JPS5917563B2 - bending vibration transducer - Google Patents

bending vibration transducer

Info

Publication number
JPS5917563B2
JPS5917563B2 JP13881378A JP13881378A JPS5917563B2 JP S5917563 B2 JPS5917563 B2 JP S5917563B2 JP 13881378 A JP13881378 A JP 13881378A JP 13881378 A JP13881378 A JP 13881378A JP S5917563 B2 JPS5917563 B2 JP S5917563B2
Authority
JP
Japan
Prior art keywords
transducer
piezoelectric ceramic
elastic
plate
ceramic plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13881378A
Other languages
Japanese (ja)
Other versions
JPS5566117A (en
Inventor
卓 五雲寺
善彦 河西
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP13881378A priority Critical patent/JPS5917563B2/en
Priority to DE19792945243 priority patent/DE2945243A1/en
Priority to IT27162/79A priority patent/IT1124944B/en
Priority to FR7927966A priority patent/FR2441982B1/en
Priority to US06/093,208 priority patent/US4281298A/en
Publication of JPS5566117A publication Critical patent/JPS5566117A/en
Publication of JPS5917563B2 publication Critical patent/JPS5917563B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0603Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a piezoelectric bender, e.g. bimorph
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/48Coupling means therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は高安定な恒弾性材料と電気〜機械結合係数の大
きい圧電磁器材料およびハンダ等の接着剤より構成され
、電気的入力信号を機械的出力信号にあるいはこの逆に
変換する音片形および音叉形の屈曲振動変換子に関する
Detailed Description of the Invention The present invention is composed of a highly stable constant elastic material, a piezoelectric ceramic material with a large electrical-mechanical coupling coefficient, and an adhesive such as solder, and is capable of converting an electrical input signal into a mechanical output signal or vice versa. This invention relates to a vibrating piece-shaped and tuning fork-shaped bending vibration transducer.

屈曲振動変換子は主に低周波帯において、各種通信装置
や制御装置に用いられるメカニカルフィルタ用変換子と
して広く実用化されている。
Bending vibration transducers are widely put into practical use mainly in low frequency bands as transducers for mechanical filters used in various communication devices and control devices.

とくに最近では搬送用通話路変換装置用のチャンネルフ
ィルタに用いられており、今後益々その用途が広がる傾
向にあるー。
In particular, it has recently been used in channel filters for communication path converters for carriers, and its applications are likely to continue to expand in the future.

メカニカルフィルタは超音波を媒体とするフィルタで電
気信号を一旦機械信号に換え、沢波したのち出力に再び
電気信号として取り出すものである。
A mechanical filter is a filter that uses ultrasonic waves as a medium and converts an electrical signal into a mechanical signal, which is then output as an electrical signal.

電気信号を機械信号に、またはこの逆に機械信号を電気
信号に変換するものとしては圧電磁器板を用いた変換子
が最も多く用いられている。
A transducer using a piezoelectric ceramic plate is most commonly used to convert an electrical signal into a mechanical signal, or vice versa.

圧電磁器板を用いた変換子をり、C回路で類推した等価
回路は第1図のようになる。
The equivalent circuit analogous to a C circuit using a transducer using a piezoelectric ceramic plate is shown in Figure 1.

第1図においてLo、Co 、Roは変換子の直列共振
の等価インダクタンス、等価容量、等価抵抗でCdは圧
電磁器板の制動容量である。
In FIG. 1, Lo, Co, and Ro are the equivalent inductance, equivalent capacitance, and equivalent resistance of the series resonance of the transducer, and Cd is the damping capacitance of the piezoelectric ceramic plate.

変換子の性能を示す容量比γ、品質係数Qは(1)、(
2)式の如(定義されている。
The capacity ratio γ, which indicates the performance of the converter, and the quality coefficient Q are (1), (
2) As in the formula (defined).

2式においてωは変換子の直列共振角周波数である。In Equation 2, ω is the series resonance angular frequency of the transducer.

一方、メカニカルフィルタの実現可能通過帯域幅Δfは
容量比γに逆比例をする。
On the other hand, the achievable passband width Δf of the mechanical filter is inversely proportional to the capacitance ratio γ.

従って容量比γが小さければ広帯域のメカニカルフィル
タが実現できる。
Therefore, if the capacitance ratio γ is small, a broadband mechanical filter can be realized.

従来よりメカニカルフィルタ用として広く実用に供され
ている音片形の屈曲振動変換子は次の2種の構造に分け
られる。
Acoustic piece-shaped bending vibration transducers that have been widely used in mechanical filters can be divided into the following two types of structures.

第2図に音片形屈曲振動変換子の第1の構造を示す。FIG. 2 shows the first structure of the vibrating flexural vibration transducer.

図において恒弾性材料からなる弾性板1に弾性板の厚み
方向に矢印で示した残留分極3をもつ横効果の圧電磁器
板2を弾性板1の長さ方向上面にノ゛ンダ等の接着剤に
より接合した構造であり、圧電磁器板2および弾性板1
に接続されているリード線6および7間に所定の周波数
の交流電圧を印加すると、圧電磁器板2の伸縮振動によ
り、たとえば矢印4の方向に圧電磁器板2が変位し、こ
れにより変換子は点線5に示す屈曲振動を行なう。
In the figure, an elastic plate 1 made of a constant elastic material is covered with a transverse effect piezoelectric ceramic plate 2 having a residual polarization 3 shown by an arrow in the thickness direction of the elastic plate, and an adhesive such as Nonder is attached to the upper surface in the length direction of the elastic plate 1. It has a structure in which the piezoelectric ceramic plate 2 and the elastic plate 1 are joined by
When an alternating current voltage of a predetermined frequency is applied between the lead wires 6 and 7 that are connected to Bending vibration indicated by dotted line 5 is performed.

この変換子は構造が比較的単純であり製造が容易である
This transducer is relatively simple in structure and easy to manufacture.

さらに温度変化、経時変化に対し安定であるなどの利点
から、主に低周波の狭帯域フィルタとして使用されてい
る。
Furthermore, it is mainly used as a low-frequency narrowband filter because of its stability against temperature changes and changes over time.

しかし電気−機械変換を行なう圧電磁器板の伸縮振動の
電気−機械結合係数が約0.3と小さいため変換子の容
量比が太き(、したがって実現できるメカニカルフィル
タの帯域幅は狭くなり、この結果フィルタのインピーダ
ンスも高くなる。
However, since the electro-mechanical coupling coefficient of the stretching vibration of the piezoelectric ceramic plate that performs electro-mechanical conversion is small at about 0.3, the capacitance ratio of the transducer is large (therefore, the bandwidth of the mechanical filter that can be realized is narrow; As a result, the impedance of the filter also increases.

メカニカルフィルタの帯域幅を広げる目的や外部回路と
のインピーダンス整合をさせるために、このように容量
比の大きな変換子を用いる場合には入出力側にそれぞれ
り、 Cの電気回路を付加しなげればならない。
When using a converter with such a large capacitance ratio in order to widen the bandwidth of the mechanical filter or to match the impedance with an external circuit, it is necessary to add an electric circuit of C to the input and output sides. Must be.

しかしながらこの付加されるり、Cの電気回路の大きさ
は変換子、共振子および結合子からなる機械振動系の大
きさに比較し、同等か、あるいはそれ以上になるという
問題点がある。
However, there is a problem in that the size of the added electric circuit is equal to or larger than the size of the mechanical vibration system consisting of a transducer, a resonator, and a coupler.

第3図は音片形屈曲振動変換子の第2の構造を示ス。FIG. 3 shows the second structure of the vibrating vibration transducer.

この変換子はメカニカルフィルタのり、 C電気回路を
除去することができる低容量比の変換子であって、2個
の弾性板8および90間に、残留分極の方向12および
13が異なる2個の縦効果の圧電磁器板10および11
を、残留分極方向が変換子の長さ方向と一致するように
配置し、それぞれ前述の接着剤により接着した構造であ
る。
This transducer is a low capacitance ratio transducer that can remove mechanical filters and C electric circuits, and has two elastic plates 8 and 90 between which two pieces with different directions of residual polarization 12 and 13 are used. Longitudinal effect piezoelectric ceramic plates 10 and 11
are arranged so that the remanent polarization direction coincides with the length direction of the transducer, and each is bonded with the above-mentioned adhesive.

弾性板8および9に固着した2本のリード線17および
18に所定の周波数の交流電圧を印加すると、圧電磁器
板10および110図中矢印14および15に示される
厚みたて振動により変換子は点線16に示す屈曲振動を
行なう。
When an alternating current voltage of a predetermined frequency is applied to the two lead wires 17 and 18 fixed to the elastic plates 8 and 9, the transducer is caused to vibrate vertically as shown by arrows 14 and 15 in the piezoelectric ceramic plates 10 and 110. Bending vibration indicated by dotted line 16 is performed.

上記変換子に用いる圧電磁器板の厚みたて振動の電気−
機械結合係数は一般に0.5〜0.6と大きいので変換
子の容量比は小さくなり、L、C付加電気回路を用いず
に所望の広帯域特性を有するメカニカルフィルタが得ら
れる。
Electricity of the vertical vibration of the piezoelectric ceramic plate used in the above transducer
Since the mechanical coupling coefficient is generally as large as 0.5 to 0.6, the capacitance ratio of the transducer is small, and a mechanical filter having desired broadband characteristics can be obtained without using L and C additional electric circuits.

また圧電磁器板10および11をはさんだ弾性板8およ
び9に、図示していないが各々1本の支持線を屈曲振動
の節点に接続すると、面支持線は変換子の機械的支持部
材の役割のほか、前述のリード線の役割も併せ持たせる
ことができ、メカニカルフィルタの故障の原因となり易
い、リード線を除去することができる。
Furthermore, if one support wire (not shown) is connected to each of the elastic plates 8 and 9 sandwiching the piezoelectric ceramic plates 10 and 11 to the bending vibration node, the surface support wire will serve as a mechanical support member for the transducer. In addition to this, the lead wire can also serve the role of the lead wire described above, and the lead wire, which is likely to cause failure of the mechanical filter, can be removed.

しかしながら後者の変換子は前者の変換子に比べ構成部
品数が多いために製造上より多くの工程が必要であって
、さらに2個の圧電磁器板の残留分極方向を互いに逆向
きとなるように注意しなげればならない等の問題点があ
る。
However, since the latter transducer has more components than the former transducer, more manufacturing steps are required, and the remanent polarization directions of the two piezoelectric ceramic plates are made to be opposite to each other. There are some problems that you need to be careful about.

本発明は前述の屈曲振動変換子の問題点を解消し低容量
比変換子として付加り、C電気回路を除去することがで
きる構造の変換子を提供することを目的とするものであ
って前述の変換子に比べ、特性、機能および製造性の優
れた広帯域メカ−カルフィルタ用の低容量比変換子であ
る。
It is an object of the present invention to solve the problems of the above-mentioned bending vibration transducer, and to provide a transducer having a structure that can be added as a low capacitance ratio transducer and eliminate the C electric circuit. This is a low capacitance ratio converter for wideband mechanical filters that has superior characteristics, functionality, and manufacturability compared to other converters.

以下図面を参照して本発明の実施例につき詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図は本発明の音片形屈曲振動変換子の一実施例を示
す。
FIG. 4 shows an embodiment of the sound piece type bending vibration transducer of the present invention.

第4図において、19および20は恒弾性材料からなる
弾性板であり、2個の弾性板19および20の長手方向
の間に、矢印22方向に分極された圧電磁器板21を分
極方向22が前記2個の弾性板19および20の長手方
向とほぼ直角になるように配置し、さらに圧電磁器板2
10両電極面に対向する弾性板19および200片側端
面をそれぞれハンダ等の接着剤にて縦続に結合した構造
の変換子である。
In FIG. 4, 19 and 20 are elastic plates made of a constant elastic material, and a piezoelectric ceramic plate 21 polarized in the direction of arrow 22 is placed between the two elastic plates 19 and 20 in the longitudinal direction. The two elastic plates 19 and 20 are arranged to be substantially perpendicular to the longitudinal direction, and the piezoelectric ceramic plate 2
This is a transducer having a structure in which elastic plates 19 and 200 one side end surface facing both electrode surfaces are connected in series with an adhesive such as solder.

また26および27は屈曲振動の節点に取付けられた支
持線でありかつリード線の役目をあわせ持っている。
Further, 26 and 27 are support wires attached to nodes of bending vibration, and also serve as lead wires.

面支持線26および27に所定の周波数の交流電圧を印
加すると圧電磁器板21は矢印23および24の方向に
厚みすべり振動を行ない、この振動により変換子は点線
25に示す屈曲振動を行なう。
When an alternating current voltage of a predetermined frequency is applied to the surface support wires 26 and 27, the piezoelectric ceramic plate 21 performs thickness shear vibration in the directions of arrows 23 and 24, and this vibration causes the transducer to perform a bending vibration as shown by a dotted line 25.

第4図に示す変換子は2個の弾性板19および20の長
さがほぼ等しい場合の図である。
The transducer shown in FIG. 4 is a diagram in which the lengths of the two elastic plates 19 and 20 are approximately equal.

第5図は第4図の変換子の周波数応答を示す。FIG. 5 shows the frequency response of the transducer of FIG.

図において横軸に周波数を、縦軸に応答レベルを表わす
In the figure, the horizontal axis represents frequency, and the vertical axis represents response level.

28は屈曲第二次振動の共振点を、29は屈曲第4次振
動の共振点を示す。
28 indicates a resonance point of the second-order bending vibration, and 29 indicates a resonance point of the fourth-order bending vibration.

なお実際には屈曲第4次振動の共振点より高い周波数領
域で屈曲第6次、第8次等の偶数次振動の共振が現れる
が、本図においてはこれを省略している。
In reality, even-numbered vibrations such as the sixth and eighth vibrations appear in a frequency range higher than the resonance point of the fourth vibration, but this is omitted in this figure.

本実施例で偶数次振動のみが現われる理由は圧電磁器板
を変換子の長さ方向の中央部に配置したためである。
The reason why only even-order vibrations appear in this embodiment is that the piezoelectric ceramic plate is arranged at the center of the transducer in the length direction.

第6図に本発明における他の実施例を示す。FIG. 6 shows another embodiment of the present invention.

図において圧電磁器板32は変換子の長さ方向中心から
偏倚させている。
In the figure, the piezoelectric ceramic plate 32 is offset from the longitudinal center of the transducer.

30および31はそれぞれ長さの異なる弾性板、32は
厚みすべり振動をする圧電磁気板である。
30 and 31 are elastic plates having different lengths, and 32 is a piezoelectric magnetic plate that vibrates through thickness shear.

支持線30′および31′は所望の振動モードの節点に
固着されている。
Support lines 30' and 31' are fixed at the nodes of the desired vibration mode.

第7図は第6図の変換子の周波数応答を示す図であり、
図の横軸に周波数を、縦軸に応答レベルを示す。
FIG. 7 is a diagram showing the frequency response of the transducer of FIG. 6,
The horizontal axis of the figure shows frequency, and the vertical axis shows response level.

図において33,34,35および36は夫々屈曲第1
次、第2次、第3次および第4次振動の各共振点を示す
In the figure, 33, 34, 35 and 36 are respectively the first bending points.
The resonance points of the next, second, third and fourth vibrations are shown.

なお第4次振動の共振点より高い周波数領域で奇数次、
偶数次の順で共振点が現われるが本図ではこれを省略し
ている。
In addition, in the frequency range higher than the resonance point of the fourth-order vibration, the odd-order vibration
Resonance points appear in the order of even orders, but are omitted in this figure.

次に本発明の屈曲振動変換子の特徴について述べる。Next, the characteristics of the bending vibration transducer of the present invention will be described.

本発明の屈曲振動子の特徴は主として構造上の特徴と特
性上の特徴に分けることができる。
The characteristics of the bending vibrator of the present invention can be mainly divided into structural characteristics and characteristic characteristics.

(1)構造上の特徴 イ1本発明による変換子は第3図に示した従来の屈曲振
動変換子と同様に弾性板と圧電磁器板を変換子の長手方
向に縦続に連接している。
(1) Structural Features A1 The transducer according to the present invention has an elastic plate and a piezoelectric ceramic plate connected in series in the longitudinal direction of the transducer, similar to the conventional bending vibration transducer shown in FIG.

口1本発明による変換子は使用する圧電磁器板が1個で
すみ、第3図に示す従来の変換子のように並列に配置し
た2個の圧電磁器板の分極方向に注意する必要がなく、
変換子の製造工程の管理上有利である。
1. The transducer according to the present invention requires only one piezoelectric ceramic plate, and there is no need to pay attention to the polarization direction of two piezoelectric ceramic plates arranged in parallel, unlike the conventional transducer shown in FIG. ,
This is advantageous in terms of control of the converter manufacturing process.

ハ0本発明によればリード線不要の変換rが得られる。According to the present invention, a conversion r that does not require a lead wire can be obtained.

すなわち、2個の弾性板に固着する支持線を変換子の所
望の振動モードの節点に選ぶことで支持線にリード線の
機能を併せ持たせることができる。
That is, by selecting the support wire fixed to the two elastic plates as the node of the desired vibration mode of the transducer, the support wire can also have the function of a lead wire.

(2)特性上の特徴 イ0本発明による変換子は圧電磁器板の厚みずべり振動
を利用している。
(2) Characteristic Features A0 The transducer according to the present invention utilizes the thickness shear vibration of a piezoelectric ceramic plate.

一般に厚みすべり振動の電気−機械結合係数は従来の変
換子で用いている圧電磁器板の伸縮振動や厚みたて1振
動の電気−機械結合係数に比べて大きい。
In general, the electro-mechanical coupling coefficient of thickness shear vibration is larger than the electro-mechanical coupling coefficient of stretching vibration of piezoelectric ceramic plates used in conventional transducers and single thickness vibration.

従って本発明による変換子は従来の変換子に比べ低容量
比ができるので、LC付加電気回路を用いずに広帯域特
性を有するメカニカルフィルタを得ることができる。
Therefore, since the converter according to the present invention has a lower capacitance ratio than the conventional converter, a mechanical filter having broadband characteristics can be obtained without using an additional LC electric circuit.

口0本発明による変換子は低容量比にもかかわらず品質
係数Qが3000以上と大きい。
The converter according to the present invention has a high quality factor Q of 3000 or more despite its low capacitance ratio.

なお本発明の変換子と同等の容量比を有するランジュバ
ン形の捩り振動変換子のQは約 300である。
Note that a Langevin type torsional vibration transducer having a capacitance ratio equivalent to that of the transducer of the present invention has a Q of about 300.

ハ1本発明による変換子のスプリアス特性は極めて良好
である。
C1 The spurious characteristics of the converter according to the present invention are extremely good.

第5図および第7図に示したように、本発明の変換子は
屈曲振動以外の振動がほとんど現われない。
As shown in FIGS. 5 and 7, the transducer of the present invention exhibits almost no vibrations other than bending vibrations.

特に圧電磁器板の長さ方向中心を変換子の長さ方向中心
に一致させた第4図の変換子では屈曲偶数次振動のみが
励起されるので所望の屈曲モードのレスポンスに隣接す
る屈曲モードの共振は第5図に示したように相当に離す
ことができる。
In particular, in the transducer shown in Fig. 4 in which the longitudinal center of the piezoelectric ceramic plate is aligned with the longitudinal center of the transducer, only even-order vibrations in bending are excited. The resonances can be separated considerably as shown in FIG.

この結果本発明の変換子をメカニカルフィルタに利用す
ればスプリアス応答の少ないフィルタを実現することが
できる。
As a result, if the transducer of the present invention is used in a mechanical filter, a filter with less spurious response can be realized.

以1;に本発明による変換子のさらに他の実施例につい
て述べる。
Further embodiments of the converter according to the present invention will be described in 1 below.

第8図は弾性板370片側端面に、変換子の長さ方向に
対して略直角に分極された、厚みすべり振動を行なう圧
電磁器板38をハンダ等の接着剤で長手方向に継続接続
した構造とした音片形の屈曲振動変換子である。
FIG. 8 shows a structure in which a piezoelectric ceramic plate 38, which is polarized approximately perpendicularly to the length direction of the transducer and which performs thickness shear vibration, is continuously connected to one end surface of an elastic plate 370 with an adhesive such as solder in the longitudinal direction. This is a sound piece-shaped bending vibration transducer.

本変換子は第4図あるいは第6図に示した変換子の一方
の弾性板を除去し、圧電磁器板380弾性板37と接合
させている面と反対側の端面にリード線40を取り付け
たものである。
In this transducer, one elastic plate of the transducer shown in FIG. 4 or 6 is removed, and a lead wire 40 is attached to the end surface opposite to the surface joined to the piezoelectric ceramic plate 380 and the elastic plate 37. It is something.

支持線39は所望の振動次数における振動の節点に固着
させ、変換子を支持するとともにリード線40に対する
他方のリード線の機能をする。
The support wire 39 is fixed to a vibration node of a desired vibration order, supports the transducer, and functions as the other lead wire for the lead wire 40.

第8図の変換子は第4図、第6図の変換子に比べ構成部
品数が少く、製造が容易である。
The converter shown in FIG. 8 has fewer components than the converters shown in FIGS. 4 and 6, and is easier to manufacture.

第9図は圧電磁器板を2個用いたもので、41゜42.
43は弾性板、44,45は圧電磁気板、46.47,
48はリード線の機能をもあわせもった支持線を示す。
Figure 9 uses two piezoelectric ceramic plates, and the angle is 41°42.
43 is an elastic plate, 44 and 45 are piezoelectric magnetic plates, 46.47,
Reference numeral 48 indicates a support wire that also functions as a lead wire.

支持線46および47間に所定の周波数の交流電圧を印
加すると、本変換子は屈曲振動モードで振動し、この振
動は圧電磁器板45により機械−電気変換されて端子4
8および47に電気出力信号として出力される。
When an AC voltage of a predetermined frequency is applied between the support wires 46 and 47, this transducer vibrates in a bending vibration mode, and this vibration is mechanically-electrically converted by the piezoelectric ceramic plate 45 to the terminal 4.
8 and 47 as electrical output signals.

すなわち1ケの変換子により帯域通過形のフィルタとし
て使用できる。
That is, it can be used as a band-pass type filter with one converter.

なお端子46と48を電気的に共通接続し、これと端子
47との間に電気信号を印加すると第4図、第6図およ
び第8図と同様な変換子としても使用できる。
Note that if the terminals 46 and 48 are electrically connected in common and an electric signal is applied between them and the terminal 47, it can also be used as a transducer similar to those shown in FIGS. 4, 6, and 8.

第10図は音叉形屈曲振動変換子に本発明を適用した例
である。
FIG. 10 shows an example in which the present invention is applied to a tuning fork-shaped bending vibration transducer.

一般に音叉形振動子は音片形振動子よりも低周波数で動
作可能でありより小形化できることから、音片形振動子
よりも低い周波数において広く使用される。
In general, a tuning fork type vibrator can operate at a lower frequency than a tone piece type vibrator and can be made more compact, so it is widely used at a lower frequency than a tone piece type vibrator.

第10図において49゜50および51は恒弾性材料か
らなる弾性板で、このうち50は2個の腕部を有する
形に形成されている。
In Fig. 10, 49° 50 and 51 are elastic plates made of a constant elastic material, of which 50 has two arms.
formed into a shape.

52および53は厚みすべり振動を行なう圧電磁器板、
56は支持線である。
52 and 53 are piezoelectric ceramic plates that perform thickness shear vibration;
56 is a support line.

矢印54および55は夫々圧電磁器板の残留分極方向を
示す。
Arrows 54 and 55 indicate the remanent polarization direction of the piezoelectric ceramic plate, respectively.

リード線57.58間に所定の周波数の交流電圧を印加
すると変換子は点線60.61で示すような対称形の振
動モードで振動する。
When an alternating current voltage of a predetermined frequency is applied between the lead wires 57 and 58, the transducer vibrates in a symmetrical vibration mode as shown by dotted lines 60 and 61.

この振動は圧電磁器板53により機械−電気変換されて
、リード線58および59間に電気出力信号とじて出力
される。
This vibration is mechanically-electrically converted by the piezoelectric ceramic plate 53 and output as an electrical output signal between the lead wires 58 and 59.

従って第9図の変換子と同様1ケの変換子により帯域通
過形のフィルタとして用いることができる。
Therefore, like the transducer shown in FIG. 9, one transducer can be used as a band-pass type filter.

なお端子57と59を電気的に共通接続し、端子58と
の間に電気信号を印加し前述の変換子と同様な動作をさ
せることも可能である。
Note that it is also possible to connect the terminals 57 and 59 electrically in common and apply an electric signal between them and the terminal 58 to operate in the same manner as the above-mentioned transducer.

以上詳細に説明したように本発明による屈曲振動変換子
は構成部品数が少なく、構造が単純であって製造性にす
ぐれており、さらに低容量比が得られることから広帯域
メカニカルフィルタが容易に得られるなどの極めて優れ
た効果を奏する。
As explained in detail above, the bending vibration transducer according to the present invention has a small number of components, a simple structure, and excellent manufacturability.Furthermore, since a low capacitance ratio can be obtained, a broadband mechanical filter can be easily obtained. It has extremely excellent effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧電側動形変換子のり、 C回路で類推した等
価回路図、第2図、第3図は従来の屈曲振動変換子の構
造を示す斜視図、第4図、第6図、第8図および第9図
は本発明にかかる音片形屈曲振動変換子を示す斜視図、
第5図および第7図はそれぞれ第4図および第6図に示
す実施例の変換子の周波数応答図、第10図は本発明に
かかる音叉形屈曲振動変換子の実施例を示す斜視図であ
る。 19.20,30,31,37,41,42゜43.4
9,50,51・・・・・・弾性板、21.32゜38
.44,45,52,53・・・・・・圧電磁器板、2
2.54,55・・・残留分極方向。
Figure 1 is an equivalent circuit diagram analogous to the C circuit of a piezoelectric side dynamic transducer; Figures 2 and 3 are perspective views showing the structure of a conventional bending vibration transducer; Figures 4 and 6; 8 and 9 are perspective views showing a vibrating piece-shaped bending vibration transducer according to the present invention,
5 and 7 are frequency response diagrams of the transducers of the embodiments shown in FIGS. 4 and 6, respectively, and FIG. 10 is a perspective view showing the embodiment of the tuning fork-shaped bending vibration transducer according to the present invention. be. 19.20, 30, 31, 37, 41, 42°43.4
9,50,51...Elastic plate, 21.32°38
.. 44, 45, 52, 53... Piezoelectric ceramic plate, 2
2.54,55...Remanent polarization direction.

Claims (1)

【特許請求の範囲】 1 恒弾性材料からなる少なくとも1個の弾性板と、厚
みすべり振動モードで電気−機械の信号変換を行なう少
なくとも1個の圧電磁器板とハンダ等の接着剤から構成
される変換子において、前記弾性板と前記圧電磁器板と
を長さ方向に交互に1個ずつ縦続に配置し、かつ前記圧
電磁器板の残留分極方向を前記弾性板の長さ方向とほぼ
直角になるようにし、さらに前記圧電磁器板の電極面を
、該電極面に対向する前記弾性板の片側端面と前記接着
剤にて、音片形状に結合したことを特徴とする屈曲振動
変換子。 2 弾性板、圧電磁器板および接着剤から構成される変
換子において、前記弾性板と前記圧電磁器板とを音叉振
動子の腕部長さ方向に縦続に配置し、かつ前記圧電磁器
板の残留分極方向は腕部を構成する弾性板の長さ方向と
ほぼ直角で振動変位方向とほぼ一致するようにし、さら
に前記圧電磁器板の電極]頚を、該電極面に対向する前
記弾性板の片側端面と前記接着剤により音叉形状に結合
したことを特徴とする屈曲振動変換子。
[Claims] 1. Consisting of at least one elastic plate made of a constant elastic material, at least one piezoelectric ceramic plate that performs electrical-mechanical signal conversion in a thickness-shear vibration mode, and an adhesive such as solder. In the transducer, the elastic plates and the piezoelectric ceramic plates are arranged in tandem one after another in the length direction, and the residual polarization direction of the piezoelectric ceramic plates is substantially perpendicular to the length direction of the elastic plates. A bending vibration transducer characterized in that the electrode surface of the piezoelectric ceramic plate is further bonded to one end surface of the elastic plate facing the electrode surface in the form of a vibrating bar using the adhesive. 2. In a transducer composed of an elastic plate, a piezoelectric ceramic plate, and an adhesive, the elastic plate and the piezoelectric ceramic plate are arranged in series in the length direction of the arm length of the tuning fork vibrator, and the residual polarization of the piezoelectric ceramic plate is The direction is substantially perpendicular to the length direction of the elastic plate constituting the arm portion and substantially coincides with the direction of vibration displacement, and the electrode neck of the piezoelectric ceramic plate is positioned at one end face of the elastic plate opposite to the electrode surface. and a flexural vibration transducer, characterized in that the above-mentioned adhesive is used to combine the flexural vibration transducer into a tuning fork shape.
JP13881378A 1978-10-13 1978-11-13 bending vibration transducer Expired JPS5917563B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13881378A JPS5917563B2 (en) 1978-11-13 1978-11-13 bending vibration transducer
DE19792945243 DE2945243A1 (en) 1978-11-13 1979-11-09 BENDING VIBRATOR
IT27162/79A IT1124944B (en) 1978-11-13 1979-11-09 ELECTROMECHANICAL BENDING TRANSDUCER
FR7927966A FR2441982B1 (en) 1978-11-13 1979-11-13 BENDING TRANSDUCER
US06/093,208 US4281298A (en) 1978-10-13 1979-11-13 Flexural transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13881378A JPS5917563B2 (en) 1978-11-13 1978-11-13 bending vibration transducer

Publications (2)

Publication Number Publication Date
JPS5566117A JPS5566117A (en) 1980-05-19
JPS5917563B2 true JPS5917563B2 (en) 1984-04-21

Family

ID=15230833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13881378A Expired JPS5917563B2 (en) 1978-10-13 1978-11-13 bending vibration transducer

Country Status (1)

Country Link
JP (1) JPS5917563B2 (en)

Also Published As

Publication number Publication date
JPS5566117A (en) 1980-05-19

Similar Documents

Publication Publication Date Title
US7786825B2 (en) Bulk acoustic wave device with coupled resonators
US3321648A (en) Piezoelectric filter element
US4281298A (en) Flexural transducer
JPS60190100A (en) Piezoelectric speaker
JP2002164766A (en) Vertically connected multimode piezoelectric filter
Sheahan et al. Crystal and mechanical filters
US6717335B2 (en) Composite vibration device
JPS5917563B2 (en) bending vibration transducer
US6842087B2 (en) Three-terminal filter using area flexural vibration mode
JPH0323699Y2 (en)
JP3271541B2 (en) Piezoelectric resonator and electronic component using the same
JPS6138277Y2 (en)
JP3760760B2 (en) Composite material vibration device
KR100425992B1 (en) Balanced Input-Output Piezoelectric Filter
JPH0153808B2 (en)
JPH0452677B2 (en)
JP3888136B2 (en) Composite material vibration device
JP2967432B2 (en) Surface acoustic wave filter
JP3901013B2 (en) Vertically coupled multimode piezoelectric filter device and electronic component
JPH0346583Y2 (en)
JP2503891Y2 (en) Ceramic filter
JP3922096B2 (en) Vertically coupled multimode piezoelectric filter device, longitudinally coupled multimode piezoelectric filter, and electronic component
JPS6040212B2 (en) bending vibration transducer
JPH0314822Y2 (en)
JPS6348448B2 (en)