ニッケルが形成される。
Next, the lead wires 15 and 15 are aligned in the same direction and held by an aligning jig, the electrode substrates 12 and 12 are opposed to each other at a predetermined interval, and this is inserted into a glass tube whose both ends are open. The lead wires 15 and 15 are housed so that the lower end portions of the lead wires 15 and 15 project outward from one end opening of the glass tube. Then, the opening portion of the glass tube is heated and melted by a gas flame, the molten portion is crushed inward by a pincher and sealed, and the middle portions of the lead wires 15 and 15 are fixed to the sealed portion of the glass tube. At the same time, the lower ends of the lead wires 15 and 15 are led out of the glass tube. At this time, the exposed portions 12c, 12 of the electrode substrates 12, 12 are heated by heating the glass tube in the air.
c is oxidized to form nickel oxide on the surface.

【0018】ついで、ガラス管の他端開口に排気装置を
接続し、これらを高周波コイル内に配置して高周波加熱
を施すと共に、該ガラス管内を排気する。この加熱処理
により、エミッタ材料の炭酸バリウムが熱分解して電極
基体12,12の表面に酸化バリウムより成るエミッタ層1
3,13が形成されて放電電極14,14が完成する。同時
に、この加熱処理により、電極基体の露出部12c,12c
の表面が溶融する。そして、上記排気処理に伴うガラス
管内の減圧作用により、上記エミッタ層13,13の酸化バ
リウム、前工程で電極基体の露出部12c,12cの表面に
形成されていた酸化ニッケル、及び溶融した電極基体1
2,12のニッケルが周囲に飛散してガラス管の内面に層
状に付着される。
Next, an exhaust device is connected to the other end opening of the glass tube, and these are placed in a high frequency coil for high frequency heating, and the inside of the glass tube is exhausted. By this heat treatment, barium carbonate as an emitter material is thermally decomposed and the emitter layers 1 made of barium oxide are formed on the surfaces of the electrode substrates 12 and 12.
3 and 13 are formed, and the discharge electrodes 14 and 14 are completed. At the same time, by this heat treatment, the exposed portions 12c, 12c of the electrode substrate are
The surface of the melts. Then, due to the depressurizing action in the glass tube accompanying the exhaust treatment, the barium oxide of the emitter layers 13 and 13, the nickel oxide formed on the surfaces of the exposed portions 12c and 12c of the electrode substrate in the previous step, and the molten electrode substrate. 1
2, 12 nickel scatters around and is deposited in layers on the inner surface of the glass tube.

【0019】この際、排気工程の初期においては、ガラ
ス管内の残留空気濃度が高いため、この電極基体の露出
部12c,12cからの溶融ニッケルが飛散中に酸化される
ため、ガラス管の内面には半導体としての酸化ニッケル
と誘電体としての酸化バリウムの混合体より成る層体20
が被着形成される。上記加熱をさらに続けると、排気工
程の進行に伴ってガラス管内の残留空気濃度が低下し、
ついには飛散したニッケルが酸化されない状態となる。
したがって、この酸化されないニッケルが上記層体20の
表面に散点上に付着した時点でこの加熱操作を終了すれ
ば、図2に示すように、導電性を備えた粒状あるいは塊
状の補助放電電極22が、層体20の表面に多数配置される
こととなる。また、また、リード線15と補助放電電極22
間、及び補助放電電極22,22相互間には、多数の補助放
電間隙24が形成される。
At this time, since the residual air concentration in the glass tube is high at the beginning of the exhaust process, the molten nickel from the exposed portions 12c, 12c of the electrode base body is oxidized during the scattering, so that the inner surface of the glass tube is Is a layered body composed of a mixture of nickel oxide as a semiconductor and barium oxide as a dielectric 20
Are deposited and formed. If the heating is further continued, the residual air concentration in the glass tube decreases as the exhaust process progresses,
Finally, the scattered nickel is not oxidized.
Therefore, if this heating operation is terminated when the nickel that is not oxidized adheres to the surface of the layered body 20 on the scattering points, as shown in FIG. 2, the granular or lumped auxiliary discharge electrode 22 having conductivity is formed. However, many are arranged on the surface of the layered body 20. In addition, the lead wire 15 and the auxiliary discharge electrode 22 are also provided.
A large number of auxiliary discharge gaps 24 are formed between the auxiliary discharge electrodes 22, 22.

【0020】上記排気処理によって、残留空気、炭酸バ
リウム分解による二酸化炭素、並びにガラス管自身やガ
ラス管内に収納された部材から放出される不純ガスを完
全に除去してガラス管内を高真空状態とした後、放電ガ
スを充填し、さらに上記ガラス管の他端開口を加熱し、
これを溶融させて封じ切り、気密容器18を完成させる。
By the exhaust treatment, residual air, carbon dioxide by decomposition of barium carbonate, and impure gas emitted from the glass tube itself or a member housed in the glass tube are completely removed to bring the inside of the glass tube into a high vacuum state. After that, filling the discharge gas, further heating the other end opening of the glass tube,
This is melted and sealed off to complete the airtight container 18.

【0021】なお、上記電極基体の基端部12b,12bが
気密容器18(ガラス管)の封着部内面と接触することに
より、電極基体12,12の熱が気密容器18に伝導して加熱
効率が低下し、電極基体の露出部12c,12cの溶融・飛
散が有効に実現できないおそれがあるため、電極基体の
基端部12b,12bと気密容器18の封着部内面との間に
は、図示の通り、一定の距離Dを確保することが望まし
い。
When the base end portions 12b, 12b of the electrode bases come into contact with the inner surface of the sealed portion of the airtight container 18 (glass tube), the heat of the electrode bases 12, 12 is conducted to the airtight container 18 and heated. Since the efficiency may decrease and the exposed portions 12c, 12c of the electrode base body may not be effectively melted / scattered, between the base end portions 12b, 12b of the electrode base body and the inner surface of the sealed portion of the airtight container 18, As shown, it is desirable to secure a constant distance D.

【0022】この製造方法によれば、加熱温度や加熱時
間、あるいは排気速度等の条件、及び放電電極14,14を
構成する材料の溶融温度や分解温度あるいは酸化速度等
を適宜選定し、最適条件を設定することにより、特別な
材料や工程を用意することなく、層体20、補助放電電極
22及び補助放電間隙24を形成することができ、製造の簡
素化が図れる。これらの条件設定に際しては、特に、層
体20を構成する酸化ニッケルがうまく半導体化するよう
配慮する必要がある。
According to this manufacturing method, conditions such as heating temperature, heating time, or evacuation rate, and melting temperature or decomposition temperature or oxidation rate of the materials forming the discharge electrodes 14, 14 are appropriately selected, and optimum conditions are selected. By setting, the layer body 20 and the auxiliary discharge electrode can be prepared without preparing a special material or process.
22 and the auxiliary discharge gap 24 can be formed, and the manufacturing can be simplified. In setting these conditions, it is necessary to take particular care so that the nickel oxide forming the layered body 20 is successfully made into a semiconductor.

【0023】また、電極基体の先端部12a,12a側のみ
にエミッタ材料を付着させ、電極基体の基端部12b,12
b側を最初から露出させているため、溶融・飛散するニ
ッケルの量を制御し易くなり、層体20の成分、厚さや面
積、あるいは補助放電電極22の分布密度を一定以上確保
することが容易となる。
Further, the emitter material is adhered only to the tip end portions 12a, 12a of the electrode base, and the base end portions 12b, 12 of the electrode base body are adhered.
Since the b side is exposed from the beginning, it is easy to control the amount of nickel that is melted and scattered, and it is easy to secure the composition, thickness and area of the layer body 20 or the distribution density of the auxiliary discharge electrode 22 above a certain level. Becomes

【0024】さらに、電極基体の先端部12a,12a側に
のみエミッタ層13,13を形成したことにより、エミッタ
材料の節約による製造コストの削減が実現できるのみな
らず、結果的に耐サージ応答性能の向上も達成できる。
すなわち、細長い棒状の電極基体12,12を採用し、該電
極基体12,12の基端部12b,12bにリード線15,15を接
続した場合、エッジ効果によって電極基体の先端部12
a,12a間の電界強度が最強となり、両者間で最も放電
が生成され易くなる。したがって、この電極基体の先端
部12a,12aのみに、仕事関数が比較的小さく、放電開
始電圧を低下させる働きの顕著なエミッタ層13,13を形
成することにより、電極基体の表面全域に漫然とエミッ
タ層を形成する場合に比べ、電極基体の先端部12a,12
a間における放電開始がより促進されることとなる。
Further, by forming the emitter layers 13 and 13 only on the tips 12a and 12a side of the electrode substrate, not only the emitter material can be saved but the manufacturing cost can be reduced, but also the surge response performance can be improved. Can also be achieved.
That is, when the elongated rod-shaped electrode bases 12 and 12 are adopted and the lead wires 15 and 15 are connected to the base end portions 12b and 12b of the electrode bases 12 and 12, the tip end portion 12 of the electrode base body 12 is caused by the edge effect.
The electric field strength between a and 12a becomes the strongest, and discharge is most easily generated between the two. Therefore, by forming the emitter layers 13, 13 having a relatively small work function and a function of lowering the discharge start voltage only on the tip portions 12a, 12a of the electrode base, the emitters are dazzled over the entire surface of the electrode base. Compared with the case where layers are formed, the tip portions 12a, 12 of the electrode base body are
The discharge start during the period a is further promoted.

【0025】[0025]

【発明の効果】本発明に係る放電型サージ吸収素子の製
造方法にあっては、電極基体の表面全域にエミッタ層を
形成することなく、電極基体の表面にエミッタ層の存在
しない露出部を設け、該露出部から層体及び補助放電電
極形成用の材料を供給するよう構成しているため、エミ
ッタ層の表面に偶発的に生じる隙間に依存することな
く、意図した通りの層体及び補助放電電極を確実に形成
することができる。また、この製造方法によって得られ
る放電型サージ吸収素子は、電極基体の先端部側のみに
エミッタ層を形成して成るため、比較的高価なエミッタ
材料の使用量を必要最小限に抑えることができ、結果的
に製造コストの低減が実現できる。
In the method of manufacturing a discharge type surge absorbing element according to the present invention, the exposed portion having no emitter layer is provided on the surface of the electrode base without forming the emitter layer on the entire surface of the electrode base. Since the material for forming the layered body and the auxiliary discharge electrode is supplied from the exposed portion, the layered body and the auxiliary discharge as intended without depending on the gap that is accidentally formed on the surface of the emitter layer. The electrodes can be reliably formed. Further, since the discharge type surge absorption element obtained by this manufacturing method has the emitter layer formed only on the tip side of the electrode substrate, the amount of relatively expensive emitter material used can be minimized. As a result, a reduction in manufacturing cost can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る放電型サージ吸収素子を示す縦断
面図である。
FIG. 1 is a vertical cross-sectional view showing a discharge type surge absorber according to the present invention.

【図2】上記放電型サージ吸収素子のリード線と気密容
器内面との接続部分を示す拡大断面図である。
FIG. 2 is an enlarged cross-sectional view showing a connecting portion between the lead wire of the discharge type surge absorber and the inner surface of the airtight container.

【図3】従来の放電型サージ吸収素子を示す縦断面図で
ある。
FIG. 3 is a vertical cross-sectional view showing a conventional discharge type surge absorber.

【図4】従来の放電型サージ吸収素子のリード線と気密
容器内面との接続部分を示す拡大断面図である。
FIG. 4 is an enlarged cross-sectional view showing a connecting portion between a lead wire of a conventional discharge type surge absorber and an inner surface of an airtight container.

【符号の説明】[Explanation of symbols]

10 放電型サージ吸収素子 12 電極基体 12a 電極基体の先端部 12b 電極基体の基端部 12c 露出部 13 エミッタ層 14 放電電極 15 リード線 16 放電間隙 18 気密容器 20 層体 22 補助放電電極 24 補助放電間隙 10 Discharge type surge absorber 12 Electrode base 12a Tip of electrode base 12b Base end of electrode base 12c Exposed part 13 Emitter layer 14 Discharge electrode 15 Lead wire 16 Discharge gap 18 Airtight container 20 Layered body 22 Auxiliary discharge electrode 24 Auxiliary discharge gap

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リード線を接続した一対の棒状の電極基
体の表面にエミッタ材料を塗布し、両電極基体を放電間
隙を隔てて対向させた状態で誘電体より成る気密容器内
に収納し、各リード線の途中部分を気密容器に固定する
と共に端部を外部に導出し、これら全体に加熱処理を施
しながら気密容器内の排気処理を行い、上記加熱処理に
よって上記エミッタ材料を熱分解して電極基体の表面に
誘電体より成るエミッタ層を形成すると共に上記電極基
体の表面を溶融させ、上記排気処理による減圧作用によ
って上記エミッタ層の構成物質及び上記電極基体の構成
物質を周囲に飛散させ、該飛散した電極基体の構成物質
の内、飛散途中で酸化されて半導体化したものを上記エ
ミッタ層の構成物質と共に気密容器内面に被着させ、以
て気密容器内面の少なくともリード線間に誘電体と半導
体との混合物より成る層体を形成し、さらに飛散途中で
酸化されない電極基体の構成物質をそのまま少なくとも
上記層体の表面に付着させて多数の粒状あるいは塊状の
補助放電電極と成し、以て上記リード線間に上記放電間
隙よりも狭小な補助放電間隙を形成し、つぎに気密容器
内に放電ガスを充填して該気密容器を気密封止する放電
型サージ吸収素子の製造方法において、上記エミッタ材
料を電極基体の先端部側に付着させてエミッタ層を形成
すると共に、電極基体の表面におけるリード線との接続
部側をエミッタ層の存在しない露出部と成し、上記加熱
及び排気処理を通じて該露出部の表面を溶融・飛散さ
せ、以て上記層体及び補助放電電極を形成することを特
徴とする放電型サージ吸収素子の製造方法。
1. An emitter material is applied to the surface of a pair of rod-shaped electrode bases to which lead wires are connected, and both electrode bases are housed in an airtight container made of a dielectric material in a state of facing each other with a discharge gap, The middle part of each lead wire is fixed to the airtight container and the ends are led out to the outside, the exhaust treatment in the airtight container is performed while the heat treatment is performed on the whole, and the emitter material is thermally decomposed by the heat treatment. An emitter layer made of a dielectric is formed on the surface of the electrode substrate, the surface of the electrode substrate is melted, and the constituent substance of the emitter layer and the constituent substance of the electrode substrate are scattered around by the depressurizing action by the exhaust treatment, Among the scattered constituent substances of the electrode substrate, those which are oxidized and become semiconductor during the scattering are adhered to the inner surface of the airtight container together with the constituent substances of the emitter layer. At least, a layered body made of a mixture of a dielectric and a semiconductor is formed between the lead wires, and further, the constituent substances of the electrode substrate which are not oxidized during the scattering are directly attached to at least the surface of the layered body to form a large number of granular or lump-like particles. A discharge type which forms an auxiliary discharge electrode, thereby forming an auxiliary discharge gap smaller than the discharge gap between the lead wires, and then filling the discharge gas into the airtight container to hermetically seal the airtight container. In the method of manufacturing a surge absorbing element, the emitter material is adhered to the tip end side of the electrode base to form an emitter layer, and the surface of the electrode base is connected to the lead wire at an exposed portion where the emitter layer does not exist. And a heating and exhaust treatment to melt and scatter the surface of the exposed portion to form the layered body and the auxiliary discharge electrode. .
【請求項2】 リード線を接続した棒状の電極基体の表
面にエミッタ層を形成して成る一対の放電電極を、放電
間隙を隔てて対向配置し、これを放電ガスと共に誘電体
より成る気密容器内に収納し、各リード線の途中部分を
気密容器に固定すると共に端部を外部に導出し、上記気
密容器内面の少なくとも両リード線間に、上記エミッタ
層及び電極基体の構成物質を材料にして形成される誘電
体と半導体との混合物より成る層体を形成すると共に、
該層体の表面に上記電極基体の構成物質を材料にして形
成される粒状あるいは塊状の補助放電電極を散点状に多
数配置して、上記リード線間に上記放電間隙よりも狭小
な補助放電間隙を形成して成る放電型サージ吸収素子に
おいて、上記エミッタ層は上記電極基体の先端部側に形
成され、上記電極基体の表面における上記リード線との
接続部側は、上記エミッタ層の存在しない露出部と成さ
れていることを特徴とする放電型サージ吸収素子。
2. A hermetically sealed container made of a dielectric together with a discharge gas, and a pair of discharge electrodes each having an emitter layer formed on the surface of a rod-shaped electrode base to which a lead wire is connected, arranged to face each other across a discharge gap. The inside of each of the lead wires is fixed to an airtight container, and the ends are led out to the outside, and at least the lead wires on the inner surface of the airtight container are made of the constituent material of the emitter layer and the electrode substrate. Forming a layered body composed of a mixture of a dielectric and a semiconductor formed by
A large number of granular or lumped auxiliary discharge electrodes formed of the constituent material of the electrode substrate are arranged on the surface of the layered body in a scattered manner, and the auxiliary discharges are narrower than the discharge gap between the lead wires. In a discharge type surge absorbing element formed with a gap, the emitter layer is formed on the tip end side of the electrode base body, and the emitter layer does not exist on the surface of the electrode base body on the connection side side with the lead wire. A discharge type surge absorbing element characterized by being formed as an exposed portion.
【請求項3】 上記露出部が、電極基体全体の長さに対
して、3分の1以上の長さを占めていることを特徴とす
る請求項2に記載の放電型サージ吸収素子。
3. The discharge type surge absorbing element according to claim 2, wherein the exposed portion occupies a length of 1/3 or more of the entire length of the electrode substrate.
【請求項4】 上記電極基体及び補助放電電極がニッケ
ルより成ると共に、上記エミッタ層が酸化バリウムより
成り、さらに上記層体が酸化ニッケルと酸化バリウムと
の混合物より成ることを特徴とする請求項2または3に
記載の放電型サージ吸収素子。
4. The electrode base and the auxiliary discharge electrode are made of nickel, the emitter layer is made of barium oxide, and the layer body is made of a mixture of nickel oxide and barium oxide. Alternatively, the discharge type surge absorbing element described in 3 above.
JP29381494A 1994-06-29 1994-11-02 Manufacture of discharge type surge absorbing element and discharge type surge absorbing element Pending JPH08138828A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29381494A JPH08138828A (en) 1994-11-02 1994-11-02 Manufacture of discharge type surge absorbing element and discharge type surge absorbing element
DE19523338A DE19523338A1 (en) 1994-06-29 1995-06-27 Discharge type overvoltage protection device for protection of electronic circuits
CN95107780A CN1046600C (en) 1994-06-29 1995-06-28 Electric discharge type for surge absorption element and manufacturing method for the same
US08/496,363 US5694284A (en) 1994-06-29 1995-06-29 Discharge type surge absorbing element and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29381494A JPH08138828A (en) 1994-11-02 1994-11-02 Manufacture of discharge type surge absorbing element and discharge type surge absorbing element

Publications (1)

Publication Number Publication Date
JPH08138828A true JPH08138828A (en) 1996-05-31

Family

ID=17799500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29381494A Pending JPH08138828A (en) 1994-06-29 1994-11-02 Manufacture of discharge type surge absorbing element and discharge type surge absorbing element

Country Status (1)

Country Link
JP (1) JPH08138828A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061522A1 (en) * 2008-11-26 2010-06-03 株式会社 村田製作所 Esd protection device
JPWO2010061550A1 (en) * 2008-11-26 2012-04-19 株式会社村田製作所 ESD protection device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057836A (en) * 1991-07-03 1993-01-19 Material Sci Kk Metal product provided with protective coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057836A (en) * 1991-07-03 1993-01-19 Material Sci Kk Metal product provided with protective coating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061522A1 (en) * 2008-11-26 2010-06-03 株式会社 村田製作所 Esd protection device
JPWO2010061550A1 (en) * 2008-11-26 2012-04-19 株式会社村田製作所 ESD protection device and manufacturing method thereof
JP5003985B2 (en) * 2008-11-26 2012-08-22 株式会社村田製作所 ESD protection device
JP5093361B2 (en) * 2008-11-26 2012-12-12 株式会社村田製作所 ESD protection device and manufacturing method thereof
US8426889B2 (en) 2008-11-26 2013-04-23 Murata Manufacturing Co., Ltd. ESD protection device and method for manufacturing the same
US8437114B2 (en) 2008-11-26 2013-05-07 Murata Manufacturing Co., Ltd. ESD Protection Device

Similar Documents

Publication Publication Date Title
US5585694A (en) Low pressure discharge lamp having sintered "cold cathode" discharge electrodes
EP0160459B1 (en) Methods of producing discharge display devices
KR19990022701A (en) An impregnated negative electrode structure, a negative electrode substrate used therefor, an electron gun structure using the negative electrode substrate, and an electron tube
JPH08138828A (en) Manufacture of discharge type surge absorbing element and discharge type surge absorbing element
US5694284A (en) Discharge type surge absorbing element and method for making the same
US6606230B2 (en) Chip-type surge absorber and method for producing the same
JP2819388B2 (en) Discharge type surge absorbing element and method of manufacturing the same
JP2745386B2 (en) Method of manufacturing discharge type surge absorbing element
KR20080017419A (en) Electrode system for a lamp
JPH01311585A (en) Discharge type surge absorbing element
JPH057836B2 (en)
JPH03194878A (en) Discharge type surge absorption element
JPH06338289A (en) Fluorescent lamp and fluorescent lamp apparatus
JP2701052B2 (en) Surge absorbing element
JP4437616B2 (en) Surge absorber
JP2534954B2 (en) Discharge type surge absorber and method for manufacturing the same
EP0584859A1 (en) Discharge lamps with composite electrodes and method of installation of these electrodes in the lamps
JP3969098B2 (en) surge absorber
JP2887779B2 (en) Discharge tube manufacturing method
JPH10247578A (en) Manufacture of discharging serge absorption element
JPH0222520B2 (en)
JPS61142681A (en) Surge absorbing element
JPH0536460A (en) Discharge type surge absorbing element
JPH0132713Y2 (en)
JPH0429200B2 (en)