JPS59175384A - Firing method of regenerative rectifier circuit - Google Patents

Firing method of regenerative rectifier circuit

Info

Publication number
JPS59175384A
JPS59175384A JP4963083A JP4963083A JPS59175384A JP S59175384 A JPS59175384 A JP S59175384A JP 4963083 A JP4963083 A JP 4963083A JP 4963083 A JP4963083 A JP 4963083A JP S59175384 A JPS59175384 A JP S59175384A
Authority
JP
Japan
Prior art keywords
phase
regenerative
signal
rectifier circuit
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4963083A
Other languages
Japanese (ja)
Inventor
Nakatsugu Kawakami
河上 仲次
Tadashi Ichioka
市岡 忠士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP4963083A priority Critical patent/JPS59175384A/en
Publication of JPS59175384A publication Critical patent/JPS59175384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To always obtain stable commutation by monitoring the phases of the highest and lowest potential phases at the regenerative operation time, and driving the base of a self-extinguishing element of the phase corresponding to the discriminated phase signal on the basis of the signal. CONSTITUTION:Transistor element groups T1-T6 of a regenerative rectifier circuit 1 are nonconductive at the power drive time of a load motor. A DC voltage rectified by the diode element groups D1-D6 of the rectifier circuit 1 is PWM- controlled by a power inverter 2 to obtain power of similar sinusoidal wave. The prescribed base drive signal is obtained by a base drive circuit 6 on the basis of the phase discrimination signal of the highest potential led from the maximum- minimum leading circuit 5 and the phase discrimination signal of the lowest potential, and the groups T1-T6 of the rectifier circuit 1 are base driven by a drive signal which is temporarily amplified by a pulse amplifier 7 from the signal.

Description

【発明の詳細な説明】 本発明は電力回生用整流回路としてダイオード整流器の
名ダイオードに自己消弧素子を述並列接続[た場合の点
弧方法に係り、特に入力電源電圧波形の歪み等に何ら関
係なく常に安定した転流動作を可能とする、電力回生用
整流回路の点弧方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ignition method when a self-extinguishing element is connected in parallel to a diode of a diode rectifier as a rectifier circuit for power regeneration, and particularly relates to an ignition method when a self-extinguishing element is connected in parallel to a diode of a diode rectifier. It is an object of the present invention to provide a method for starting a rectifier circuit for power regeneration, which enables stable commutation operation regardless of the situation.

電動機の可変′周波電源として■Mインバータが好んで
用いられているが、この1%(インバータの整流器とし
て制御能力のないダイオード整流器を用いられるが、か
かる鼎インバータで急速減速等を行なう場合に、ダイオ
ード整流器はよく知られ、ているように電力回生ができ
ないので一第1図に示すよ−うに陥4インバータに電力
回生専用の他励インバータ3を接続して所定のカ行運転
2回生運転が行なわれている。なお第1図で昏裔インバ
ータは、ダイオード病〜D6をブリッジ接続したダイオ
ード整流器1と、サイリスタ素子Su−8w及び5x−
8zを純ブリツジ接続し且つ各サイリスタ素子に帰還ダ
イオードDu−Dw 、 Dx−Dz 1に逆並列接続
して形成した逆変換部2と、直流中間回路の直流リアク
トルDCL1とでそれぞれ構成される。さらに他励イン
バータ3は、サイリスタS!〜86ヲ純プリンジ接続し
たものと変圧器TF”と循遷電流抑制用のりアクドルD
CI、とで構成され、特に変圧器TFは、ダイオード整
流器1の各ダイオードと他励インバータ乙の各サイリス
タとを通して流れる循還電流を防止する目的で絶縁トラ
ンスが用いられており、さらに他励インバータ6の各サ
イリスク素子は、所定の0N−OFF動作を行なう為に
は、所要の転流余裕角が必要であるので必然的に他励イ
ンバータの出力電圧がダイオード整流器のt波整流値よ
りも低くなるので、ステップアップの目的の為に挿入さ
れる。このような他励インバータを用いた電力回生法に
あっては、商用電源電圧波形が歪んだ場合には転流余裕
角の不足などで転流失敗を生じ易いとか、さらには前述
したように出力電圧のステップアップ、及び循還電流を
防止する目的で絶縁変圧器TF、電流抑制用リアクトル
DCL、を必要とし不経済である等の問題がある。この
ような他励インバータの回生方法に対して、例えばmイ
ンバータのダイオード整流器1の各ダイオード素子群D
1〜D6にトランジスタ等の自己消弧素子を逆並列接続
し、て、これら自己消弧素子群な介して負荷側よりの回
生電力を商用周波電源母線側え回生ずる方法が一応考え
られる。この方法を示し、たものが第6図で、自己消弧
素子と[−でトランジスタ素子群T1〜T3を適用した
例であるが、この方法によれば、他励インバータにみら
れるよ5た絶縁変圧器及び循還電流抑制用リアクトルを
不要とするので、回路構成が簡素化され経済的な装@を
実現できるが、例えば所定の回生運転時に際して、第2
図の商用筒、源電圧波形で最も電位が高いV相の期間に
第3図のトランジスタT2が導通しておシ、このV相期
間に何らかの原因で電源電圧波形が第2図に示すように
歪んて・V相の電位に対してW相の電位の方が高くなっ
たような場合、第3図の破線で示すようにW相のダイオ
ードD3→V相のトランジスタT!の経路を通して電流
が流れ電源側短絡が生ずる。この短絡電流は、W相とV
相の差電圧と電源インピーダンスと第2図の電源電圧波
形の歪み期間との6諸量で決定され、この短絡電流にm
インバータの直流中間回路よシの電流値も加算され、非
常に太ぎな事故電流となる。従って大ぎな事故電流に絶
え得るだけの過電流耐量値が現存の電力用トランジスタ
素子には1fいので、トランジスタ素子群は熱破壊し運
転継続が不可部になってしまう。
The M inverter is preferably used as a variable frequency power supply for electric motors, but this 1% (a diode rectifier without control capability is used as the inverter's rectifier, but when performing rapid deceleration etc. with such an inverter, As is well known, diode rectifiers cannot perform power regeneration, so a separately excited inverter 3 dedicated to power regeneration is connected to the inverter 4 as shown in Figure 1, and a predetermined 2-way regenerative operation is performed. In Fig. 1, the inverter includes a diode rectifier 1 in which diode D6 is bridge-connected, and thyristor elements Su-8w and 5x-
8z is connected in a pure bridge, and each thyristor element is connected in anti-parallel to feedback diodes Du-Dw and Dx-Dz 1 to form an inverse conversion section 2, and a DC reactor DCL1 of a DC intermediate circuit. Furthermore, the separately excited inverter 3 is a thyristor S! ~ 86W pure spring connection, transformer TF" and glue handle D for suppressing circulating transient current
In particular, the transformer TF uses an isolation transformer for the purpose of preventing circulating current flowing through each diode of the diode rectifier 1 and each thyristor of the separately excited inverter B, and further includes a separately excited inverter B. In order to perform the specified 0N-OFF operation, each of the cyrisk elements 6 requires a required commutation margin angle, so the output voltage of the separately excited inverter is inevitably lower than the T-wave rectification value of the diode rectifier. Therefore, it is inserted for the purpose of stepping up. In such a power regeneration method using a separately excited inverter, if the commercial power supply voltage waveform is distorted, commutation failure is likely to occur due to insufficient commutation margin angle, and furthermore, as mentioned above, the output This method requires an insulating transformer TF and a current suppressing reactor DCL in order to step up the voltage and prevent circulating current, which poses problems such as being uneconomical. For such a regeneration method of a separately excited inverter, for example, each diode element group D of the diode rectifier 1 of the m inverter
A conceivable method is to connect self-extinguishing elements such as transistors in antiparallel to terminals 1 to D6, and regenerate regenerated power from the load side to the commercial frequency power supply bus line through these self-extinguishing elements. This method is shown in Fig. 6, which is an example in which a self-extinguishing element and a transistor element group T1 to T3 are used. Since an isolation transformer and a reactor for suppressing circulating current are not required, the circuit configuration is simplified and an economical system can be realized.
In the commercial line shown in the figure, the transistor T2 in Figure 3 conducts during the V-phase period, which has the highest potential in the source voltage waveform, and for some reason during this V-phase period, the power supply voltage waveform changes as shown in Figure 2. When the W-phase potential becomes higher than the V-phase potential due to distortion, the W-phase diode D3 → the V-phase transistor T!, as shown by the broken line in FIG. Current flows through the path, causing a short circuit on the power supply side. This short circuit current is between W phase and V phase.
It is determined by six quantities: the phase difference voltage, the power supply impedance, and the distortion period of the power supply voltage waveform shown in Figure 2.
The current value of the DC intermediate circuit of the inverter is also added, resulting in a very thick fault current. Therefore, existing power transistor elements have an overcurrent withstand value of 1f that is sufficient to withstand a large fault current, and the transistor element group is thermally destroyed and cannot continue to operate.

本発明はこの点に鑑みて発明されたものであって、特に
本発明は回生運転時に際して、商用周波電源電圧が印加
される素子群で最も高電位にある自己消弧素子と、最も
低電位にある自己消弧素子とが常に導通するLうに点弧
方法を決定づけることで、常時安定した転流動作が行な
えるようにしたことを一太特徴とし、以下第4図に示す
実施例に基づき詳述する。
The present invention was invented in view of this point, and in particular, during regenerative operation, the self-extinguishing element at the highest potential among the elements to which the commercial frequency power supply voltage is applied, and the self-extinguishing element at the lowest potential The main feature is that stable commutation operation is always possible by determining the ignition method in which the self-extinguishing element in the circuit is always conductive. Explain in detail.

第4図の実施例で圏インバータの主回路構成は従来装置
と全く同一に構成され、木実流側では特に回生運転時に
動作する回生用整流回路の素子群の点弧信号を導入する
手段として、絶縁変圧器T1とダイオード素子群D7〜
D12 よりなる整流器と、この整流器の直流出力端子
間に設けた抵抗とでそれぞれ構成した第1の整流回路4
1と、この回路と全く同一構成のI!2の整流回路42
と、こわら整流回路よシ導びかれる直流出力信号を基に
商用周波電源!王の最も電位が高い相と、最も電位が低
い相とを導びき出す最大値−最小値溝■回路5と、この
回路より導びかれる信号を基に回生用整流回路1のトラ
ンジスタ素子群T、−T6のペースドライブ信号を形成
するペースドライブ回路6と、ベースドライブ信号を一
旦増幅するパルス増幅回路7とでベースドライブ信号発
生回路を構成する。
In the embodiment shown in Fig. 4, the main circuit configuration of the zone inverter is exactly the same as that of the conventional device, and on the wood flow side, it is used as a means for introducing the ignition signal of the element group of the regenerative rectifier circuit that operates especially during regenerative operation. , isolation transformer T1 and diode element group D7~
A first rectifier circuit 4 each comprising a rectifier made of D12 and a resistor provided between the DC output terminals of this rectifier.
1 and I!, which has exactly the same configuration as this circuit. 2 rectifier circuit 42
Then, a commercial frequency power source is generated based on the DC output signal that is guided through the stiff rectifier circuit! The maximum value-minimum value groove for deriving the phase with the highest potential and the phase with the lowest potential of the circuit 5 and the transistor element group T of the regenerative rectifier circuit 1 based on the signal derived from this circuit. , -T6, and a pulse amplification circuit 7 that once amplifies the base drive signal constitute a base drive signal generation circuit.

以上のように構成される木実流側の動作を第5図のタイ
ムチャート図を参照し乍ら述べると、負荷電動機のカ行
運転時に於ては、回生用整流回路1のトランジスタ素子
群T1〜T6が非導通状態にあって、回路1のダイオー
ド素子群D1〜D6で整流した直流電圧を逆変換部2で
所定のPRM制御を行なって、交流出力電圧の半周期毎
に所定数のパルス電圧を発生する近似正弦波の所要の電
力を得、この近似正弦波の電力を以って負荷電動機をカ
行運転する。このカ行運転時に際(−で急速減速して逆
転駆動するとか、さらには急速減速して停止する場合、
よく知られているように逆変換部2のサイリスタ素子群
5u−8zを消弧して、且つ回生用整流回路1のトラン
ジスタ素子群T、−T6を導通して負荷電動機よりの回
生電力を、逆変換部2の帰還ダイオード群Du−Dz及
び回生用整流回路1のトランジスタ素子群T1〜T6の
経路を通して商用周波電源母線側え回生ずるものである
が、かかる回生運転時に際して、木実施例では先ず最大
値−最小値導出回路5よp導びかれる最も高電位にある
相判別信号と、最も低電位にある相判別信号との2信号
を基にベースドライブ回路6で所要のペースドライブ信
号を得、この信号をパルス増幅回路7で一旦増幅したド
ライブ信号で回生用整流回路1のトランジスタ素子群T
1〜T6をベースドライブする。
The operation of the nut flow side configured as described above will be described with reference to the time chart shown in FIG. ~T6 is in a non-conducting state, and the inverse converter 2 performs a predetermined PRM control on the DC voltage rectified by the diode element groups D1 to D6 of the circuit 1 to generate a predetermined number of pulses every half cycle of the AC output voltage. The required power of the approximate sine wave that generates the voltage is obtained, and the load motor is continuously operated using the power of the approximate sine wave. When driving in this direction (-), if you rapidly decelerate and drive in reverse, or even more rapidly decelerate and stop,
As is well known, by extinguishing the thyristor element group 5u-8z of the inverse converter 2 and conducting the transistor element group T, -T6 of the regenerative rectifier circuit 1, the regenerative power from the load motor is Although regeneration occurs on the commercial frequency power supply bus through the path of the feedback diode group Du-Dz of the inverse converter 2 and the transistor element groups T1 to T6 of the regenerative rectifier circuit 1, during such regenerative operation, in the wooden embodiment, First, the base drive circuit 6 generates a required pace drive signal based on two signals, the phase discrimination signal at the highest potential and the phase discrimination signal at the lowest potential, which are guided by the maximum value-minimum value derivation circuit 5. This signal is once amplified by the pulse amplification circuit 7, and the drive signal is used to drive the transistor element group T of the regenerative rectifier circuit 1.
Base drive 1 to T6.

かかるペースドライブ時のタイムチャート図を示したも
のが第5図の波形図でおって、第5回置は商用周波の電
源電圧波形を示し、同様顛第5図(lは一例として回生
用整流回路1のトランジスタT2に印加される逆電圧波
形(これはダイオードD2の順方向電圧波形ともなる)
を示し、第5図(qは(J相のトランジスタT1のペー
スドライブ信号を、第5図(口はW相のペースドライブ
信号を、第5口出はV相のペースドライブ信号をそれぞ
れ示す。従ってU相の電位が最も高いT1期間では回生
用整流回路1のトランジスタT1が導通し、同様に期間
T。
The waveform diagram in Figure 5 shows a time chart during such pace drive, where the 5th position shows the commercial frequency power supply voltage waveform, and similarly Figure 5 (l is an example of a rectifier for regeneration). Reverse voltage waveform applied to transistor T2 of circuit 1 (this is also the forward voltage waveform of diode D2)
In FIG. 5, q indicates the pace drive signal of the J-phase transistor T1, FIG. 5 indicates the W-phase pace drive signal, and the fifth outlet indicates the V-phase pace drive signal. Therefore, during the T1 period when the potential of the U phase is the highest, the transistor T1 of the regenerative rectifier circuit 1 is conductive, and the period T is also maintained.

ではV相のトランジスタT2が導通ずることになる。Then, the V-phase transistor T2 becomes conductive.

かかるペースドライブ時にあって、■相が最も高電位に
あってこれと対応してV相のトランジスタT2が導通し
ている期間に、第5図(4)に示すように時刻1.点で
何らかの原因で電源電圧波形が歪み急激に零電位に落ち
込んだ場合、V相の電位に対してW相の電位の方が高く
なるので、この条件を基に最大値−最小値導出回路5で
は時刻t1点でW相のトランジスタT3にON用のペー
スドライブ信号を与えて導通すると共に、■相のトラン
ジスタT2に逆方向のペースドライブ信号を与えて即座
に消弧する。なお、かかる期間では負極側の欠相の素子
に与えられるON用のペースドライブ信号はそのまま継
続して、W相のトランジスタT、及び欠相のトランジス
タT4の経路を通して回生電力が電源側え回生されるこ
とになる。この動作は電源電圧波形が正常に彷帰する時
刻t2点まで継続し、従来装置でみられるようなV相の
トランジスタT、が導通時にある為に生ずるv−W間の
電源短絡事故は未然に防止できる。さて時刻t1点でV
相の電源電圧が正常に後部すると、最大値−最小値導出
回路5より与えられるV相判別信号を基に■相のトラン
ジスタT2にON用のペースドライブ信号を与えると共
に、W相のトランジスタT、にOFF用のペースドライ
ブ信号を与えて、負荷よりの回生電力はV相のトランジ
スタT2及び欠相のトランジスタT4の経路で電源側え
回生させる。時刻t3点ではW相の電位がV相の電位よ
り高くなるので、最も高電位にあるW相と最も低電位に
ある欠相とを通して回生電力を回生させる。
During such pace drive, during the period when the ■ phase is at the highest potential and correspondingly the V phase transistor T2 is conductive, as shown in FIG. 5(4), time 1. If the power supply voltage waveform becomes distorted and suddenly drops to zero potential for some reason, the W-phase potential will be higher than the V-phase potential, so based on this condition, the maximum value-minimum value derivation circuit 5 At time t1, an ON pace drive signal is applied to the W-phase transistor T3 to make it conductive, and a reverse pace drive signal is applied to the ■-phase transistor T2 to immediately extinguish it. In addition, during this period, the ON pace drive signal given to the element with an open phase on the negative side continues as it is, and the regenerated power is regenerated on the power supply side through the path of the W-phase transistor T and the open-phase transistor T4. That will happen. This operation continues until time t2 when the power supply voltage waveform returns to normal, and the power supply short-circuit accident between v and W that occurs because the V-phase transistor T is in conduction, as seen in conventional devices, is prevented. It can be prevented. Now, at time t1 point, V
When the power supply voltage of the phase is normal, a pace drive signal for ON is given to the transistor T2 of the phase ■ based on the V phase discrimination signal given from the maximum value-minimum value derivation circuit 5, and the transistor T of the W phase is turned on. A pace drive signal for OFF is applied to the load, and the regenerated power from the load is regenerated on the power supply side through the path of the V-phase transistor T2 and the open-phase transistor T4. At time t3, the potential of the W phase becomes higher than the potential of the V phase, so regenerative power is regenerated through the W phase at the highest potential and the open phase at the lowest potential.

以上のように本発明では、所定の回生運転時に商用周波
電源電圧で最も高電位の相と最も低電位の相とを監視し
ておいて、判別した相信号を基にこれと対応する相の自
己消弧素子をベースドライブするようにしたものである
から、以下に示すように踵々の効果な秦するものである
As described above, in the present invention, the phase with the highest potential and the phase with the lowest potential in the commercial frequency power supply voltage are monitored during a predetermined regenerative operation, and the corresponding phase is monitored based on the determined phase signal. Since the self-arc-extinguishing element is base-driven, it has a heel-to-heel effect as shown below.

■ 回虫運転時に商用周波電源母線側で電源電圧の歪み
或いは欠相などが生じた場合でも、常に商用周波電源電
圧に対応して最も高電位の相と低電位の相との各自己消
弧素子をベースドライブするよ5にしたので、運転全域
に渡って安定した回生運転を行なうことができる。
■ Even if power supply voltage distortion or phase loss occurs on the commercial frequency power supply bus side during roundworm operation, each self-extinguishing element for the highest potential phase and lowest potential phase will always respond to the commercial frequency power supply voltage. Since the base drive is set to 5, stable regenerative operation can be performed throughout the entire operating range.

■ 回生用整流回路で回生運転時に動作する素子はトラ
ンジスタ、ゲートターンオフサイリスタなどの自己消弧
素子であるので、逆阻止型のサイリスタに比し転流面で
の回路構成を簡素化できる。
■ The elements that operate during regenerative operation in the regenerative rectifier circuit are self-extinguishing elements such as transistors and gate turn-off thyristors, so the circuit configuration in terms of commutation can be simplified compared to reverse blocking thyristors.

■ 他励インバータにみられるような絶縁変圧器さらに
は循還電流抑制リアクトルを宅く不要とするので、前記
0項の効果を踏まえて非常に経済的なインバータ装置を
実現できる。
(2) Since it is not necessary to provide an isolation transformer and a circulating current suppressing reactor as seen in separately excited inverters, a very economical inverter device can be realized based on the effect of the above-mentioned zero term.

【図面の簡単な説明】[Brief explanation of drawings]

81図は他励インバータを用いた場合の従来の回生法を
示す具体的な是インバータの具体的な回路構成図、第2
図は結成インバータのダイオ−ド整流器に自己消弧素子
を逆並列接続【、た場合の従来装置の回生時の動作を説
明する為に用いた電源斌圧波形図、第3図はその説明に
用いる′PIvMインバータのダイオード整流器に自己
消弧素子を逆並列接続した従来の回生用整流回路の具体
例を示す回路図、第4図は本発明による一実施例を示す
円インバータの回生回路な含めた具体的な回路構成図、
第5図はその回生時の動作を説明するタイムチャート図
。 1は回生用整流回路、2は逆変摸部、4.−42は第1
及び第2の整流回路、5は最大値−最小値導出回路、6
はペースドライブ回路、7はパルス増幅回路。 特許出願人
Figure 81 is a specific circuit configuration diagram of the inverter showing the conventional regeneration method when using a separately excited inverter.
The figure is a power supply voltage waveform diagram used to explain the regeneration operation of a conventional device when self-extinguishing elements are connected in antiparallel to the diode rectifier of an inverter. A circuit diagram showing a specific example of a conventional regenerative rectifier circuit in which a self-extinguishing element is connected in anti-parallel to a diode rectifier of a PIvM inverter to be used. FIG. Specific circuit configuration diagram,
FIG. 5 is a time chart diagram illustrating the operation during regeneration. 1 is a regenerative rectifier circuit, 2 is an inverse converter, 4. -42 is the first
and a second rectifier circuit, 5 a maximum value-minimum value derivation circuit, 6
is a pace drive circuit, and 7 is a pulse amplification circuit. patent applicant

Claims (1)

【特許請求の範囲】[Claims] ダイオード整流器の各ダイオードに自己消弧素子を逆並
列接続して、力行運転時はダイオード整流器で整流した
直流電力火遊変換部に供給し、回生運転時は前記自己消
弧素子群を通して逆変換部の帰還ダイオード群より導び
かれる回生′4力を、商用周波電源母線側え回生ずる回
生用整流回路であって、回生運転時に際I−で前記自己
消弧素子群を0N−OFI;”制御するようにしたもの
に於て、商用周波電源電圧で最も高電位にある相と最も
低電位にある相とをそれぞれ判別して、これら相判別信
号に対応する前記回生用整流回路の該半相の自己消弧素
子を導通するようにしたことを特徴とする回生用整流回
路の点弧方法。
A self-arc extinguishing element is connected in antiparallel to each diode of the diode rectifier, and during power running, the DC power rectified by the diode rectifier is supplied to the reciprocating converter, and during regenerative operation, the DC power is supplied to the inverse converter through the self-arc extinguishing element group. This is a regenerative rectifier circuit that regenerates regenerative power guided from a group of feedback diodes on the commercial frequency power supply bus side, and controls the self-arc-extinguishing element group at 0N-OFI during regenerative operation. In the device, the phase having the highest potential and the phase having the lowest potential in the commercial frequency power supply voltage are respectively determined, and the half phase of the regenerative rectifier circuit corresponding to these phase discrimination signals is determined. A method for igniting a regenerative rectifier circuit, characterized in that a self-extinguishing element is made conductive.
JP4963083A 1983-03-24 1983-03-24 Firing method of regenerative rectifier circuit Pending JPS59175384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4963083A JPS59175384A (en) 1983-03-24 1983-03-24 Firing method of regenerative rectifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4963083A JPS59175384A (en) 1983-03-24 1983-03-24 Firing method of regenerative rectifier circuit

Publications (1)

Publication Number Publication Date
JPS59175384A true JPS59175384A (en) 1984-10-04

Family

ID=12836536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4963083A Pending JPS59175384A (en) 1983-03-24 1983-03-24 Firing method of regenerative rectifier circuit

Country Status (1)

Country Link
JP (1) JPS59175384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198385A (en) * 2004-01-06 2005-07-21 Muscle Corp Driving device of motor and method of controlling the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151879A (en) * 1982-03-04 1983-09-09 Fuji Electric Co Ltd Control circuit for alternating current/direct current converting circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151879A (en) * 1982-03-04 1983-09-09 Fuji Electric Co Ltd Control circuit for alternating current/direct current converting circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198385A (en) * 2004-01-06 2005-07-21 Muscle Corp Driving device of motor and method of controlling the same

Similar Documents

Publication Publication Date Title
US7633771B2 (en) Method and circuit for controlling a rectifier
JP3237719B2 (en) Power regeneration controller
JPH08251947A (en) Regenerative controller for power converter
JP3283155B2 (en) Power converter
JPS59175384A (en) Firing method of regenerative rectifier circuit
JP4123082B2 (en) Multiple power converter
JP3269532B2 (en) AC-DC converter
JPH05308778A (en) Inverter for driving electric car
JP3179951B2 (en) Power converter
JPH05244788A (en) Power regenerator
JPH0669316B2 (en) Power regeneration control circuit for power converter
JP2580108B2 (en) Power converter
JP2000092857A (en) Power conversion device
JP2940525B2 (en) Power converter
JP4375506B2 (en) Inverter device and current limiting method thereof
JPH10174443A (en) Dc power supply device
JP2000253686A (en) Power regenerating circuit
JP2723928B2 (en) Power converter
JPH0746073Y2 (en) Power converter
Tokunaga et al. High‐frequency link‐type dc/ac converter for ups with a new voltage clamper
JPH0246237Y2 (en)
JPH0638550A (en) Inverter apparatus of electric vehicle
JPS61161972A (en) Ac converter
JPS62144597A (en) Driving circuit for high tension type ac machine
JPH0947041A (en) Power converter