JPS6348448B2 - - Google Patents

Info

Publication number
JPS6348448B2
JPS6348448B2 JP12325281A JP12325281A JPS6348448B2 JP S6348448 B2 JPS6348448 B2 JP S6348448B2 JP 12325281 A JP12325281 A JP 12325281A JP 12325281 A JP12325281 A JP 12325281A JP S6348448 B2 JPS6348448 B2 JP S6348448B2
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
ceramic plate
width
vibration
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12325281A
Other languages
Japanese (ja)
Other versions
JPS5824216A (en
Inventor
Yoshihiko Kasai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12325281A priority Critical patent/JPS5824216A/en
Publication of JPS5824216A publication Critical patent/JPS5824216A/en
Publication of JPS6348448B2 publication Critical patent/JPS6348448B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/177Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator of the energy-trap type

Description

【発明の詳細な説明】 本発明は、機械振動エネルギを圧電セラミツク
振動子の一部分に集中させたエネルギ閉込め形の
セラミツク振動子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy confinement type ceramic vibrator in which mechanical vibration energy is concentrated in a portion of the piezoelectric ceramic vibrator.

圧電磁器材料を用いたセラミツク振動子は、小
形、無調整、コイル不要等の多くの利点があり、
無線通信装置等の中間周波フイルタ等に多く使用
されている。更に最近の圧電磁器材料の高性能化
と共に、IC、LSI回路との整合性の良い点とによ
り、今後益々その用途が拡大される傾向にある。
Ceramic vibrators using piezoelectric ceramic materials have many advantages such as being small, no adjustment, and no need for coils.
It is often used in intermediate frequency filters, etc. of wireless communication devices. Furthermore, due to the recent improvements in the performance of piezoelectric ceramic materials and their good compatibility with IC and LSI circuits, their uses will continue to expand in the future.

従来のセラミツク振動子は、円板の広り振動等
の輪郭振動を利用したものと、板の厚み縦振動又
は厚みすべり振動を用いて振動エネルギを一部分
に集中させたエネルギ閉込め形とがある。
Conventional ceramic vibrators include those that utilize contour vibration such as spreading vibration of a disk, and energy confinement types that concentrate vibration energy in one part using thickness longitudinal vibration or thickness shear vibration of the plate. .

円板の広り振動等の輪郭振動を利用した振動子
は、その共振周波数が輪郭寸法、円板の場合はそ
の直形に反比例するので、周波数が高くなるに従
つて振動子寸法が小さくなり、製造が困難となる
為、実用化周波数帯は数百KHz以下である。更に
輪郭振動の振動子は、全体が振動し、振動変位が
零となる点は節点であつて、円板の広り振動では
円板の中心が節点となる。この為、節点に於いて
振動子を支持することになる。この節点に於ける
支持を強固にすると、振動エネルギが支持体を介
して外部に漏れるので、通常は比較的軟い支持構
造が採用される。この結果、外部振動等に対する
信頼度が低下する原因となつている。
For a vibrator that uses contour vibration such as wide vibration of a disk, its resonant frequency is inversely proportional to the contour dimension, or in the case of a disk, its straight shape, so as the frequency increases, the vibrator size becomes smaller. However, since manufacturing is difficult, the practical frequency band is several hundred KHz or less. Furthermore, in a contour vibration vibrator, the entire vibrator vibrates, and the point where the vibration displacement becomes zero is a node, and in the case of wide vibration of a disk, the center of the disk is a node. Therefore, the vibrator is supported at the node. If the support at this node is strong, vibration energy will leak to the outside through the support, so a relatively soft support structure is usually adopted. As a result, reliability against external vibrations and the like is reduced.

第1図aは前述の円板の広り振動を利用した振
動子の斜視図であり、圧電磁器板1の両面に蒸着
等により金属薄膜電極2が形成されている。この
振動子は同図b,cに示すように支持されるもの
で、同図bでは絶縁基板に固定した金属の支持柱
4に一端を固着した細線3の他端を、圧電磁器板
1の両面の金属薄膜2の中心部分に導電性接着剤
等で固定する。又同図cでは、絶縁基板に固定し
た金属の支持具5を弾性材料で構成し、支持具5
の先端部分で圧電磁器板1の両面の金属薄膜電極
2の中心部分と接続して、振動子を保持する。
FIG. 1a is a perspective view of a vibrator that utilizes the aforementioned spreading vibration of a disk, in which metal thin film electrodes 2 are formed on both sides of a piezoelectric ceramic plate 1 by vapor deposition or the like. This vibrator is supported as shown in Figures b and c. In Figure b, one end of a thin wire 3 is fixed to a metal support column 4 fixed to an insulating substrate, and the other end of a thin wire 3 is connected to a piezoelectric ceramic plate 1. It is fixed to the center of the metal thin film 2 on both sides with a conductive adhesive or the like. In addition, in FIG. 3c, the metal support 5 fixed to the insulating substrate is made of an elastic material
The tip of the piezoelectric ceramic plate 1 is connected to the center of the thin metal film electrodes 2 on both sides of the piezoelectric ceramic plate 1 to hold the vibrator.

一方圧電磁器板の厚み縦振動又は厚みすべり振
動を利用した振動子は、その共振周波数が板厚に
反比例し、又振動エネルギが板の中央部に閉込め
られるので、圧電磁器板の外周部を強固に保持で
きることになり、外部振動等に対して信頼度を高
くすることができる。しかし、振動エネルギの閉
込め特性を良くする為に、振動子の外形寸法を板
厚の30倍以上に選定している。
On the other hand, a vibrator that uses thickness longitudinal vibration or thickness shear vibration of a piezoelectric ceramic plate has a resonant frequency that is inversely proportional to the plate thickness, and the vibration energy is trapped in the center of the plate, so the outer periphery of the piezoelectric ceramic plate is This means that it can be held firmly, making it highly reliable against external vibrations and the like. However, in order to improve the vibration energy confinement characteristics, the external dimensions of the vibrator are selected to be at least 30 times the plate thickness.

例えば周波数10MHzの振動子は、板厚が約0.13
mmで直径は約3mmとなるが、周波数が1〜2MHz
では、板厚が0.7〜1.3mm、直径が20〜30mmとな
り、セラミツク振動子の特徴の一つである小形化
が実現できないことになる。この為、輪郭振動の
セラミツツク振動子は、数MHz以上のものが実用
化されているに過ぎない。
For example, a resonator with a frequency of 10MHz has a plate thickness of approximately 0.13
mm, the diameter is approximately 3 mm, but the frequency is 1 to 2 MHz.
In this case, the plate thickness would be 0.7 to 1.3 mm and the diameter would be 20 to 30 mm, making it impossible to achieve miniaturization, which is one of the characteristics of ceramic resonators. For this reason, only contour vibration ceramic resonators of several MHz or more have been put into practical use.

第2図は前述の厚み縦振動を利用したセラミツ
ク振動子の一例の斜視図であり、圧電磁器板7の
両面に蒸着等により金属薄膜電極8を形成し、圧
電磁器板7の周縁部を金属の保持具9で保持する
と共に、金属薄膜電極8と接続したものであつ
て、金属薄膜電極8の対向部分に振動エネルギの
大半が閉込められる。
FIG. 2 is a perspective view of an example of a ceramic resonator using the above-mentioned thickness longitudinal vibration. Metal thin film electrodes 8 are formed on both sides of the piezoelectric ceramic plate 7 by vapor deposition or the like, and the peripheral edge of the piezoelectric ceramic plate 7 is covered with metal. It is held by a holder 9 and connected to the metal thin film electrode 8, and most of the vibration energy is trapped in the opposing portion of the metal thin film electrode 8.

前述の如く、従来実用化されているセラミツク
振動子では、数百KHz〜数MHz帯では、振動子寸
法が小さくなり過ぎて製造が困難となるか、又は
大きくなり過ぎてLSI回路等との整合がとれなか
つたりする欠点があつた。又輪郭振動モードのセ
ラミツク振動子では、支持の信頼度が低い等の理
由から高周波帯用としての実用化がなされていな
かつた。
As mentioned above, in the ceramic resonators that have been put into practical use in the past, in the range of several hundred KHz to several MHz, the resonator dimensions are either too small and difficult to manufacture, or too large and difficult to match with LSI circuits, etc. There was a drawback that it could not be removed and it would sag. Furthermore, contour vibration mode ceramic vibrators have not been put to practical use in high frequency bands due to low support reliability and other reasons.

本発明は、数百KHz〜数MHz帯の周波数で動作
することができると共に、製造が容易で高信頼性
のエネルギ閉込め形のセラミツク振動子を提供す
ることを目的とするものである。以下実施例につ
いて詳細に説明する。
SUMMARY OF THE INVENTION An object of the present invention is to provide an energy confinement type ceramic resonator that can operate at a frequency of several hundred KHz to several MHz, is easy to manufacture, and has high reliability. Examples will be described in detail below.

第3図及び第4図は本発明の一実施例の斜視図
及び上面図であり、圧電磁器板10は厚さt、長
さl、幅Wで、中央部分はその両側の幅より狭い
幅W′となるように凹部が形成されている。又1
1a〜11dは蒸着等により形成した金属薄膜の
電極、12a,12bは端子、13a,13bは
金属薄膜を除去した分離帯、14は分極方向を示
す矢印である。圧電磁器板10の狭幅部は電極1
1b,11cの一部により挾まれており、端子1
2a,12bに電圧を加えることにより、電極1
1a,11c間及び電極11b,11d間は等電
位となるが、電極11b,11c間の狭幅部には
電界が与えられることになる。
3 and 4 are a perspective view and a top view of an embodiment of the present invention, in which the piezoelectric ceramic plate 10 has a thickness t, a length l, and a width W, and the central portion is narrower than the width on both sides thereof. A recessed portion is formed to be W'. Again 1
1a to 11d are metal thin film electrodes formed by vapor deposition or the like, 12a and 12b are terminals, 13a and 13b are separation bands from which the metal thin films have been removed, and 14 is an arrow indicating the polarization direction. The narrow part of the piezoelectric ceramic plate 10 is the electrode 1
Terminal 1 is sandwiched between parts of 1b and 11c.
By applying voltage to 2a and 12b, electrode 1
Although the potentials between 1a and 11c and between electrodes 11b and 11d are equal, an electric field is applied to the narrow portion between electrodes 11b and 11c.

セラミツク振動子に用いる圧電磁器材料は、ポ
アソン比が1/3以下となるのが普通であり、こ
の為厚み縦振動等は、周波数上昇形のエネルギ閉
込め形振動子となることが知られている。セラミ
ツク振動子の幅方向の縦振動の共振周波数f0と振
動子寸法との関係は次式で表わされる。
The piezoelectric ceramic material used in ceramic resonators usually has a Poisson's ratio of 1/3 or less, and it is known that thickness longitudinal vibrations, etc., result in increased frequency energy confinement type resonators. There is. The relationship between the resonant frequency f 0 of longitudinal vibration in the width direction of the ceramic vibrator and the vibrator dimensions is expressed by the following equation.

f0=1/2・W0・v〔Hz〕 ……(1) 但し、W0は振動子の幅〔m〕、vは縦伝播速度
〔m/s〕である。
f 0 =1/2·W 0 ·v [Hz] ...(1) However, W 0 is the width of the vibrator [m], and v is the longitudinal propagation velocity [m/s].

本発明に於いては、中央部分の幅W′が両端部
分の幅Wより小さいので、(1)式からも判るよう
に、中央部分の幅方向縦振動の共振周波数f1は両
端部分の幅方向縦振動の共振周波数f2よりも大き
くなる。又、両端部分に於いては対向する電極1
1a,11c及び11b,11dが短絡されてい
るから、圧電反作用によつて弾性定数が小さくな
り、それによつて縦伝播速度vは小さくなるか
ら、両端部分の共振周波数f2は更に低下する。従
つて端子12a,12bに交流電圧を印加する
と、中央部分の狭幅部に交流電界が加わり、圧電
横効果により幅方向の縦振動が発生し、この縦振
動は周波数上昇形であり、狭幅部で励起された振
動に対して両端部分の共振周波数が低いので、伝
播定数が虚数となり、両端部分に伝播した振動は
減衰する。この結果、印加交流電界によつて励起
された振動エネルギは中央部分の狭幅部に集中す
ることになり、所謂エネルギ閉込め形の振動子と
なる。
In the present invention, since the width W' of the central portion is smaller than the width W of both end portions, as can be seen from equation (1), the resonant frequency f 1 of the longitudinal vibration in the width direction of the central portion is the width of both end portions. It becomes larger than the resonant frequency f 2 of the directional longitudinal vibration. In addition, at both end portions, opposing electrodes 1
Since 1a, 11c and 11b, 11d are short-circuited, the elastic constant becomes small due to piezoelectric reaction, and the longitudinal propagation velocity v becomes small thereby, so that the resonance frequency f 2 at both end portions further decreases. Therefore, when an alternating current voltage is applied to the terminals 12a and 12b, an alternating electric field is applied to the narrow width part at the center, and longitudinal vibration in the width direction is generated due to the piezoelectric transverse effect. Since the resonance frequency at both end portions is lower than the vibration excited at the end portion, the propagation constant becomes an imaginary number, and the vibration propagated to both end portions is attenuated. As a result, the vibration energy excited by the applied alternating current electric field is concentrated in the narrow central portion, resulting in a so-called energy-confined type vibrator.

前述の如く振動エネルギが中央部分の狭幅部に
集中するので両端部分の端部の振動変位が零とな
り、この端部により振動子を強固に保持すること
が可能となるから、外部振動等に対する信頼度を
向上させることができる。
As mentioned above, since the vibration energy is concentrated in the narrow part of the central part, the vibration displacement at the ends of both ends becomes zero, and the vibrator can be firmly held by these ends, so it is less susceptible to external vibrations etc. Reliability can be improved.

具体例としては、周波数2MHzの場合、t=0.1
〜0.3mm、l=7〜13mm、W1mm、W′0.9mmと
なり、このような振動子寸法であれば製造も容易
であり、又所望の共振周波数を得る為の狭幅部の
幅W′は、研削等により凹部を形成することによ
つて容易に所望の値とすることができるので、数
百KHz〜数MHzの振動子を容易に製造することが
できる。又複数の圧電磁器板10を同時に加工す
ることも容易であるから製造コストの低減も可能
となる。
As a specific example, when the frequency is 2MHz, t=0.1
~0.3mm, l = 7~13mm, W1mm, W′0.9mm, and with these dimensions, manufacturing is easy, and the width W′ of the narrow part to obtain the desired resonance frequency is Since the desired value can be easily obtained by forming a recessed portion by grinding or the like, it is possible to easily manufacture a vibrator with a frequency of several hundred KHz to several MHz. Furthermore, since it is easy to process a plurality of piezoelectric ceramic plates 10 at the same time, it is also possible to reduce manufacturing costs.

第5図は本発明の一実施例の組立てた構成の斜
視図であり、第3図及び第4図と同一符号は同一
部分を示し、15は絶縁基板、16a,16bは
導電性接着剤、17a,17bは金属の支持体で
ある。この支持体17a,17bは絶縁基板15
に固定され、先端部分がU字状に彎曲されて導電
性接着剤16a,16bにより圧電磁器板10を
保持すると共に電極11a〜11dとの接続が行
なわれ、第4図の端子12a,12bとなるもの
である。即ち、振動子の両端は振動変位が零とな
ることにより、強固な保持が可能となり、U字状
の彎曲部により対向電極間の短絡が行なわれるも
のである。なお支持構造は第5図に示す実施例の
みでなく、他の支持構造を採用し得ることは勿論
である。
FIG. 5 is a perspective view of an assembled configuration of an embodiment of the present invention, in which the same reference numerals as in FIGS. 3 and 4 indicate the same parts, 15 is an insulating substrate, 16a and 16b are conductive adhesives, 17a and 17b are metal supports. These supports 17a, 17b are the insulating substrate 15
The piezoelectric ceramic plate 10 is held by conductive adhesives 16a and 16b with the tip portions curved in a U-shape and connected to the electrodes 11a to 11d, and the terminals 12a and 12b in FIG. It is what it is. That is, since the vibration displacement at both ends of the vibrator becomes zero, it is possible to firmly hold the vibrator, and the U-shaped curved portion creates a short circuit between the opposing electrodes. It goes without saying that the support structure is not limited to the embodiment shown in FIG. 5, and other support structures may be adopted.

第6図は本発明の他の実施例の斜視図であり、
第5図と同一符号は同一部分を示し、18a,1
8bはダンピング材である。前述の実施例に於い
て説明したように、狭幅部に印加される交流電界
により幅方向の縦振動が励起される。この場合、
圧電磁器板10は圧電横効果により長さ方向にも
伸縮する振動が生じ、この振動は両端部の条件等
によつて幅屈曲振動を励起することになり、主振
動の幅方向の縦振動共振周波数近傍にスプリアス
が発生する。
FIG. 6 is a perspective view of another embodiment of the present invention,
The same symbols as in FIG. 5 indicate the same parts, 18a, 1
8b is a damping material. As explained in the previous embodiment, longitudinal vibration in the width direction is excited by the alternating current electric field applied to the narrow width portion. in this case,
The piezoelectric ceramic plate 10 also expands and contracts in the length direction due to the piezoelectric transverse effect, and this vibration excites width bending vibration depending on the conditions at both ends, resulting in longitudinal vibration resonance in the width direction of the main vibration. Spurious occurs near the frequency.

第7図は周波数応答特性を示すもので、A,B
は前述の屈曲振動によるスプリアスを示すもので
ある。このようなスプリアスを抑圧するためにダ
ンピング材18a,18bを設けるものであり、
主振動の幅方向縦振動に影響を与えることなく、
屈曲振動を抑圧することができる。
Figure 7 shows the frequency response characteristics, A, B
indicates the spurious caused by the above-mentioned bending vibration. Damping materials 18a and 18b are provided to suppress such spurious,
without affecting the longitudinal vibration in the width direction of the main vibration.
Bending vibration can be suppressed.

第8図はダンピング材18a,18bを設けた
実施例の周波数応答特性を示し、第7図に於ける
スプリアスA,Bは全く現われないものとなつ
た。
FIG. 8 shows the frequency response characteristics of the embodiment in which damping materials 18a and 18b are provided, and the spurious signals A and B in FIG. 7 do not appear at all.

ダンピング材18a,18bは、音響損失の大
きい材料、例えばエポキシ系の樹脂を用いること
ができる。又圧電磁器板10の両端部の上部のみ
でなく、下部にはダンピング材を設けることがで
き、上下部にダンピング材を設ければ屈曲振動の
抑圧効果は一層大きくなる。
The damping materials 18a and 18b may be made of a material with a large acoustic loss, such as an epoxy resin. Further, damping materials can be provided not only at the upper portions but also at the lower portions of both ends of the piezoelectric ceramic plate 10. If damping materials are provided at the upper and lower portions, the effect of suppressing bending vibration will be further increased.

第9図は本発明の更に他の実施例の斜視図で、
20は圧電磁器板、21a,21bは電極、23
aは分離帯、24は分極方向を示す矢印、25は
絶縁基板、26a,26bは導電性接着剤、27
a,27bは金属の支持体である。圧電磁器板2
0は上下に凹部a,bが形成されて中央部分が狭
幅部となつている。又電極21a,21bは前述
の実施例の電極11a,11bに対応し、電極1
1c,11dに対応する電極が反対側の側面に設
けられているものである。凹部a,bを形成した
ことにより、長さ方向の伸縮による振動は、圧電
磁器板20が対称構造である為、純粋な伸縮振動
となつて屈曲振動が生じないものとなる。この結
果、主振動の幅方向縦振動周波数の近傍に屈曲振
動に起因するスプリアス応答がなくなり、周波数
応答特性は第8図に示す特性とほぼ同じものとな
る。なお第6図に示す実施例のように、ダンピン
グ材を設けて、凹部a,bの誤差等に基く残留屈
曲振動成分を抑圧するようにすることもできる。
FIG. 9 is a perspective view of still another embodiment of the present invention,
20 is a piezoelectric ceramic plate, 21a, 21b are electrodes, 23
24 is an arrow indicating the polarization direction, 25 is an insulating substrate, 26a and 26b are conductive adhesives, 27
a and 27b are metal supports. Piezoelectric ceramic plate 2
0 has concave portions a and b formed at the top and bottom, and the central portion is a narrow portion. Further, the electrodes 21a and 21b correspond to the electrodes 11a and 11b of the above-mentioned embodiment, and the electrodes 1
Electrodes corresponding to 1c and 11d are provided on the opposite side. Since the piezoelectric ceramic plate 20 has a symmetrical structure, the vibrations due to longitudinal expansion and contraction become pure expansion and contraction vibrations and no bending vibrations occur because of the formation of the recesses a and b. As a result, there is no spurious response due to bending vibration in the vicinity of the longitudinal vibration frequency in the width direction of the main vibration, and the frequency response characteristic becomes almost the same as the characteristic shown in FIG. 8. Note that, as in the embodiment shown in FIG. 6, a damping material may be provided to suppress residual bending vibration components based on errors in the recesses a and b.

以上説明したように、本発明は、厚さ方向に全
体が分極され、長さ方向の中央部分の幅W′を両
端部分の幅Wより小さくした狭幅部を有する圧電
磁器板10,20と、圧電磁器板の一方の側面と
他方の側面とにそれぞれ蒸着等により形成した金
属薄膜を、長さ方向の異なる位置で狭幅部を挾む
ように分離帯13a,13bにより分離した電極
11a〜11dと、長さ方向の両端部で対向する
電極11a,11c及び11b,11dを相互に
接続した端子12a,12bとを備えたもので、
端子12a,12bに交流電圧を印加することに
より狭幅部には交流電界が加えられて幅方向の縦
振動が生じ、その両側部分では狭幅部で生じた縦
振動が伝播しても減衰させる作用を行なうことに
なり、両端部を強固に保持することができ、支持
体を端子12a,12bとすることができる。
As explained above, the present invention provides the piezoelectric ceramic plates 10 and 20 which are entirely polarized in the thickness direction and have a narrow portion in which the width W' of the central portion in the longitudinal direction is smaller than the width W of both end portions. Electrodes 11a to 11d are formed by forming metal thin films on one side surface and the other side surface of a piezoelectric ceramic plate by vapor deposition or the like, and are separated by separation bands 13a and 13b so as to sandwich the narrow portion at different positions in the length direction. , comprising electrodes 11a, 11c facing each other at both ends in the length direction, and terminals 12a, 12b connecting electrodes 11b, 11d to each other,
By applying an alternating current voltage to the terminals 12a and 12b, an alternating electric field is applied to the narrow width part, causing longitudinal vibration in the width direction, and even if the longitudinal vibration generated in the narrow width part propagates, it is attenuated in both side parts. Therefore, both ends can be firmly held, and the terminals 12a and 12b can be used as supports.

共振周波数は狭幅部の幅W′で定まることにな
り、数百KHz〜数MHz帯用でも製造容易な寸法と
なると共に、振動子の支持を強固にすることが可
能であるから、廉価且つ高信頼度のセラミツク振
動子を提供することができることになる。
The resonant frequency is determined by the width W' of the narrow part, and the dimensions are easy to manufacture even for use in the hundreds of KHz to several MHz bands, and the support of the vibrator can be strengthened, making it inexpensive and This makes it possible to provide a highly reliable ceramic resonator.

又、圧電磁器板の端部条件等により屈曲振動が
生じる場合は、ダンピング材18a,18bを設
けることにより屈曲振動を抑圧し、主振動の幅方
向の縦振動周波数近傍に生じるスプリアスを抑圧
することができる。従つて圧電磁器板の寸法比の
選定や支持手段の選定による制約が緩和されるこ
とになる。
In addition, if bending vibration occurs due to end conditions of the piezoelectric ceramic plate, damping materials 18a and 18b are provided to suppress the bending vibration and to suppress spurious waves occurring near the longitudinal vibration frequency in the width direction of the main vibration. I can do it. Therefore, the restrictions imposed by the selection of the dimensional ratio of the piezoelectric ceramic plate and the selection of the supporting means are relaxed.

又前述の屈曲振動は、圧電磁器板の長手方向の
中央部分の上部と下部とに凹部を対称的に形成し
て狭幅部とすることにより抑圧することができる
ものであり、対称構造により純粋な伸縮振動とな
つて屈曲振動は生じないものとなる。
Furthermore, the above-mentioned bending vibration can be suppressed by symmetrically forming concave portions at the upper and lower portions of the central portion in the longitudinal direction of the piezoelectric ceramic plate to create a narrow portion. This results in a stretching vibration and no bending vibration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜cは従来の円板の広り振動を利用し
た振動子の斜視図及び保持手段を示す側面図、第
2図は従来の厚み縦振動を利用した振動子の斜視
図、第3図は本発明の一実施例の斜視図、第4図
は上面図、第5図、第6図及び第9図は本発明の
それぞれ異なる実施例の斜視図、第7図及び第8
図は周波数応答特性曲線図である。 10,20は圧電磁器板、11a〜11d,2
1a,21bは電極、12a,12bは端子、1
3a,13b,23aは分離帯、14,24は分
極方向を示す矢印、15,25は絶縁基板、16
a,16b,26a,26bは導電性接着剤、1
7a,17b,27a,27bは支持体、18
a,18bはダンピング材である。
Figures 1 a to c are a perspective view of a conventional vibrator that uses spreading vibration of a disc and a side view showing a holding means; Figure 2 is a perspective view of a conventional vibrator that uses thickness longitudinal vibration; 3 is a perspective view of one embodiment of the present invention, FIG. 4 is a top view, FIGS. 5, 6, and 9 are perspective views of different embodiments of the present invention, and FIGS. 7 and 8.
The figure is a frequency response characteristic curve diagram. 10, 20 are piezoelectric ceramic plates, 11a to 11d, 2
1a and 21b are electrodes, 12a and 12b are terminals, 1
3a, 13b, 23a are separation bands, 14, 24 are arrows indicating the polarization direction, 15, 25 are insulating substrates, 16
a, 16b, 26a, 26b are conductive adhesives, 1
7a, 17b, 27a, 27b are supports, 18
a and 18b are damping materials.

Claims (1)

【特許請求の範囲】 1 厚さ方向に全体が分極され、長さ方向の中央
部分の幅を両端部分の幅より小さくした狭幅部を
有する圧電磁器板、該圧電磁器板の一方の側面と
他方の側面とにそれぞれ形成した金属薄膜を、長
さ方向のそれぞれ異なる位置で前記狭幅部を挾む
ように分離帯で分離した電極、前記圧電磁器板の
長さ方向の両端部に於ける対向電極を相互に接続
した端子とを備えたことを特徴とするセラミツク
振動子。 2 厚さ方向に全体が分極され、長さ方向の中央
部分の幅を両端部分の幅より小さくした狭幅部を
有する圧電磁器板、該圧電磁器板の一方の側面と
他方の側面とにそれぞれ形成した金属薄膜を、長
さ方向のそれぞれ異なる位置で前記狭幅部を挾む
ように分離帯で分離した電極、前記圧電磁器板の
長さ方向の両端部に於ける対向電極を相互に接続
した端子、前記圧電磁器板の長さ方向の両端部の
少なくとも上部に設けてスプリアスを抑圧するダ
ンピング材とを備えたことを特徴とするセラミツ
ク振動子。 3 厚さ方向に全体が分極され、長さ方向の中央
部分の幅を両端部分の幅より小さくするように上
部と下部との凹部により狭幅部を形成した圧電磁
器板、該圧電磁器板の一方の側面と他方の側面と
にそれぞれ形成した金属薄膜を、長さ方向のそれ
ぞれ異なる位置で前記狭幅部を挾むように分離帯
で分離した電極、前記圧電磁器板の長さ方向の両
端部に於ける対向電極を相互に接続した端子とを
備えたことを特徴とするセラミツク振動子。
[Claims] 1. A piezoelectric ceramic plate that is entirely polarized in the thickness direction and has a narrow portion in which the width of the center portion in the longitudinal direction is smaller than the width of both end portions, and one side surface of the piezoelectric ceramic plate and electrodes formed on the other side of the piezoelectric ceramic plate and separated by a separation band so as to sandwich the narrow portion at different positions in the length direction; and counter electrodes at both ends of the piezoelectric ceramic plate in the length direction. A ceramic resonator characterized in that it is equipped with terminals that are interconnected. 2. A piezoelectric ceramic plate that is entirely polarized in the thickness direction and has a narrow portion in which the width of the central portion in the longitudinal direction is smaller than the width of both end portions, and a piezoelectric ceramic plate that is polarized on one side and the other side of the piezoelectric ceramic plate. A terminal in which the formed metal thin film is interconnected with electrodes separated by separation bands so as to sandwich the narrow portion at different positions in the length direction, and opposing electrodes at both ends of the piezoelectric ceramic plate in the length direction. 1. A ceramic vibrator comprising: a damping material provided on at least the upper portion of both lengthwise ends of the piezoelectric ceramic plate to suppress spurious waves. 3. A piezoelectric ceramic plate that is entirely polarized in the thickness direction and has a narrow portion formed by a recess between the upper and lower parts such that the width of the center portion in the length direction is smaller than the width of both end portions; Metal thin films formed on one side surface and the other side surface are connected to electrodes separated by a separation band so as to sandwich the narrow width part at different positions in the length direction, and to both ends of the piezoelectric ceramic plate in the length direction. 1. A ceramic resonator characterized by comprising terminals in which opposing electrodes are connected to each other.
JP12325281A 1981-08-06 1981-08-06 Ceramic oscillator Granted JPS5824216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12325281A JPS5824216A (en) 1981-08-06 1981-08-06 Ceramic oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12325281A JPS5824216A (en) 1981-08-06 1981-08-06 Ceramic oscillator

Publications (2)

Publication Number Publication Date
JPS5824216A JPS5824216A (en) 1983-02-14
JPS6348448B2 true JPS6348448B2 (en) 1988-09-29

Family

ID=14855965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12325281A Granted JPS5824216A (en) 1981-08-06 1981-08-06 Ceramic oscillator

Country Status (1)

Country Link
JP (1) JPS5824216A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6359012A (en) * 1986-08-27 1988-03-14 Murata Mfg Co Ltd Composite electronic component
JPH08316776A (en) * 1996-03-29 1996-11-29 Murata Mfg Co Ltd Composite electronic component

Also Published As

Publication number Publication date
JPS5824216A (en) 1983-02-14

Similar Documents

Publication Publication Date Title
JP2004200917A (en) Piezoelectric vibrating piece, piezoelectric device employing the same, cellular telephone device employing the piezoelectric device, and electronic equipment employing the piezoelectric device
US4511202A (en) Ceramic resonator and a ceramic filter using the same
JP3271517B2 (en) Piezoelectric resonator and electronic component using the same
WO1991019352A1 (en) Ultra thin quartz crystal filter element of multiple mode
KR20020041306A (en) Longitudinal coupled multi-mode piezoelectric filter
JPH1084244A (en) Piezoelectric resonator and electronic component using it
JP3102869B2 (en) Structure of ultra-thin piezoelectric resonator
JPS6348448B2 (en)
US6897744B2 (en) Longitudinally-coupled multi-mode piezoelectric bulk wave filter and electronic component
JP3266031B2 (en) Piezoelectric resonator and electronic component using the same
JPH118526A (en) Piezoelectric resonator and electronic component using the same
US6717335B2 (en) Composite vibration device
US20030141945A1 (en) Three-terminal filter using area flexural vibration mode
JPH01227515A (en) Piezoelectric oscillator
JP3271538B2 (en) Piezoelectric resonator and electronic component using the same
JPH0259647B2 (en)
JPH01215108A (en) Piezoelectric vibrator
JPH0153808B2 (en)
JPS61199316A (en) Mechanical filter
JPH07254839A (en) Crystal vibrator
JPH07147526A (en) Vibrator utilizing width spread mode, resonator and resonator component
JP3102872B2 (en) Ultra-thin piezoelectric vibrator
JP4356151B2 (en) Piezoelectric vibration element, manufacturing method thereof, and piezoelectric filter
JPH01302910A (en) Piezo-electric oscillator
JPS59139716A (en) Mechanical filter