JPS6138277Y2 - - Google Patents

Info

Publication number
JPS6138277Y2
JPS6138277Y2 JP1976135674U JP13567476U JPS6138277Y2 JP S6138277 Y2 JPS6138277 Y2 JP S6138277Y2 JP 1976135674 U JP1976135674 U JP 1976135674U JP 13567476 U JP13567476 U JP 13567476U JP S6138277 Y2 JPS6138277 Y2 JP S6138277Y2
Authority
JP
Japan
Prior art keywords
torsional vibration
vibration
resonator
transducer
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1976135674U
Other languages
Japanese (ja)
Other versions
JPS5353940U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1976135674U priority Critical patent/JPS6138277Y2/ja
Publication of JPS5353940U publication Critical patent/JPS5353940U/ja
Application granted granted Critical
Publication of JPS6138277Y2 publication Critical patent/JPS6138277Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【考案の詳細な説明】 本考案はメカニカルフイルタ、特に捩り振動変
換子によつて電気的振動を一旦機械的振動に変換
し、この機械的振動を結合子を介して捩り振動共
振子に伝達せしめ、該共振子における機械的振動
を再び結合子を介して機械的振動を電気的振動に
変換する捩り振動変換子に伝達せしめて電気的振
動に変換して取り出すメカニカルフイルタにおい
て、上記捩り振動変換子と捩り振動共振子とを第
二次捩り振動もしくはそれ以上の振動モードで振
動せしめるようにしたメカニカルフイルタに関す
る。
[Detailed description of the invention] This invention uses a mechanical filter, especially a torsional vibration transducer, to convert electrical vibration into mechanical vibration, and then transmits this mechanical vibration to a torsional vibration resonator via a coupler. , a mechanical filter that transmits the mechanical vibration in the resonator again via a coupler to a torsional vibration transducer that converts the mechanical vibration into electrical vibration, converts it into electrical vibration, and extracts it, the torsional vibration transducer. The present invention relates to a mechanical filter in which a torsional vibration resonator and a torsional vibration resonator are caused to vibrate in a second-order torsional vibration mode or a higher vibration mode.

メカニカルフイルタは第1図Aのブロツク図に
示すように電気的振動機械的振動の変換を行な
うもので、その構成は電気−機械変換子1、結合
子及び共振子からなる機械振動系2、機械−電気
変換子3、電気的振動入力端子4、電気的振動出
力端子5で構成される。
As shown in the block diagram of Figure 1A, the mechanical filter converts electrical and mechanical vibrations, and consists of an electro-mechanical transducer 1, a mechanical vibration system 2 consisting of a coupler and a resonator, and a mechanical - Consists of an electrical transducer 3, an electrical vibration input terminal 4, and an electrical vibration output terminal 5.

上記電気的振動入力端子4に電気的振動が入力
されると、電気−機械変換子1によつて電気的振
動は機械的振動に変換される。この機械的振動は
機械振動系2の結合子と共振子とを介して機械−
電気変換子3に伝達され、ここで再び電気的振動
に変換されて電気的振動出力端子5から電気的振
動として出力される。
When electrical vibrations are input to the electrical vibration input terminal 4, the electrical vibrations are converted into mechanical vibrations by the electro-mechanical converter 1. This mechanical vibration is transmitted to the machine via the coupler and resonator of the mechanical vibration system 2.
The vibration is transmitted to the electric transducer 3, where it is converted into electric vibration again, and outputted as electric vibration from the electric vibration output terminal 5.

上記メカニカルフイルタの周波数−伝送損失特
性である伝送特性を示したのが第1図Bであつ
て、入力された電気的振動周波数が上記メカニカ
ルフイルタの予め定められた振動モードにおいて
変換子及び共振子の変換変位を極大となさしめる
ような振動周波数であつたとき、すなわち変換子
及び共振子の共振周波数とほぼ一致したとき、該
入力された電気的振動周波数に対するメカニカル
フイルタとしての伝送損失が極小となる。従つて
該伝送損失が極小となるような周波数が入力され
たときのみ第1図Aに示す電気的振動出力端子5
から電気的振動が出力される。
FIG. 1B shows the transmission characteristic, which is the frequency-transmission loss characteristic, of the mechanical filter. When the vibration frequency is such that the conversion displacement of Become. Therefore, the electrical vibration output terminal 5 shown in FIG. 1A is activated only when a frequency that minimizes the transmission loss is input.
Electrical vibrations are output from.

上記変換子構造の一例を第1図Cに示す。図中
電気−機械変換素子部は厚みすべり振動をする半
円形状の圧電セラミツク21,21をその残留分
極方向(失印で示す)22が互いに逆向きとなる
ように組み合わせて円形状とし、恒弾性金属棒2
3の端面に対向する面とその反対側の面すなわち
両円形面にそれぞれ金等を蒸着或いはスパツタ等
して電極面を形成する。そうしてこの円形状の圧
電セラミツク製変換素子の一方の電極面に半田等
の導電性の接着剤を用いて恒弾性金属棒23を接
合して捩り振動変換子を形づくる。また、この捩
り振動変換子には電気振動を印加または取り出す
ためのリード線24,24を恒弾性金属棒23と
圧電セラミツクの他方の電極面とに取り付けてあ
る。
An example of the above transducer structure is shown in FIG. 1C. In the figure, the electro-mechanical transducer section is made by combining semicircular piezoelectric ceramics 21, 21 that vibrate through thickness shear so that their residual polarization directions (indicated by missing marks) 22 are opposite to each other to form a circular shape. Elastic metal rod 2
Electrode surfaces are formed by vapor depositing or sputtering gold or the like on the surface facing the end surface of 3 and the surface opposite thereto, that is, both circular surfaces, respectively. Then, a constant elastic metal rod 23 is bonded to one electrode surface of this circular piezoelectric ceramic transducer element using a conductive adhesive such as solder to form a torsional vibration transducer. Further, in this torsional vibration transducer, lead wires 24, 24 for applying or extracting electric vibration are attached to the constant elastic metal rod 23 and the other electrode surface of the piezoelectric ceramic.

上記捩り振動変換子に捩り振動を起こさせるに
は、リード線24,24間に電気的振動を印加す
ると圧電セラミツクに矢印25,26で示すよう
なすべりの変位が生じ、この矢印25,26で示
す変位によつて回動力27が起こり捩り振動が起
きる。上記変換素子部と恒弾性金属棒を含めた捩
り振動変換子の全長lが印加された電気的振動周
波数のλ/2と等しいときに第一次捩り振動で、
λと等しいときに第二次捩り振動で捩り振動が起
きる。第二次捩り振動時の振動は後述する第3図
Aに示すように全長の1/2の位置に振動変位の最
大点が、両端から1/4の位置にそれぞれ振動変位
が零となる節点を生じる。
In order to cause torsional vibration in the torsional vibration transducer, applying electrical vibration between the lead wires 24 and 24 causes sliding displacement in the piezoelectric ceramic as shown by arrows 25 and 26. The displacement shown generates rotational force 27, causing torsional vibration. When the total length l of the torsional vibration transducer including the conversion element part and the constant elastic metal rod is equal to λ/2 of the applied electrical vibration frequency, in the first torsional vibration,
When equal to λ, torsional vibration occurs in the second order torsional vibration. As shown in Figure 3A (described later), the vibration during the second torsional vibration has a maximum point of vibration displacement at a position of 1/2 of the total length, and a node where the vibration displacement becomes zero at a position of 1/4 from both ends. occurs.

メカニカルフイルタは数百Hz〜数百KHzの広い
周波数範囲で使用されており、捩り振動を用いた
メカニカルフイルタはフイルタの小形化の観点か
ら100KHz以上において実用化が進んでいる。
Mechanical filters are used in a wide frequency range from several hundred Hz to several hundred KHz, and mechanical filters using torsional vibration are being put into practical use at frequencies of 100 KHz or higher from the viewpoint of reducing the size of the filter.

従来、捩り振動を用いたメカニカルフイルタは
フイルタ全体を小形にするため、それを構成する
捩り振動変換子、捩り振動共振子には第一次捩り
振動を使用していた。捩り振動変換子および捩り
振動共振子の長さは共振周波数に反比例すること
から、使用する周波数が高くなると必然的に長さ
の短かいものとなる。例えば共振周波数が200K
Hzのものの合捩り振動変換子及び捩り振動共振子
の長さは6mm程度となるため、周波数の高い場合
には小形になりすぎて該捩り振動変換子および捩
り振動共振子の加工、調整等製造における取扱い
が不便とさえなつている。さらに従来構造のメカ
ニカルフイルタは並列配置された捩り振動変換子
と捩り振動共振子との長さ方向の中央部が第一次
捩り振動の節点になることから、これらの上記中
央部に支持線を接合して、この支持線でフイルタ
取付け基板等に保持している。
Conventionally, mechanical filters using torsional vibration have used primary torsional vibration in the torsional vibration converter and torsional vibration resonator that constitute the filter in order to make the entire filter compact. Since the length of the torsional vibration transducer and the torsional vibration resonator is inversely proportional to the resonant frequency, the length of the torsional vibration transducer and the torsional vibration resonator inevitably becomes shorter as the frequency used becomes higher. For example, the resonant frequency is 200K
The length of the combined torsional vibration transducer and torsional vibration resonator of Hz is about 6 mm, so if the frequency is high, it will be too small and it will be difficult to process, adjust, and manufacture the torsional vibration converter and torsional vibration resonator. It is even becoming inconvenient to handle it. Furthermore, in the mechanical filter of the conventional structure, the longitudinal center of the torsional vibration transducer and torsional vibration resonator arranged in parallel becomes the node of the primary torsional vibration. It is joined and held on the filter mounting board etc. by this support wire.

以上のような第一次捩り振動によるメカニカル
フイルタの従来構成例を第2図に示す。第2図A
は捩り振動共振子の第一次捩り振動における振動
状態を示し、捩り振動共振子2は矢印6及び8に
示すように互いに逆方向の捩り振動(点線で示
す)として捩り振動共振子の全長の1/2即ち長手
方向の中央部に振動変位が零となる節点7が生じ
る。また、第2図Bにおいて恒弾性金属棒2a,
2cと圧電セラミツクからなる電気−機械変換素
子1,3とを半田等の接着剤によつて接合した捩
り振動変換子の第一次捩り振動における振動の状
態は、第2図Aに示す捩り振動共振子と同じであ
り、電気−機械変換素子1,3と恒弾性金属棒と
を含めた変換子全長の1/2の位置に振動変位零と
なる節点が存在する。なお、2bは前述の捩り振
動共振子で、9,9は上記並列配置した捩り振動
変換子と捩り振動共振子との節点に固定した支持
線で、この支持線9,9の両端部を図示しないフ
イルタ取付け基板に保持してある。10は入力側
の捩り振動変換子2aに生じた第1次捩り振動を
捩り振動共振子2b及び出力側の捩り振動変換子
2cへと伝達するための縦振動結合子である。
FIG. 2 shows an example of the conventional structure of a mechanical filter using the above-mentioned primary torsional vibration. Figure 2A
indicates the vibration state of the torsional vibration resonator in the first torsional vibration, and the torsional vibration resonator 2 exhibits torsional vibration in opposite directions (indicated by dotted lines) as shown by arrows 6 and 8. A node 7 where the vibration displacement becomes zero occurs at 1/2, that is, at the center in the longitudinal direction. In addition, in FIG. 2B, the constant elastic metal rod 2a,
2c and electro-mechanical transducers 1 and 3 made of piezoelectric ceramics are bonded together using an adhesive such as solder. It is the same as a resonator, and there is a node at which the vibration displacement becomes zero at a position of 1/2 of the total length of the transducer including the electro-mechanical transducers 1 and 3 and the constant elastic metal rod. In addition, 2b is the above-mentioned torsional vibration resonator, and 9, 9 are support wires fixed to the nodes of the above-mentioned parallel-arranged torsional vibration transducer and torsional vibration resonator, and both ends of these support lines 9, 9 are shown in the figure. It is held on the filter mounting board. 10 is a longitudinal vibration coupler for transmitting the primary torsional vibration generated in the input side torsional vibration transducer 2a to the torsional vibration resonator 2b and the output side torsional vibration converter 2c.

電気−機械変換素子1の印加された電気的振動
は変換子2aで第一次の捩り振動に変換され、こ
の振動は結合子10、共振子2b、結合子10、
変換子2cと順次伝達され、その結果変換子2c
に第一次の捩り振動を起こし、変換子2cに接合
されている機械−電気変換素子3によつて再び電
気的振動に変換されて出力される。
The applied electrical vibration of the electro-mechanical transducer 1 is converted into first-order torsional vibration by the transducer 2a, and this vibration is transmitted to the coupler 10, the resonator 2b, the coupler 10,
is sequentially transmitted to the transformer 2c, and as a result, the transformer 2c
First-order torsional vibration is generated, which is again converted into electrical vibration by the mechanical-electrical conversion element 3 connected to the transducer 2c and output.

第4図Aに上記第2図Bに示した従来のメカニ
カルフイルタの伝送特性を示す。図中で12が前
記変換子および共振子の第一次捩り振動周波数
oにおいて出力される所望の伝送特性である。こ
のoに対して周波数2o及び3o近傍にお
ける伝送特性13,14は前記変換子および共振
子の第二次捩り振動や第三次捩り振動によつて生
ずる伝送特性であり、これらはスプリアスと呼ば
れ使用上有害となる場合が多い。
FIG. 4A shows the transmission characteristics of the conventional mechanical filter shown in FIG. 2B. In the figure, 12 is a desired transmission characteristic output at the first torsional vibration frequency o of the transducer and resonator. For this o, transmission characteristics 13 and 14 near frequencies 2o and 3o are transmission characteristics caused by the second and third torsional vibrations of the transducer and resonator, and these are called spurious. Often harmful to use.

特に図中13の第二次捩り振動による伝送特性
は広い帯域に亘つてスプリアスが生じているが、
これは以下の理由による。すなわち捩り振動変換
子および捩り振動共振子の第二次捩り振動におけ
る振動の状態は後で詳述するが、捩り振動変換子
および捩り振動共振子の全長の1/2の位置(中央
部)において捩り振動変位が最大となる。上記従
来構造のメカニカルフイルタは第2図Bからも判
るように、該中央部位置には支持線9が接合され
ており、捩り振動変換子2aに第二次捩り振動が
生じるとこの支持線9を介して振動が出力側の捩
り振動変換子2cへ伝達されることになる。
In particular, in the transmission characteristics due to the second-order torsional vibration shown in 13 in the figure, spurious noise occurs over a wide band.
This is due to the following reasons. In other words, the state of vibration in the second torsional vibration of the torsional vibration transducer and torsional vibration resonator will be explained in detail later, but at the position (center) of 1/2 of the total length of the torsional vibration converter and torsional vibration resonator. Torsional vibration displacement becomes maximum. As can be seen from FIG. 2B, in the mechanical filter of the above-mentioned conventional structure, a support wire 9 is connected at the central position, and when secondary torsional vibration occurs in the torsional vibration transducer 2a, this support wire 9 Vibrations are transmitted to the output-side torsional vibration transducer 2c via the torsional vibration transducer 2c.

上記支持線9は捩り振動変換子および捩り振動
共振子を支持するとともに、その両端でフイルタ
取付け基板に取付け保持しており、これによつて
フイルタの外部から印加される振動や衝撃等の外
力によるフイルタの破損を防止するために、一般
に結合子10に比べ太く丈夫な金属線が用いられ
る。特に狭帯域メカニカルフイルタにおいてこの
傾向が大きい。
The support wire 9 supports the torsional vibration transducer and the torsional vibration resonator, and is attached and held at both ends to the filter mounting board. In order to prevent damage to the filter, a metal wire that is thicker and stronger than the connector 10 is generally used. This tendency is particularly strong in narrowband mechanical filters.

このため上述のように支持線9を介して第二次
捩り振動が伝達される場合には支持線9による捩
り振動変換子と捩り振動共振子等との結合は大き
くなる。この結果、従来構造のメカニカルフイル
タでは捩り振動変換子および捩り振動共振子の第
二次捩り振動にほぼ一致した電気的振動が印加さ
れると、フイルタの出力端には支持線を介して伝
達された第二次捩り振動に対応した電気的振動出
力が発生する。この周波数応答出力が第4図Aの
13のような大きなスプリアスを発生する。
Therefore, when the secondary torsional vibration is transmitted via the support line 9 as described above, the coupling between the torsional vibration transducer and the torsional vibration resonator etc. by the support line 9 becomes large. As a result, in a mechanical filter with a conventional structure, when an electrical vibration that almost matches the secondary torsional vibration of the torsional vibration transducer and the torsional vibration resonator is applied, it is transmitted to the output end of the filter via the support wire. An electrical vibration output corresponding to the secondary torsional vibration is generated. This frequency response output generates a large spurious as 13 in FIG. 4A.

また、図中の14は第三次捩り振動に起因する
もので、この場合支持線を介しての第三次捩り振
動の伝達は支持線の接続位置での振動変位が零と
なるため、第一次捩り振動の場合と同様に存在し
ない。従つて振動伝達は結合子10を介して行な
われ、この結果14に示すような比較的小さいス
プリアスの発生となる。
In addition, 14 in the figure is caused by tertiary torsional vibration, and in this case, the transmission of tertiary torsional vibration via the support wire is due to the vibration displacement being zero at the connection position of the support wire. As in the case of primary torsional vibration, it does not exist. Vibration transmission therefore takes place via the coupler 10, resulting in the generation of relatively small spurious waves as shown at 14.

本考案は上述の諸種の問題点を解決するため、
上記第一次捩り振動を利用した従来構造のメカニ
カルフイルタにおいては非所望な振動となり、ス
プリアスの発生原因となつている第二次捩り振動
を積極的な活用するように構成することで、周波
数が例えば200KHz以上のような高い周波数にお
いても取扱いの容易なメカニカルフイルタを提供
するとともにスプリアス応答の抑圧や捩り振動変
換子の支持や捩り振動共振子の支持をより安定に
している。このため本考案のメカニカルフイルタ
は並列配設された捩り振動変換子及び捩り振動共
振子と、該それぞれの捩り振動変換子及び捩り振
動共振子を長さ方向の中央部で結合する縦振動結
合子と、該それぞれの捩り振動変換子及び捩り振
動共振子を長さ方向の中央部と端部間にあつて第
二次振動もしくはそれ以上の振動における少なく
とも1個所の節点部でそれぞれを独立に支持する
支持部材とからなることを特徴としている。以下
本考案の実施例を図面を参照して説明する。
In order to solve the various problems mentioned above, this invention
In a mechanical filter with a conventional structure that utilizes the above-mentioned first-order torsional vibration, it becomes an undesired vibration, and by configuring it to actively utilize the second-order torsional vibration, which is the cause of spurious vibration, the frequency For example, it provides a mechanical filter that is easy to handle even at high frequencies such as 200 KHz or higher, and also suppresses spurious responses and provides more stable support for torsional vibration transducers and torsional vibration resonators. Therefore, the mechanical filter of the present invention includes a torsional vibration transducer and a torsional vibration resonator arranged in parallel, and a longitudinal vibration coupler that couples the torsional vibration converter and torsional vibration resonator at the center in the longitudinal direction. and each of the torsional vibration transducer and torsional vibration resonator is independently supported at at least one nodal point in the second-order vibration or higher vibration between the longitudinal center part and the end part. It is characterized by consisting of a supporting member. Embodiments of the present invention will be described below with reference to the drawings.

第3図は第二次捩り振動変換子と第二次捩り振
動共振子と縦振動結合子を用いた本考案メカニカ
ルフイルタの一実施例要部構成斜視図を示す。第
3図Aは捩り振動共振子の第二次捩り振動におけ
る振動状態を示しており、捩り振動共振子の両端
部は矢印6,8の方向に、中央部は逆方向の矢印
11の方向の振動変位(点線に示す)をする。こ
れにより長手方向に対して全長の1/2すなわち中
央部に振動変位の最大点が、両端からそれぞれ1/
4の位置に振動変位が零となる節点7a,7bが
2個所現われる。
FIG. 3 shows a perspective view of a main part of an embodiment of the mechanical filter of the present invention using a secondary torsional vibration transducer, a secondary torsional vibration resonator, and a longitudinal vibration coupler. Figure 3A shows the vibration state of the torsional vibration resonator in the second torsional vibration, with both ends of the torsional vibration resonator in the direction of arrows 6 and 8, and the center part in the opposite direction, in the direction of arrow 11. Vibratory displacement (shown in dotted line). As a result, the maximum point of vibration displacement is at 1/2 of the total length in the longitudinal direction, that is, at the center, and at 1/2 from both ends.
Two nodes 7a and 7b where the vibration displacement becomes zero appear at position 4.

第3図Bにおいて恒弾性金属棒2a,2cと圧
電セラミツクからなる電気−機械変換素子1,3
を半田等の接着剤を使用して接着した捩り振動変
換子と、前述の第二次捩り振動共振子2bとが並
列に配置され、これら2a,2b,2cの振動変
位が第二次振動モードにおいて零となる前述の節
点部(長さ方向両端からそれぞれ全長の1/4の位
置)にそれぞれ長さ方向に対して直角方向に突出
して取付けられた支持線9と捩り振動変換子と捩
り振動共振子との長さ方向中央部を共通して結合
している結合子10とよりなる。上記支持線9は
それぞれの捩り振動変換子と捩り振動共振子とを
それぞれ独立して図示しない取付け基板に取付け
られて変換子や共振子を保持している。結合子1
0は機械的振動を入力側の捩り振動変換子2aか
ら捩り振動共振子2bと出力側の捩り振動変換子
2cとに伝達するためのものであつて上記中央部
すなわち振動変位の最大点(長さ方向全長の1/2
点)に結合されている。
In Fig. 3B, electro-mechanical transducers 1 and 3 are made of constant elastic metal rods 2a and 2c and piezoelectric ceramics.
A torsional vibration transducer bonded using an adhesive such as solder and the above-mentioned secondary torsional vibration resonator 2b are arranged in parallel, and the vibration displacement of these 2a, 2b, and 2c is a secondary vibration mode. The support wire 9, the torsional vibration transducer, and the torsional vibration transducer are attached to the above-mentioned node portions (positions 1/4 of the total length from both ends in the length direction) so as to protrude perpendicularly to the length direction. It consists of a coupler 10 that is commonly coupled to the resonator at the center in the longitudinal direction. The support wire 9 holds each of the torsional vibration transducers and the torsional vibration resonators by independently attaching them to a mounting substrate (not shown). Connector 1
0 is for transmitting mechanical vibration from the torsional vibration transducer 2a on the input side to the torsional vibration resonator 2b and the torsional vibration transducer 2c on the output side. 1/2 of the total length in the horizontal direction
points).

上記構成で入力側変換素子1に電気的振動を印
加すると、入力側の第二次捩り振動変換子2aに
より電気的振動は機械的振動に変換され、この機
械的振動は結合子10を介して第二次捩り振動共
振子2bや出力側第二次捩り振動変換子2cへと
順次伝達され出力側の第二次捩り振動変換子2c
の変換素子3により再び電気的振動に変換されて
出力される。
When electrical vibration is applied to the input-side conversion element 1 with the above configuration, the electrical vibration is converted into mechanical vibration by the input-side secondary torsional vibration converter 2a, and this mechanical vibration is transmitted via the coupler 10. It is sequentially transmitted to the secondary torsional vibration resonator 2b and the output side secondary torsional vibration converter 2c.
The conversion element 3 converts the vibration into electrical vibration again and outputs it.

上記本考案のメカニカルフイルタの伝送特性を
第4図Bの周波数に対するその損失との関係に示
すように図中横軸の周波数oにおける伝送特性
13が第二次捩り振動によつて出力された所望の
特性である。図中12,14,16の微少な変化
をしている伝送特性はそれぞれ上記捩り振動変換
子及び捩り振動共振子による第一次、第三次、第
五次等の寄数次捩り振動モードによる伝送出力で
ある。この寄数次捩り振動においては第2図Aで
説明したように捩り振動変換子及び捩り振動共振
子の長さ方向全長の1/2の点で振動変位が零であ
り、本考案になるメカニカルフイルタではこの点
において第3図Bのように機械的振動を伝達する
ための結合子によつて結合されているので寄数次
の捩り振動による機械的振動は一般に伝達されな
いことから上述のように伝送損失が大きくなつて
いる。
The transmission characteristics of the mechanical filter of the present invention are shown in the relationship between the loss and the frequency in FIG. It is a characteristic of The transmission characteristics showing minute changes at 12, 14, and 16 in the figure are due to the first, third, and fifth order torsional vibration modes of the above-mentioned torsional vibration converter and torsional vibration resonator, respectively. This is the transmission output. In this parasitic torsional vibration, as explained in Fig. 2A, the vibration displacement is zero at 1/2 of the total length of the torsional vibration transducer and the torsional vibration resonator. In this respect, the filter is connected by a coupler for transmitting mechanical vibrations as shown in Figure 3B, so mechanical vibrations due to torsional vibrations are generally not transmitted, as described above. Transmission loss is increasing.

また図において15,17で示す伝送特性部は
上記捩り振動変換子及び捩り振動共振子による第
四次、第六次等の偶数次捩り振動による伝送出力
であり、これらの間を結合している素子は第3図
Bで説明したように結合子10のみであり、従来
の第2図Bで説明したような支持線9による振動
結合が無いから第4図Aの13に示したような大
きなスプリアス出力を生じることがない。
In addition, the transmission characteristic portions indicated by 15 and 17 in the figure are transmission outputs due to even-numbered torsional vibrations such as the fourth and sixth orders by the torsional vibration converter and torsional vibration resonator, and these are coupled. As explained in Fig. 3B, the element is only the connector 10, and there is no vibration coupling by the support wire 9 as explained in the conventional Fig. 2B, so the large No spurious output occurs.

上述のように、本考案のメカニカルフイルタに
よれば、第二次捩り振動変換子および第二次捩り
振動共振子をそれぞれの長さ方向全長の1/2(中
央部)の位置において縦振動結合子を用いてそれ
ぞれ結合し、また上記変換子および共振子の両端
からそれぞれ長さ方向全長の1/4に生ずる第二次
捩り振動の節点部に支持部を設けて支持する構成
としたことによつて、メカニカフイルタの周波数
−伝送損失特性に高次振動モードに起因して発生
するスプリアスの発生を少なくすることができ、
結合子を振動変位最大となる全長の1/2(中央
部)の位置で結合したことにより結合位置が若干
ずれるようなことがあつたとしても伝送特性への
影響は極めて少なく、安定した伝送特性が得られ
る。
As described above, according to the mechanical filter of the present invention, the secondary torsional vibration transducer and the secondary torsional vibration resonator are longitudinally vibration-coupled at the position of 1/2 (center) of the total length in the longitudinal direction. The transducer and the resonator are connected to each other using a transducer and a resonator, and support parts are provided at the nodal points of the second torsional vibrations that occur at 1/4 of the total length in the longitudinal direction from both ends of the transducer and the resonator. Therefore, it is possible to reduce the occurrence of spurious caused by higher-order vibration modes in the frequency-transmission loss characteristics of the mechanical filter.
Since the coupler is connected at the position of 1/2 (center) of the total length where the vibration displacement is maximum, even if the connection position is slightly shifted, the effect on the transmission characteristics is extremely small, resulting in stable transmission characteristics. is obtained.

また第二次捩り振動モードを使用するようにし
たことによつて捩り振動変換子および捩り振動共
振子の全長lは第一次捩り振動モードによるそれ
らに比べ2倍と大きくできるので、特に高い周波
数のフイルタを製造する場合に比較的扱い易くな
るとともに、これら捩り振動変換子および捩り振
動共振子のそれぞれにはそれぞれ2本の支持部が
設けられているのでそれらについての周波数調整
時に好都合であるなどの多くの利点を有する。上
記のように本考案のメカニカルフイルタは周波数
が高いほどより効果的にその特徴を発揮できる。
In addition, by using the second torsional vibration mode, the total length l of the torsional vibration transducer and torsional vibration resonator can be made twice as large as that of the first torsional vibration mode, which is particularly useful for high frequencies. It is relatively easy to handle when manufacturing filters, and since each of these torsional vibration transducers and torsional vibration resonators is provided with two support parts, it is convenient when adjusting the frequency of them. has many advantages. As mentioned above, the higher the frequency, the more effectively the mechanical filter of the present invention can exhibit its characteristics.

以下に本考案によるフイルタの実現可能な周波
数範囲等についてその概略的仕様、寸法等につい
て参考的に記す。実現周波数oの範囲は捩り振
動変換子および捩り振動共振子の小形化や取扱い
易さから100KHz〜400KHz程度、伝送帯域幅は実
現周波数oによつて異なるが300Hz〜3,000Hz
程度の仕様の場合、本考案のメカニカルフイルタ
はその特徴を十分に発揮できる。そうして上記仕
様についてそれぞれの構成素子部の寸法は概略以
下のような値で実現可能である。捩り振動変換
子、共振子は直径2〜5mmφ、全長28〜7mm、縦
振動結合子は直径0.13〜0.20mmφ、結合間隔は4
〜6mmとなり、支持部の支持線は直径0.2〜0.4mm
φ、長さ3〜5mmとすれば外部から印加される振
動や衝撃等に対して十分耐え得る丈夫なフイルタ
の支持構造が得られる。
Below, the general specifications, dimensions, etc. of the frequency range that can be realized by the filter according to the present invention will be described for reference. The range of the realized frequency o is approximately 100kHz to 400kHz due to the miniaturization and ease of handling of the torsional vibration transducer and torsional vibration resonator, and the transmission bandwidth varies depending on the realized frequency o, but is 300Hz to 3,000Hz.
The mechanical filter of the present invention can fully demonstrate its characteristics when the specifications are as follows. According to the above specifications, the dimensions of each component part can be realized approximately as follows. Torsional vibration transducer, resonator has a diameter of 2 to 5 mmφ, total length is 28 to 7 mm, longitudinal vibration coupler has a diameter of 0.13 to 0.20 mm, and the coupling interval is 4
~6mm, and the support line of the support part is 0.2~0.4mm in diameter.
If the diameter is 3 to 5 mm, a durable filter support structure that can withstand vibrations, shocks, etc. applied from the outside can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図Aは電気的振動機械的振動を用いたメ
カニカルフイルタの一般的表示によるブロツク
図、第1図Bはその周波数対伝送損失特性図、第
1図Cは圧電セラミツクのすべり振動を利用した
捩り振動変換子の構成例とその機能説明とを行な
うための斜視図、第2図Aは第一次捩り振動共振
子の振動状態を示す斜視図、第2図Bは第一次振
動モードを利用した従来のメカニカルフイルタ構
成例斜視図、第3図Aは第二次捩り振動共振子の
振動状態を示す斜視図、第3図Bは本考案による
第二次捩り振動モードを利用したメカニカルフイ
ルタの一実施例構成斜視図、第4図Aは従来の構
成例によるメカニカルフイルタの周波数対伝送損
失特性図、第4図Bは本考案の一実施例構成によ
るメカニカフイルタの周波数対伝送損失特性図を
示す。 図中1は電気−機械変素子、2は捩り振動変換
子および捩り振動共振子、3は機械−電気変換
子、7は振動の節点、9は支持線、10は結合子
を表わしている。
Figure 1A is a general block diagram of a mechanical filter that uses electrical and mechanical vibrations, Figure 1B is its frequency vs. transmission loss characteristic diagram, and Figure 1C is a mechanical filter that uses shear vibration of piezoelectric ceramics. A perspective view for explaining a configuration example of a torsional vibration transducer and its function, FIG. 2A is a perspective view showing the vibration state of the primary torsional vibration resonator, and FIG. 2B shows the primary vibration mode. FIG. 3A is a perspective view showing the vibration state of the second-order torsional vibration resonator, and FIG. 3B is a perspective view of a conventional mechanical filter configuration example using the second-order torsional vibration mode according to the present invention. FIG. 4A is a diagram of frequency versus transmission loss characteristics of a mechanical filter according to a conventional configuration; FIG. 4B is a diagram of frequency vs. transmission loss characteristics of a mechanical filter according to an embodiment of the present invention. shows. In the figure, 1 represents an electro-mechanical variable element, 2 a torsional vibration transducer and a torsional vibration resonator, 3 a mechanical-electrical transducer, 7 a vibration node, 9 a support line, and 10 a coupler.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 並列配設された捩り振動変換子及び捩り振動共
振子と、該それぞれの捩り振動変換子及び捩り振
動共振子を長さ方向の中央部で結合する縦振動結
合子と、該それぞれの捩り振動変換子及び捩り振
動共振子の長さ方向の中央部と端部間にあつて第
二次振動もしくはそれ以上の振動における少なく
とも1個所の節点部でそれぞれを独立に支持する
支持部材とからなることを特徴とするメカニカル
フイルタ。
A torsional vibration transducer and a torsional vibration resonator arranged in parallel, a longitudinal vibration coupler that couples the respective torsional vibration converters and the torsional vibration resonator at a central portion in the length direction, and each of the torsional vibration converters. A supporting member is provided between the longitudinal center and end of the torsional vibration resonator and the torsional vibration resonator, and supports each independently at at least one nodal point in secondary vibration or higher vibration. Characteristic mechanical filter.
JP1976135674U 1976-10-08 1976-10-08 Expired JPS6138277Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1976135674U JPS6138277Y2 (en) 1976-10-08 1976-10-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1976135674U JPS6138277Y2 (en) 1976-10-08 1976-10-08

Publications (2)

Publication Number Publication Date
JPS5353940U JPS5353940U (en) 1978-05-09
JPS6138277Y2 true JPS6138277Y2 (en) 1986-11-05

Family

ID=28744550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1976135674U Expired JPS6138277Y2 (en) 1976-10-08 1976-10-08

Country Status (1)

Country Link
JP (1) JPS6138277Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236347Y2 (en) * 1980-01-21 1987-09-16

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951890A (en) * 1972-09-19 1974-05-20
JPS4984594A (en) * 1972-12-19 1974-08-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951890A (en) * 1972-09-19 1974-05-20
JPS4984594A (en) * 1972-12-19 1974-08-14

Also Published As

Publication number Publication date
JPS5353940U (en) 1978-05-09

Similar Documents

Publication Publication Date Title
US4137511A (en) Electromechanical filter and resonator
US4281298A (en) Flexural transducer
JPS6138277Y2 (en)
US5006824A (en) Third mode torsional F-M resonator
Sheahan et al. Crystal and mechanical filters
JPH0323699Y2 (en)
US6842087B2 (en) Three-terminal filter using area flexural vibration mode
JPS5917563B2 (en) bending vibration transducer
KR100425992B1 (en) Balanced Input-Output Piezoelectric Filter
US3858127A (en) Stable and compact low frequency filter
JPS6230414A (en) Mechanical filter
JPS59161113A (en) Mechanical filter
JPS59139716A (en) Mechanical filter
JPS61121512A (en) Mechanical filter
JPS62274Y2 (en)
JPS6040212B2 (en) bending vibration transducer
JPS5845207B2 (en) Polar mechanical filter
JPS632169B2 (en)
JPS634367B2 (en)
JPS5856512A (en) Mechanical filter
JPS6236347Y2 (en)
JPS6312586Y2 (en)
JPH024515Y2 (en)
JPS5845208B2 (en) Polar mechanical filter
JP3227937B2 (en) Support lead of crystal unit