JPH0219593B2 - - Google Patents

Info

Publication number
JPH0219593B2
JPH0219593B2 JP59203472A JP20347284A JPH0219593B2 JP H0219593 B2 JPH0219593 B2 JP H0219593B2 JP 59203472 A JP59203472 A JP 59203472A JP 20347284 A JP20347284 A JP 20347284A JP H0219593 B2 JPH0219593 B2 JP H0219593B2
Authority
JP
Japan
Prior art keywords
sealing
hole
airtight container
sealing member
surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59203472A
Other languages
Japanese (ja)
Other versions
JPS6180783A (en
Inventor
Yoshiro Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP20347284A priority Critical patent/JPS6180783A/en
Publication of JPS6180783A publication Critical patent/JPS6180783A/en
Publication of JPH0219593B2 publication Critical patent/JPH0219593B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電圧非直線特性を有する高抵抗体素
子と放電間隙との複合構造を有するサージ吸収素
子の気密封止方法に関し、特に真空排気用に兼用
される貫通孔を利用して導電材料の被着によるエ
ージング用電極を形成するとともに、気密容器の
表面に、気密封止による突起物が生じることのな
いサージ吸収素子の気密封止方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for hermetically sealing a surge absorbing element having a composite structure of a high resistance element having voltage non-linear characteristics and a discharge gap, and in particular to A method for hermetically sealing a surge absorbing element in which an aging electrode is formed by adhering a conductive material using a through hole that is also used for a purpose, and in which protrusions are not formed on the surface of an airtight container due to hermetic sealing. Regarding.

[従来の技術] 従来、電子回路に加わる過渡的な異常電圧や誘
導雷等のサージから電子回路を保護するため、電
圧非直線特性を有する高抵抗体素子より成るバリ
スタや、放電間隙を気密容器に収納したアレスタ
等のサージ吸収素子が広く使用されている。とこ
ろで、上記両サージ吸収素子にはそれぞれ一長一
短が有り、本出願人は、その欠点を解消すべく、
バリスタとアレスタとの複合構造を有するサージ
吸収素子を提案(特願昭58−30357)している。
[Prior Art] Conventionally, in order to protect electronic circuits from transient abnormal voltages applied to electronic circuits and surges caused by induced lightning, varistors made of high-resistance elements with non-linear voltage characteristics and discharge gaps made of airtight containers have been used. Surge absorbing elements such as arresters housed in By the way, both of the above surge absorbing elements have their own advantages and disadvantages, and in order to eliminate these disadvantages, the present applicant has proposed the following:
We have proposed a surge absorption element having a composite structure of a varistor and an arrester (Japanese Patent Application No. 58-30357).

上記サージ吸収素子は、電圧直線特性或いは電
圧非直線特性を具備する高抵抗体素子を基本と
し、その両端に、放電間隙を隔てて相対向させた
電極を接続して高抵抗体素子と放電間隙とを並列
接続し、これを気密容器中に収容した構造を有す
るものであり、過渡的にサージが印加された状態
で、高抵抗体素子の抵抗値とサージ電流値との積
による電圧降下によつて、電極間に励起放電を生
成させ、その付勢によつて瞬時に大電流を通ずる
主放電に転移させて、高速度でサージ電流を吸収
するものである。上記サージ吸収素子は、バリス
タやアレスタに比べ、サージに対する応答速度が
速く、しかも電流耐量が大きいという優れた特性
を有するものである。
The above-mentioned surge absorbing element is basically a high-resistance element having voltage linear characteristics or voltage non-linear characteristics, and electrodes facing each other across a discharge gap are connected to both ends of the high-resistance element to connect the high-resistance element and the discharge gap. It has a structure in which these are connected in parallel and housed in an airtight container, and when a transient surge is applied, the voltage drop due to the product of the resistance value of the high-resistance element and the surge current value Therefore, an excited discharge is generated between the electrodes, and by its energization, it is instantaneously transferred to a main discharge that conducts a large current, thereby absorbing the surge current at a high speed. The above-mentioned surge absorbing element has excellent characteristics such as a faster response speed to a surge and a larger current capacity than a varistor or an arrester.

ところで一般に、電子部品は、その動作特性の
安定性及び信頼性をより確実なものとするため、
製造工程中に於いて電気的なエージング(枯化)
処理の実施が必要となる場合がある。特に放電現
象を利用した電子部品にあつては、電極の表面状
態によつて特性が大きく変化する傾向があるた
め、上記電極にあつてはエージングは必要欠くべ
からざるものと言つても過言ではない。
By the way, in general, in order to ensure the stability and reliability of the operating characteristics of electronic components,
Electrical aging during the manufacturing process
Processing may be required. Especially in the case of electronic components that utilize discharge phenomena, the characteristics tend to change significantly depending on the surface condition of the electrodes, so it is no exaggeration to say that aging is essential for the above electrodes. .

そこで、サージ吸収素子の気密容器側壁を貫通
させて、上記電極とは電気的に独立したエージン
グ用電極を形成し、上記エージング用電極を陽
極、上記サージ吸収に供する電極を陰極として電
圧を印加し、両電極間に放電を生成させてエージ
ングを実施する方法がある。
Therefore, an aging electrode electrically independent from the above electrode is formed by penetrating the side wall of the airtight container of the surge absorption element, and a voltage is applied using the aging electrode as an anode and the surge absorption electrode as a cathode. There is a method of performing aging by generating a discharge between both electrodes.

また、上記サージ吸収素子の基体として、電圧
非直線特性を有する高抵抗体素子を選定した場合
には、高温に加熱すると高抵抗体素子の非直線性
が劣化してサージ吸収特性が不安定となるため、
アレスタ等の気密封止に使用される銀鑞の如き高
融点(800〜900℃)を有する封止部材を使用する
ことが不可能となる。従つて、上記複合型のサー
ジ吸収素子の気密封止に際しては、低い温度
(400〜500℃)で溶融可能な低融点ガラス等のガ
ラス系の封止部材を使用する必要があるが、ガラ
ス系の封止部材は、溶融状態に於いて多量の不純
ガスを発生するため、アレスタの製造に於いて使
用される如き封止方法を適用することが困難であ
る。
In addition, if a high resistance element with voltage nonlinear characteristics is selected as the base of the surge absorption element, heating it to a high temperature will cause the nonlinearity of the high resistance element to deteriorate and the surge absorption characteristics to become unstable. To become
It becomes impossible to use a sealing member having a high melting point (800 to 900°C), such as silver solder, which is used for hermetically sealing arresters and the like. Therefore, when hermetically sealing the composite surge absorbing element described above, it is necessary to use a glass-based sealing member such as low-melting point glass that can be melted at a low temperature (400 to 500°C). Since the sealing member generates a large amount of impure gas in a molten state, it is difficult to apply a sealing method such as that used in the manufacture of arresters.

即ち、上記アレスタは、その気密封止に際し、
まず電極と一体に形成された一対の封止キヤツプ
をセラミツク等の絶縁物より成る筒状体の両端
に、銀鑞を介して配置し、これを真空系内に収納
して真空排気を行い、次に上記真空系内に希ガス
を主体とした放電ガスを流入させた後、加熱して
銀鑞を溶融させ、放電ガスを充満させた状態で、
筒状体と封止キヤツプとを封着して気密容器を構
成するものである。
That is, when the arrester is hermetically sealed,
First, a pair of sealing caps formed integrally with the electrodes are placed at both ends of a cylindrical body made of an insulating material such as ceramic through silver solder, and this is housed in a vacuum system and evacuated. Next, a discharge gas mainly consisting of a rare gas is introduced into the vacuum system, and then heated to melt the silver solder and filled with the discharge gas.
An airtight container is constructed by sealing a cylindrical body and a sealing cap.

従つて、上記アレスタと同様な気密封止方法を
低融点ガラス等のガラス系封止部材を用いた複合
型のサージ吸収素子に適用したとすれば、ガラス
系封止部材は、低い温度で溶融するため、温度の
影響による高抵抗体素子の電圧非直線性は劣化し
ないものの、ガラス系封止部材から発生する不純
ガスで放電ガスの純度が低下し、これがサージ吸
収特性を劣化させる新たな原因となる。
Therefore, if the same airtight sealing method as for the above-mentioned arrester is applied to a composite surge absorbing element using a glass-based sealing member such as low-melting point glass, the glass-based sealing member will melt at a low temperature. Therefore, although the voltage nonlinearity of the high-resistance element due to the influence of temperature does not deteriorate, the purity of the discharge gas decreases due to impure gas generated from the glass sealing member, which is a new cause of deterioration of surge absorption characteristics. becomes.

そこで、この対策として従来は、サージ吸収素
子の気密容器内にゲツタ材を封入して不純ガスを
吸着させる方法や第4図Aに示す如く、封止キヤ
ツプ4,4′と筒状体8とを予めガラス系の封止
部材7,7′で封着して気密容器9を構成すると
共に、この容器9側壁に貫通孔を穿設し、更に上
記貫通孔にエキゾーストパイプ13を接続して、
このパイプ13を通して真空排気及び放電ガスの
充填を行つた後、エキゾーストパイプ13を熱的
に封じ切る方法が提案されている。
Conventionally, as a countermeasure against this problem, there has been a method of sealing a getter material in the airtight container of the surge absorbing element to adsorb the impure gas, and a method of sealing the sealing caps 4, 4' and the cylindrical body 8 as shown in FIG. 4A. are sealed in advance with glass-based sealing members 7, 7' to form an airtight container 9, a through hole is bored in the side wall of this container 9, and an exhaust pipe 13 is connected to the through hole.
A method has been proposed in which the exhaust pipe 13 is thermally sealed off after being evacuated and filled with discharge gas through the pipe 13.

[発明が解決しようとする課題] しかしながら、気密容器9側壁に対し、エージ
ング用電極を貫通させて形成する他に、エキゾー
ストパイプ13をも貫通させて設けることは、サ
ージ吸収素子の製造が複雑となるばかりでなく、
その外観的品位も劣るものとなる。
[Problems to be Solved by the Invention] However, in addition to forming the aging electrode by penetrating the side wall of the airtight container 9, providing the exhaust pipe 13 by penetrating it also complicates the manufacturing of the surge absorption element. Not only will it become;
The appearance quality is also inferior.

また、サージ吸収素子の気密封止に際し、上記
ゲツタ材を使用する方法にあつては、不純ガスを
完全に吸収し得るだけの多量のゲツタ材を気密容
器内に封入することは現実的ではない。一方、エ
キゾーストパイプを用いる方法にあつては、第4
図Bに示す如く、エキゾーストパイプ13の根元
部分が気密容器9の表面に突起物として残存し、
この突起物が、その後の電子回路等への組込みに
際し支障となつて、取扱い上の制約を生じ、また
外観的品位も低いものとなる。
Furthermore, in the method of using the getter material mentioned above when airtightly sealing the surge absorbing element, it is not practical to seal a large amount of getter material in an airtight container to completely absorb impure gas. . On the other hand, in the case of the method using an exhaust pipe, the fourth
As shown in Figure B, the root portion of the exhaust pipe 13 remains as a protrusion on the surface of the airtight container 9,
These protrusions pose a hindrance to subsequent integration into electronic circuits, etc., resulting in restrictions in handling and also deteriorating the quality of the appearance.

本発明は、上述の点に鑑み案出されたもので、
複合型のサージ吸収素子に於いて、エージング用
電極とエキゾーストパイプとを別々に設ける必要
がないとともに、製造途中での高温度加熱が必要
なく、そして、不純ガス混入の虞れがなくて安定
したサージ吸収特性が得られ、しかも気密容器表
面に、気密封止による突起物が生じることがなく
て、取扱いが容易で、且つ高品位な外観が得られ
るサージ吸収素子の気密封止方法を提供すること
を目的とする。
The present invention was devised in view of the above points, and
In the composite surge absorbing element, there is no need to provide an aging electrode and an exhaust pipe separately, there is no need for high temperature heating during manufacturing, and there is no risk of contamination of impure gas, making it stable. To provide a method for hermetically sealing a surge absorbing element, which provides surge absorption characteristics, does not produce protrusions on the surface of an airtight container due to hermetic sealing, is easy to handle, and provides a high-quality appearance. The purpose is to

[問題を解決するための手段及び作用] 上述の目的は、気密封止に際して気密容器より
突出するエキゾーストパイプを用いることなく、
従来例に於いてはエキゾーストパイプを接続する
ために気密容器に形成された貫通孔の内壁及び開
口周囲に導電材料を被着させ放電に供する電極と
電気的に独立したエージング用電極とするととも
に、上記貫通孔を直接封止部材によつて封止する
ことによつて達成されるものであり、従つて本発
明のサージ吸収素子の気密封止方法は、電圧非直
線特性を有する高抵抗体素子の両端に、放電間隙
を隔てて相対向させた電極を接続し、これを気密
容器中に収容したサージ吸収素子の気密封止方法
に於いて、気密容器に貫通孔を形成し少なくとも
該貫通孔の内壁及び開口周囲に導電材料を被着さ
せ上記電極と電気的に独立したエージング用電極
とするとともに、上記貫通孔に封止部材を載置
し、上記気密容器内を真空排気した後、上記封止
部材を加熱溶融させて上記貫通孔を密閉すること
を特徴とするものである。上記気密封止方法によ
れば、上記貫通孔は、その内壁及び開口周囲にエ
ージング用電極が形成されるとともに、真空排気
及びガス充填用に用いることができ、更に、封止
部材は気密容器に形成された貫通孔内に留まり、
容器表面に突出することはない。
[Means and actions for solving the problem] The above object is to achieve airtight sealing without using an exhaust pipe that protrudes from the airtight container.
In the conventional example, a conductive material is coated on the inner wall and around the opening of a through hole formed in an airtight container to connect an exhaust pipe, and the aging electrode is electrically independent from the electrode used for discharge. This is achieved by directly sealing the through-hole with a sealing member, and therefore, the hermetic sealing method for a surge absorbing element of the present invention is applicable to a high resistance element having voltage nonlinear characteristics. In a method for hermetically sealing a surge absorbing element in which electrodes facing each other across a discharge gap are connected to both ends of the surge absorbing element and the electrodes are housed in an airtight container, a through hole is formed in the airtight container, and at least the through hole is A conductive material is coated on the inner wall and around the opening to form an aging electrode that is electrically independent from the above electrode, and a sealing member is placed in the through hole, and the inside of the airtight container is evacuated. The present invention is characterized in that the through hole is sealed by heating and melting the sealing member. According to the above hermetic sealing method, the through hole has an aging electrode formed on its inner wall and around the opening, and can be used for evacuation and gas filling, and furthermore, the sealing member is attached to the airtight container. Remains within the formed through hole,
It does not protrude from the container surface.

そして、上記封止部材中に、気密容器に形成し
た貫通孔の最小径より大きな径を有し、且つ封止
部材より高い融点を有する物質を混入したことに
より、貫通孔内への封止部材の流入量が適度に制
限され、封止部材を貫通孔内に留めると共に、こ
の物質が核となつて貫通孔を確実に気密封止す
る。
By mixing into the sealing member a substance having a diameter larger than the minimum diameter of the through-hole formed in the airtight container and having a melting point higher than that of the sealing member, the sealing member can be inserted into the through-hole. The amount of inflow of the substance is appropriately restricted, and the sealing member is kept in the through hole, and this substance acts as a core to reliably hermetically seal the through hole.

[実施例] 以下、図面に基づいて本発明の一実施例を説明
する。
[Example] Hereinafter, an example of the present invention will be described based on the drawings.

第1図A及びBは、それぞれ本発明の一実施例
に係る気密封止方法によるサージ吸収素子の製造
途中を示す概略断面図及び要部断面図、第2図は
同じくサージ吸収素子の概略斜視図である。図に
於いて、サージ吸収素子1は、例えばZnO、
Fe2O3、SnO2等の電圧非直線特性を有する高抵
抗体素子2の両端に、リード線3,3′を導出し
た封止キヤツプ4,4′が溶接された一対の電極
5,5′を、放電間隙6を隔てて相対向させて接
続すると共に、封止キヤツプ4,4′を400〜500
℃程度の融点を有する低融点ガラスより成る封着
部材7,7′を用いて、セラミツク(フオルステ
ライト等)等の絶縁物より成る筒状体8の両端に
接続することによつて、気密容器9を形成すると
共に、気密容器9内に電圧非直線特性を有する高
抵抗体素子2及び電極5,5′を収納した構造と
成されている。尚、気密容器9内には希ガス等の
不活性ガスを主体とした放電ガスが封入されてい
る。
FIGS. 1A and 1B are a schematic cross-sectional view and a cross-sectional view of essential parts, respectively, showing the process of manufacturing a surge absorbing element using an airtight sealing method according to an embodiment of the present invention, and FIG. 2 is a schematic perspective view of the same surge absorbing element. It is a diagram. In the figure, the surge absorbing element 1 is made of ZnO, for example.
A pair of electrodes 5, 5 in which sealing caps 4, 4' from which lead wires 3, 3' are led are welded to both ends of a high resistance element 2 having voltage non-linear characteristics such as Fe 2 O 3 , SnO 2, etc. ' are connected facing each other across the discharge gap 6, and the sealing caps 4, 4' are connected at a distance of 400 to 500
By using sealing members 7 and 7' made of low-melting glass having a melting point of around 0.99°C, and connecting them to both ends of a cylindrical body 8 made of an insulating material such as ceramic (forsterite, etc.), an airtight container can be formed. 9, and has a structure in which a high resistance element 2 having voltage nonlinear characteristics and electrodes 5, 5' are housed in the airtight container 9. Note that the airtight container 9 is filled with a discharge gas mainly composed of an inert gas such as a rare gas.

上記気密容器9には、筒状体8の側壁略中央
に、上部にテーパ部10aを有する貫通孔10が
穿設されており、その内部に低融点ガラスより成
る封止部材11と、この封止部材11中に混入さ
れた、貫通孔10aの最小径よりも若干大きな径
を有し、封止部材11より高い融点を有するビー
ズ状のガラスやガラスの構成成分である金属酸化
物等にフイラー11aとが充填されて貫通孔10
を密封封止している。
The airtight container 9 has a through hole 10 formed approximately in the center of the side wall of the cylindrical body 8 and has a tapered portion 10a at the top, and a sealing member 11 made of low melting point glass is inserted into the through hole 10. A filler is added to the bead-shaped glass mixed in the sealing member 11, which has a diameter slightly larger than the minimum diameter of the through hole 10a and has a melting point higher than that of the sealing member 11, or a metal oxide that is a constituent of the glass. 11a and the through hole 10 is filled with
is hermetically sealed.

そして、上記気密容器9には、筒状体8の側壁
に穿設された貫通孔10の内壁及び周囲に銀ペー
スト等の導電材料が被着されてエージング用電極
12の導出部12aが形成されている。更に、筒
状体8の内壁には、炭素等より成る導電材料が導
出部12aと電気的に接続され且つ放電間隙6を
取り囲む如くに被着されて、エージング用電極1
2の電極部12bが形成されている。この電極部
12bを構成する導電材料中には、気密容器9の
封止や電極5,5′間の放電によつて発生する不
純ガスを除去するため、アルカリ土類系ゲツタ
(BaAl4、BaAl2O4等)やチタン族系ゲツタ(Ti、
Zr等)等のゲツタ材を混入することも可能であ
る。
In the airtight container 9, a conductive material such as silver paste is applied to the inner wall and periphery of the through hole 10 formed in the side wall of the cylindrical body 8, thereby forming the lead-out portion 12a of the aging electrode 12. ing. Further, a conductive material made of carbon or the like is applied to the inner wall of the cylindrical body 8 so as to be electrically connected to the lead-out portion 12a and to surround the discharge gap 6, thereby forming the aging electrode 1.
Two electrode portions 12b are formed. The conductive material constituting this electrode portion 12b contains alkaline earth getters (BaAl 4 , BaAl 2 O 4 etc.) and titanium group getta (Ti,
It is also possible to mix in a getter material such as Zr (Zr, etc.).

然して、本発明によるサージ吸収素子の製造に
際しては、まず封止キヤツプ4,4′を溶接した
電極5,5′を電圧非直線特性を有する高抵抗体
素子2の両端に導電性接着剤を用いて接続すると
共に、筒状体8の両端に、封着部材7,7′を介
して封止キヤツプ4,4′を嵌着し、更にこれを
加熱して封着部材7,7′を溶融させ、筒状体8
と封止キヤツプ4,4′とを封着して気密容器9
を形成する。次いで上記筒状体8の貫通孔10の
テーパ部10a内に、フイラー11aを混入し、
低融点ガラスより成り、十分な脱ガス処理が施さ
れた塊状の封止部材11を載置し、これを加熱手
段を具備した真空系内に収容して真空排気し、上
記封止部材11が溶けない程度の温度で真空加熱
を行う。そして十分に真空加熱を行つた後に、真
空系内に放電ガスを流入させて気密容器9内に放
電ガスを充填する。然る後に、フイラー11aが
溶融せずに、封止部材11が溶融する400〜500℃
程度まで温度を上昇させた後加熱を停止すれば、
第1図Bに示す如く、貫通孔10はフイラー11
aと封止部材11とによつて密閉され、第2図に
示す如きサージ吸収素子1が得られる。
However, when manufacturing the surge absorbing element according to the present invention, first, the electrodes 5, 5', to which the sealing caps 4, 4' are welded, are attached to both ends of the high resistance element 2, which has voltage nonlinear characteristics, using a conductive adhesive. At the same time, the sealing caps 4, 4' are fitted to both ends of the cylindrical body 8 via the sealing members 7, 7', and then heated to melt the sealing members 7, 7'. cylindrical body 8
and sealing caps 4, 4' are sealed to form an airtight container 9.
form. Next, a filler 11a is mixed into the tapered portion 10a of the through hole 10 of the cylindrical body 8,
A block-shaped sealing member 11 made of low-melting glass and subjected to sufficient degassing treatment is placed, and placed in a vacuum system equipped with a heating means and evacuated, so that the sealing member 11 is Vacuum heating is performed at a temperature that does not melt. After sufficient vacuum heating, discharge gas is caused to flow into the vacuum system to fill the airtight container 9 with the discharge gas. After that, the temperature is 400 to 500°C, at which the sealing member 11 is melted without the filler 11a being melted.
If you stop heating after raising the temperature to a certain level,
As shown in FIG. 1B, the through hole 10 has a filler 11
a and the sealing member 11 to obtain a surge absorbing element 1 as shown in FIG.

この場合、封止部材11の材質は、筒状体8と
封止キヤツプ4,4′とを接続している封着部材
7,7′よりも低い融点を有するものが選定され
る。尚、結晶化ガラスを用いた場合には、一度溶
融して結晶化したものは、溶融前のものよりも高
融点となるので、封着部材7,7′と封止部材1
1とは同一の材質のものを使用することができ
る。
In this case, the material of the sealing member 11 is selected to have a melting point lower than that of the sealing members 7, 7' connecting the cylindrical body 8 and the sealing caps 4, 4'. In addition, when crystallized glass is used, once melted and crystallized, the melting point is higher than that before melting, so the sealing members 7, 7' and the sealing member 1
A material made of the same material as 1 can be used.

尚、電圧非直線特性を有する高抵抗体素子2の
放電空間に露出した表面には、製造工程中或いは
電極5,5′間の放電による高抵抗体素子2の電
圧非直線係数の変動を防止するため、ビスマスガ
ラス等の脱鉛ガラスを主体とした保護被膜2aが
形成されている。
Note that the surface of the high resistance element 2 having voltage nonlinear characteristics exposed to the discharge space is provided with a material to prevent variations in the voltage nonlinear coefficient of the high resistance element 2 due to the manufacturing process or discharge between the electrodes 5 and 5'. Therefore, a protective coating 2a mainly made of lead-free glass such as bismuth glass is formed.

更に、電極5,5′は、ニツケルや鉄等の放電
特性の良好な金属材料より成り、その表面には、
耐スパツタ物質より成る保護被膜5a,5′aが
形成されている。保護被膜5a,5′aを構成す
る材料としては、希土類元素の4ホウ化物
(YB4、GdB4等)、希土類元素の6ホウ化物
(YB6、LaB6、CeB6、GdB6等)、希土類元素の
酸化物(Y2O3、La2O3、CeO2、Gd2O3、TbO2
等)、アルカリ土類金属元素の酸化物(MgO、
SrO等)、アルカリ土類金属元素の酸化物とモリ
ブデン酸塩、タングステン酸塩又はアルミン酸塩
との複合化合物(aMgO・bAl2O3、aBaO・
bSrO・cAl2O3等)、モリブテン(Mo)、タング
ステン(W)、或いは表面にアルミナ(Al2O3
を形成したアルミニウム(Al)等が適しており、
これらの材料は、希ガスを主体とした放電ガスを
用いるプラズマ溶射法、有機金属を有機溶媒に溶
かし込んで塗布し、これを加熱分解する塗膜熱分
解法或いは電極を発泡金属で形成し、これに上記
材料を含浸させる含浸法等により容易に被着され
得るものである。また、電極5,5′と接続され
た封止キヤツプ4,4′は、筒状体8及び封止部
材7,7′と熱膨張率が整合する材質、即ち本実
施例の場合には筒状体8がフオルステライト、封
止部材7,7′がガラス系の材料より成るため、
42−6合金、Fe−Ni合金或いはFe−Ne−Cr−
Ti合金等によつて形成されている。
Further, the electrodes 5, 5' are made of a metal material with good discharge characteristics, such as nickel or iron, and their surfaces are coated with
A protective coating 5a, 5'a made of a spatter-resistant material is formed. The materials constituting the protective coatings 5a and 5'a include tetraborides of rare earth elements ( YB4 , GdB4, etc.), hexaborides of rare earth elements ( YB6 , LaB6 , CeB6 , GdB6, etc.), Oxides of rare earth elements (Y 2 O 3 , La 2 O 3 , CeO 2 , Gd 2 O 3 , TbO 2
etc.), oxides of alkaline earth metal elements (MgO,
SrO, etc.), complex compounds of alkaline earth metal oxides and molybdates, tungstates, or aluminates (aMgO・bAl 2 O 3 , aBaO・
bSrO, cAl 2 O 3, etc.), molybdenum (Mo), tungsten (W), or alumina (Al 2 O 3 ) on the surface
Aluminum (Al) etc. formed with
These materials can be produced by plasma spraying using a discharge gas mainly composed of rare gases, by coating pyrolysis in which organic metals are dissolved in an organic solvent and then applied and then thermally decomposed, or by forming electrodes from metal foam. It can be easily applied by an impregnation method in which the material is impregnated with the above material. Further, the sealing caps 4, 4' connected to the electrodes 5, 5' are made of a material whose coefficient of thermal expansion matches that of the cylindrical body 8 and the sealing members 7, 7', that is, in the case of this embodiment, the sealing caps 4, 4' are Since the shaped body 8 is made of forsterite and the sealing members 7 and 7' are made of glass-based material,
42-6 alloy, Fe-Ni alloy or Fe-Ne-Cr-
It is made of Ti alloy, etc.

[発明の効果] 以上詳述の如く、本発明のサージ吸収素子の気
密封止方法は、気密容器側壁に貫通孔を形成しそ
の内壁及び開口周囲に導電材料を被着させてエー
ジング用電極とするとともに、この貫通孔を真空
排気及び放電ガス充填用とすることができ、ま
た、気密容器に形成した貫通孔に封止部材を載置
し、この封止部材を加熱溶融させて貫通孔を密閉
するので、高温加熱や不純ガスによるサージ吸収
特性劣化の虞れがなくて、複合型のサージ吸収素
子が本来有するサージに対する応答速度が速く、
その上電流耐量が大きいという優れた特徴を十分
発揮させ得、しかも封止部材が貫通孔内に留まつ
て気密容器表面には突出しないため、電子回路等
への組込みに際し、その取扱いに何ら制約を受け
ることがなく、しかも、外観的にも高品位なサー
ジ吸収素子を得ることができる。
[Effects of the Invention] As described in detail above, the method for hermetically sealing a surge absorbing element of the present invention includes forming a through hole in the side wall of an airtight container and coating the inner wall and around the opening with a conductive material to form an aging electrode. At the same time, this through hole can be used for evacuation and filling with discharge gas, and a sealing member is placed in the through hole formed in the airtight container, and this sealing member is heated and melted to open the through hole. Since it is sealed, there is no risk of deterioration of the surge absorption characteristics due to high temperature heating or impure gas, and the composite surge absorption element has a fast response speed to surges.
Moreover, it can fully demonstrate its excellent feature of high current withstand capacity, and since the sealing member remains within the through hole and does not protrude from the surface of the airtight container, there are no restrictions on its handling when incorporating it into electronic circuits, etc. Therefore, it is possible to obtain a surge absorbing element that is free from damage and has a high-quality appearance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の一実施例による
サージ吸収素子に示すもので、第1図Aは製造途
中の概略断面図、第1図Bは、製造途中の要部断
面図、第2図は概略斜視図、第3図は他の実施例
の製造途中を示す要部断面図であり、第4図A及
び第4図Bは従来例の製造途中を示す概略斜視図
である。 1……サージ吸収素子、2……高抵抗体素子、
5,5′……電極、6……放電間隙、9……気密
容器、10……貫通孔、11……封止部材、11
a……フイラー。
1 and 2 show a surge absorbing element according to an embodiment of the present invention, in which FIG. 1A is a schematic sectional view in the middle of manufacturing, FIG. 1B is a sectional view of essential parts in the middle of manufacturing, FIG. 2 is a schematic perspective view, FIG. 3 is a sectional view of a main part showing another embodiment in the middle of manufacturing, and FIGS. 4A and 4B are schematic perspective views showing the conventional example in the middle of manufacturing. . 1...Surge absorption element, 2...High resistance element,
5, 5'... Electrode, 6... Discharge gap, 9... Airtight container, 10... Through hole, 11... Sealing member, 11
a... Filler.

Claims (1)

【特許請求の範囲】 1 電圧非直線特性を有する高抵抗体素子の両端
に、放電間隙を隔てて相対向させた電極を接続
し、これを気密容器中に収容したサージ吸収素子
の気密封止方法に於いて、気密容器に貫通孔を形
成し少なくとも該貫通孔の内壁及び開口周囲に導
電材料を被着させ上記電極と電気的に独立したエ
ージング用電極とするとともに、上記貫通孔に封
止部材を載置し、上記気密容器内を真空排気した
後、上記封止部材を加熱溶融させて上記貫通孔を
密閉することを特徴とするサージ吸収素子の気密
封止方法。 2 封止部材中に、気密容器に形成した貫通孔の
最小径より大きな径を有し、且つ上記封止部材よ
り高い融点を有する物質を混入したことを特徴と
する特許請求の範囲第1項に記載のサージ吸収素
子の気密封止方法。
[Claims] 1. Hermetic sealing of a surge absorbing element in which electrodes facing each other across a discharge gap are connected to both ends of a high-resistance element having nonlinear voltage characteristics, and the electrodes are housed in an airtight container. In the method, a through hole is formed in an airtight container, and a conductive material is coated at least on the inner wall of the through hole and around the opening to form an aging electrode that is electrically independent from the electrode, and the through hole is sealed. A method for hermetically sealing a surge absorbing element, comprising placing a member thereon, evacuating the inside of the airtight container, and then heating and melting the sealing member to seal the through hole. 2. Claim 1, characterized in that the sealing member contains a substance having a diameter larger than the minimum diameter of a through hole formed in the airtight container and having a melting point higher than that of the sealing member. A method for hermetically sealing a surge absorption element described in .
JP20347284A 1984-09-28 1984-09-28 Airtight sealing for surge absorbing element Granted JPS6180783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20347284A JPS6180783A (en) 1984-09-28 1984-09-28 Airtight sealing for surge absorbing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20347284A JPS6180783A (en) 1984-09-28 1984-09-28 Airtight sealing for surge absorbing element

Publications (2)

Publication Number Publication Date
JPS6180783A JPS6180783A (en) 1986-04-24
JPH0219593B2 true JPH0219593B2 (en) 1990-05-02

Family

ID=16474704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20347284A Granted JPS6180783A (en) 1984-09-28 1984-09-28 Airtight sealing for surge absorbing element

Country Status (1)

Country Link
JP (1) JPS6180783A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454716Y2 (en) * 1986-09-25 1992-12-22
JPH03165481A (en) * 1989-11-22 1991-07-17 West Electric Co Ltd Constant voltage discharge tube for ignition device and its manufacture
JPH04167387A (en) * 1990-10-30 1992-06-15 West Electric Co Ltd Constant voltage discharge tube for ignition device and manufacture thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939794A (en) * 1972-08-28 1974-04-13
JPS503774A (en) * 1973-04-16 1975-01-16
JPS5525518U (en) * 1978-08-07 1980-02-19

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939794A (en) * 1972-08-28 1974-04-13
JPS503774A (en) * 1973-04-16 1975-01-16
JPS5525518U (en) * 1978-08-07 1980-02-19

Also Published As

Publication number Publication date
JPS6180783A (en) 1986-04-24

Similar Documents

Publication Publication Date Title
US4545799A (en) Method of making direct seal between niobium and ceramics
US3281309A (en) Ceramic bonding
US3676743A (en) Gas-discharge overvoltage arrester
US3649874A (en) Overvoltage arrester
JPH0219593B2 (en)
JP2516531B2 (en) Varistor, surge absorber, method for forming protective film, and bismuth borosilicate glass composition
US4475055A (en) Spark gap device for precise switching
JPS6359513B2 (en)
JPH0216554Y2 (en)
JPH0132713Y2 (en)
JPH0132712Y2 (en)
JP2000030618A (en) Plasma display panel
CA2108828A1 (en) Encapsulated spark gap and method of manufacturing
JPH057835B2 (en)
JP2534954B2 (en) Discharge type surge absorber and method for manufacturing the same
JPH057836B2 (en)
JP2853010B2 (en) Surge absorbing element and method of manufacturing the same
JPH0536460A (en) Discharge type surge absorbing element
JPH054232Y2 (en)
JPH0216553Y2 (en)
JPH0132714Y2 (en)
JPH0226151Y2 (en)
JPH0246680A (en) Surge absorption element
JPH06267424A (en) Manufacture of plasma display panel
JPS6247824B2 (en)