JPS59175181A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS59175181A
JPS59175181A JP4787983A JP4787983A JPS59175181A JP S59175181 A JPS59175181 A JP S59175181A JP 4787983 A JP4787983 A JP 4787983A JP 4787983 A JP4787983 A JP 4787983A JP S59175181 A JPS59175181 A JP S59175181A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
semiconductor
substrate
band width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4787983A
Other languages
Japanese (ja)
Inventor
Takashi Kajimura
梶村 俊
Shinichi Nakatsuka
慎一 中塚
Naoki Kayane
茅根 直樹
Michiharu Nakamura
中村 道治
Yuichi Ono
小野 佑一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4787983A priority Critical patent/JPS59175181A/en
Priority to GB08407470A priority patent/GB2139422B/en
Priority to US06/592,956 priority patent/US4740976A/en
Priority to DE19843410793 priority patent/DE3410793A1/en
Publication of JPS59175181A publication Critical patent/JPS59175181A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To decrease the threshold current value by enhancing the effect of transverse mode and that of current striction by a method wherein the light absorption layer and the current striction layer of the titled device are successively provided independently. CONSTITUTION:A clad layer 12 is formed on an N type GaAs substrate 11. Next, an active layer 13 is formed, and then a clad layer 14 which shows the reverse conductivity is formed. The current striction layer 16 which shows the same conductivity as the layer 14 is formed. A stripe groove 5 is formed by etching from the layer 16 to a part of the layer 14. The sixth semiconductor layer 17 is formed on the groove 5 and the layer 16. A P type semiconductor layer 18 is formed, and a P-side electrode 19 and an N-side electrode 20 are formed on the layer 18 and the substrate 11. Here, the active layer can be also composed of the superlattice consisting of the super thin film of two or more kind of substances.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は横モード制御された半導体レーザ装置″・・の
うち特に有機金属気相成長法によって製造する゛のに適
した半導体レーザ装置とその製造方法に関。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor laser device particularly suitable for manufacturing a transverse mode controlled semiconductor laser device by metal organic vapor phase epitaxy, and its manufacture. Regarding the method.

するものである。It is something to do.

〔発明の背景〕[Background of the invention]

従来有機金属気相成長法(MOOVD法)によって製造
された半導体レーザ装置の代表的な横モード制。
A typical transverse mode semiconductor laser device manufactured by conventional metal organic vapor phase epitaxy (MOOVD method).

御構造は第1図に示すような構造であった。(J。The control structure was as shown in Figure 1. (J.

、T、C!o71eman  et aA 、APL、
  37 267  (1,980))第1図ではn形
Ga As基板1、n形Ga1−xAすAS層2ミ平坦
なGa As活性層3と順次形成されたダブルへ10テ
ロ構造の上に、光吸収および電流狭窄層となる。
,T,C! o71eman et aA, APL,
37 267 (1,980)) In Fig. 1, an n-type GaAs substrate 1, an n-type Ga1-xAs layer 2, a flat GaAs active layer 3, and a double-layered 10-telestructure structure formed in sequence are shown. It becomes a light absorption and current confinement layer.

n形GaAs層4がストライプ領域5を残してp形゛G
a 、 −x A7IxAs層6中に形成され、上記p
形Ga 1−x’11xAs層6の上に形成したp形G
a As層7の表面。
The n-type GaAs layer 4 is replaced by the p-type GaAs layer 4, leaving a stripe region 5.
a, -x formed in the A7IxAs layer 6 and above p
p-type Ga formed on the 1-x'11xAs layer 6
a Surface of the As layer 7.

と上記n形Ga As基板1の裏面にはそれぞれp形1
′電極8およびn形電極9を設けている。上記第1゜図
に示す構造ではGa As活性層3で生じた光がストラ
イプ領域5の外側でn形Ga As層4に吸収さ゛れる
ため、ストライプ領域5の内側と外側では実゛効屈折率
の差が生じて横モード制御が行われる。2゜・ 3 ・ しかし上記の光吸収によってn形Ga A、s層4に極
゛性反転が生じるため電流狭窄層としては有効に働。
and p-type 1 on the back surface of the n-type GaAs substrate 1, respectively.
' An electrode 8 and an n-type electrode 9 are provided. In the structure shown in FIG. 1 above, the light generated in the GaAs active layer 3 is absorbed by the n-type GaAs layer 4 outside the stripe region 5, so the effective refractive index is different between the inside and outside of the stripe region 5. A difference occurs and transverse mode control is performed. 2°・3・However, polarity reversal occurs in the n-type GaA, s layer 4 due to the above light absorption, so it works effectively as a current confinement layer.

かず、しきい電流値が増大する原因になっていた工〔発
明の目的〕 本発明は有機金属気相成長法によって製造する゛低しき
い電流値の横モード制御レーザ装置とその製造方法を得
ることを目的とする。
[Objective of the Invention] The present invention provides a transverse mode control laser device with a low threshold current value and a method for manufacturing the same, which is manufactured by an organometallic vapor phase epitaxy method. The purpose is to

〔発明の概要〕[Summary of the invention]

上記の目的を達成するために本発明は所定の禁゛制帯幅
と導電性とをそれぞれ有する第1から第51″までの半
導体層を半導体基板上に順次形成し、工・ッチングによ
り上記第5の半導体層表面から第3゛の半導体層の表面
または内部に達するストライプ・状の溝を形成し、有機
金属気相成長法によって上゛配溝を埋めた後に第6の半
導体層を形成すること1−・により、第4の半導体層の
光吸収層と第5の半導体層による電流狭窄層とをそれぞ
れ独立して順次設け、横モード制御効果とともに十分な
電流狭窄・効果を有する低しきい電流値の半導体レーザ
装置とその製造方法を得るものである。      ”
・14 ・ 〔発明の実施例〕 つぎに本発明の実施例を図面とともに説明する。。
In order to achieve the above object, the present invention sequentially forms 1st to 51'' semiconductor layers each having a predetermined forbidden band width and conductivity on a semiconductor substrate, and processes and etches the semiconductor layers described above. A stripe-shaped trench is formed from the surface of the semiconductor layer No. 5 to the surface or inside of the third semiconductor layer, and after filling the upper trench by metal organic vapor phase epitaxy, a sixth semiconductor layer is formed. By 1-., the light absorption layer of the fourth semiconductor layer and the current confinement layer of the fifth semiconductor layer are provided independently and sequentially, thereby achieving a low threshold that has sufficient current confinement and effect as well as transverse mode control effect. This is to obtain a semiconductor laser device with a current value and its manufacturing method.”
・14・ [Embodiments of the invention] Next, embodiments of the present invention will be described with reference to the drawings. .

第2図は本発明による半導体レーザの一実施例の゛構造
を示す断面図である。n形Ga As基板11上にぐ該
基板11より禁制帯幅が大きく基板と同じ導電性5を有
する第1の半導体層であるn形Ga1−x AJ、 A
s ’クラッド層1.2 (x = 0.45、厚さ1
μm)と、第1の“半導体より禁制帯幅が小さい第2の
半導体層であ。
FIG. 2 is a sectional view showing the structure of an embodiment of a semiconductor laser according to the present invention. An n-type Ga1-x AJ, A is a first semiconductor layer on an n-type GaAs substrate 11, which has a larger forbidden band width than the substrate 11 and has the same conductivity 5 as the substrate.
s' cladding layer 1.2 (x = 0.45, thickness 1
μm), and the second semiconductor layer has a smaller forbidden band width than the first semiconductor.

るGa1−y A、1yAs活性層1.3 (y = 
0.14、厚さ0.06〜’0.08μm)と、禁制帯
幅が第2の半導体層より大き10く基板と逆の導電性を
有する第3の半導体層であ・るp形Ga、 −z A7
17Asクラッド層14 (z = 0.3〜0.44
、−厚さ0.4〜06μm)と、禁制帯幅が第2の半導
体層・より小さな第4の半導体層であるGa 、 −u
 AluAs光・吸収層15 (u = O〜0.1、
厚さ0.3 ttm )と、禁制帯幅1)が第2の半導
体層よりも大きく基板と同じ導電性・を有する第5の半
導体層であるn形Ga 1−V AJ y As ・電
流狭窄層16 (v = 0.45、厚さ0.5〜11
tm )とGa  −As層(厚さ0.5μm)とを、
液相成長法または有機・金属気相成長法により順次形成
する。第50半導2()体層16の表面に8102膜を
形成した後ホトレジスト。
Ga1-y A, 1yAs active layer 1.3 (y =
The third semiconductor layer is p-type Ga, which has a forbidden band width of 0.14 μm and a thickness of 0.06 to 0.08 μm, which is larger than that of the second semiconductor layer, and has conductivity opposite to that of the substrate. , -z A7
17As cladding layer 14 (z = 0.3 to 0.44
, -thickness of 0.4 to 06 μm) and Ga, which is the second semiconductor layer and the fourth semiconductor layer with a smaller forbidden band width, -u
AluAs light/absorption layer 15 (u = O ~ 0.1,
The fifth semiconductor layer has a thickness of 0.3 ttm) and a forbidden band width 1) which is larger than that of the second semiconductor layer and has the same conductivity as the substrate.Current confinement Layer 16 (v = 0.45, thickness 0.5-11
tm) and a Ga-As layer (thickness 0.5 μm),
They are formed sequentially by liquid phase epitaxy or organic/metallic vapor phase epitaxy. After forming the 8102 film on the surface of the 50th semiconductor layer 16, photoresist is applied.

工程とエツチング工程とにより上記5102膜に幅3゜
〜5μmのストライプ状の窓を形成する。つぎにり。
Through the etching process and the etching process, striped windows with a width of 3° to 5 μm are formed in the 5102 film. Next time.

ん酸系のエツチング液で窓の領域の結晶をエッチ。Etch the crystals in the window area with a phosphoric acid-based etching solution.

ングするが、この時エツチングの深さがn形Ga 、−
vA、l A、s層16の途中まで進行するようにする
0つづ。
At this time, the etching depth is n-type Ga, -
vA, l A, 0 sequence to advance halfway through the s layer 16.

■ いてHF系のエツチング液で上記窓の部分のn形 Ga
 1− y A l y A、8層16を選択エツチン
グし、この除去。
■ Remove n-type Ga from the above window using HF-based etching solution.
1- Selective etching of yAlyA, 8 layer 16 and its removal.

面の8102膜も同時に除去する。つぎにりん酸系の。The 8102 film on the surface is also removed at the same time. Next is phosphoric acid.

エツチング液を用いてストライプ状に露出した 1°1
Ga1−uA71uAS光吸収層15およびこの下に位
置する・Ga1.A、17Asクラッド層14の一部を
エツチングしイ同時に結晶表面に形成した上記Ga A
、s層を除去する6その後エツチングされた溝に有機金
属気相成長法。
1°1 exposed in stripes using etching solution
Ga1-uA71uAS light absorption layer 15 and Ga1. A, a part of the 17As cladding layer 14 was etched, and the Ga A was formed on the crystal surface at the same time.
, remove the S layer by metal-organic chemical vapor deposition into the etched grooves.

によってp形Ga1.−wA7!wAS層(w = 0
.3〜045)を1)埋込み、p形Ga1.−WA〜A
s層からなる第6の半導・体層17を第5の半導体層1
6の上に形成し、さらに・p形Ga Ass層1を形成
した後、該p形Ga Ass層1・の表面とn形GaA
s基板11の下面とにp側電極(・Or −Au ) 
1.9とn側電極(Au−Ge −Ni −Au ) 
20をそ′喝)れぞれ形成する。つぎにへき開工程を経
て共振器。
p-type Ga1. -wA7! wAS layer (w = 0
.. 3-045) into 1) embedding, p-type Ga1. -WA~A
The sixth semiconductor layer 17 consisting of the s-layer is replaced with the fifth semiconductor layer 1.
After forming the p-type Ga Ass layer 1 on the p-type Ga Ass layer 1, the surface of the p-type Ga Ass layer 1 and the n-type GaA
P-side electrode (・Or −Au) on the lower surface of the s-substrate 11
1.9 and n-side electrode (Au-Ge-Ni-Au)
Form 20 pieces. Next, a resonator is produced through a cleavage process.

長300μmの半導体レーザ装置を製造した0   。0 manufactured a semiconductor laser device with a length of 300 μm.

上記半導体レーザ装置は発振波長780nmにおい。The semiconductor laser device has an oscillation wavelength of 780 nm.

て、発振しきい電流値30〜40mAで室温連続発振し
Then, continuous oscillation is performed at room temperature with an oscillation threshold current value of 30 to 40 mA.

た。またレーザ横モードは光出力30mWまで安定な5
基本モードであることが判明した。なお環境温度゛70
℃において上記半導体レーザ装置を光出力20 mW 
’で定光出力動作させた結果・3000時間動作時点で
゛は顕著な劣化が見られず高い信頼性を有すること”が
判明した。                 10上
記実施例ではGa A、l Asレーザ装置について記
・したが、他の材料系についても本発明による半導・体
レーザ装置が実現できることはいうまでもない。・また
本実施例では単一の半導体レーザ装置につい゛て記した
が、同一チップ内に複数個の素子が配列1)されたレー
ザ・アレイや、複数個の隣接した素子・間に光の非線型
相互作用を持たせたフェーズド・・アレイも本発明によ
る構造で実現可能である。さ・らに上記実施例では活性
層が単一の層で構成され・た場合について記したが、活
性層が2以上の物質?“)の超薄膜からなる超格子で構
成されている場合に。
Ta. In addition, the laser transverse mode is stable up to an optical output of 30mW.
It turned out to be basic mode. Furthermore, the environmental temperature is ゛70
The optical output of the above semiconductor laser device at ℃ is 20 mW.
As a result of constant light output operation with ``, it was found that ``has high reliability with no noticeable deterioration after 3000 hours of operation.'' 10 In the above example, the Ga A, l As laser device was described. However, it goes without saying that the semiconductor/solid state laser device according to the present invention can be realized using other material systems as well.Although this embodiment describes a single semiconductor laser device, multiple semiconductor laser devices can be used in the same chip. Laser arrays in which 1) elements are arranged 1) and phased arrays in which nonlinear interaction of light is created between a plurality of adjacent elements can also be realized with the structure according to the present invention. Furthermore, in the above embodiments, the case where the active layer is composed of a single layer has been described, but in the case where the active layer is composed of a superlattice made of ultra-thin films of two or more substances.

も本発明による半導体レーザ装置を実現させるこ。Also, a semiconductor laser device according to the present invention can be realized.

とができる。I can do that.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように所定の禁制帯幅と導電性5とをそ
れぞれ有する第1から第5までの各半導体層を半導体基
板上に順次形成し、エツチングによ゛り上記第5の半導
体層表面から第3の半導体層の。
In the present invention, as described above, the first to fifth semiconductor layers each having a predetermined forbidden band width and conductivity 5 are sequentially formed on a semiconductor substrate, and the fifth semiconductor layer is etched. of the third semiconductor layer from the surface.

表面またはその内部に達するストライプ状の溝を。Striped grooves that reach the surface or its interior.

形成し、有機金属気相成長法によって上記溝を埋10め
るとともに第6の半導体層を形成することによ・り光吸
収層と電流狭窄層とをそれぞれ独立して順・次設けたか
ら、横モード効果とともに完全な電流狭窄ができるので
低しきい電流値の半導体レーザ・装置を得ることができ
る。          1)
By forming the above-mentioned groove 10 and forming the sixth semiconductor layer by organometallic vapor phase epitaxy, the light absorption layer and the current confinement layer were independently provided one after another. Since complete current confinement can be achieved along with the transverse mode effect, a semiconductor laser/device with a low threshold current value can be obtained. 1)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の有機金属気相成長法によって製・造され
た半導体レーザの構造を示す断面図、第2・図は本発明
による半導体レーザの一実施例の構造を示す断面図であ
る。            2・・11・・・半導体
基板、12・・・第1の半導体層、13・・・第。 2の半導体層、14・・・第3の半導体層、15・・・
第4の。 半導体層、16・・・第5の半導体層、17・・・第6
0半導。 体層0 代理人弁理士  中 村 純之助    ”0 1F 1−2図 q
FIG. 1 is a sectional view showing the structure of a semiconductor laser manufactured by a conventional metal organic vapor phase epitaxy method, and FIG. 2 is a sectional view showing the structure of an embodiment of the semiconductor laser according to the present invention. 2...11...Semiconductor substrate, 12...First semiconductor layer, 13...Th. 2 semiconductor layer, 14... third semiconductor layer, 15...
Fourth. Semiconductor layer, 16...5th semiconductor layer, 17...6th semiconductor layer
0 semiconductor. Level 0 Representative Patent Attorney Junnosuke Nakamura ”0 1F 1-2 Figure q

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に順次形成した、上記基板より禁制
帯幅が大きく基板と同じ導電性を有する第1゛の半導体
層と、該第1の半導体層より禁制帯幅が小さい第2の半
導体層と、禁制帯幅が第20半導。 体層より大きく上記基板と逆の導電性を有する第13の
半導体層と、禁制帯幅が第2の半導体層より小さな第4
の半導体層と、禁制帯幅が第2の半導体層より大きく上
記基板と同じ導電性を有する第。 5の半導体層とを備え、さらに上記第5の半導体層表面
より第3の半導体層表面またはその内部に達するストラ
イプ状の溝と、該溝内および溝以外の第5の半導体層表
面上に形成された禁制帯幅が上記第2の半導体層より大
きく第3の半導体層と同じ導電性を有する第6の半導体
層とを備えてなる半導体レーザ装置。
(1) A first semiconductor layer formed in sequence on a semiconductor substrate and having a bandgap larger than the substrate and the same conductivity as the substrate, and a second semiconductor layer whose bandgap is smaller than the first semiconductor layer. The layer and forbidden band width are the 20th semiconductor. a thirteenth semiconductor layer which is larger than the body layer and has a conductivity opposite to that of the substrate; and a fourth semiconductor layer whose forbidden band width is smaller than that of the second semiconductor layer.
a second semiconductor layer having a larger forbidden band width than the second semiconductor layer and having the same conductivity as the substrate; and a striped groove extending from the surface of the fifth semiconductor layer to the surface of the third semiconductor layer or the inside thereof, and formed within the groove and on the surface of the fifth semiconductor layer other than the groove. and a sixth semiconductor layer having a forbidden band width larger than that of the second semiconductor layer and having the same conductivity as the third semiconductor layer.
(2)半導体基板上に該基板より禁制帯幅が大きく。 基板と同じ導電性を有する第1の半導体層と、第。 1の半導体層より禁制帯幅が小さい第2の半導体。 層と、禁制帯幅が第2の半導体層より大きく上記。 基板と逆の導電性を有する第3の半導体層と、禁5制帯
幅が第2の半導体層より小さな第4の半導体。 層と、禁制帯幅が第2の半導体層より大きく上記。 基板と同じ導電性を有する第5の半導体層とを、。 液相成長法または有機金属気相成長法によって順゛次形
成する工程と、上記第5の半導体層表面から1′ゝ第3
の半導体層の表面または内部に達するストラ・イブ状の
溝を形成するエツチング工程と、有機金・属気相成長法
によって上記溝内および溝以外の第5の半導体表面上に
、禁制帯幅が第2の半導体層・より大きく第3の半導体
層と同じ導電性を有する1)第6の半導体層を形成する
工程とを含む半導体し・−ザ装置の製造方法。
(2) The forbidden band width on the semiconductor substrate is larger than that of the substrate. a first semiconductor layer having the same conductivity as the substrate; a second semiconductor whose forbidden band width is smaller than that of the first semiconductor layer; the above-mentioned layer, and the forbidden band width is larger than that of the second semiconductor layer. a third semiconductor layer having conductivity opposite to that of the substrate; and a fourth semiconductor having a smaller forbidden band width than the second semiconductor layer. the above-mentioned layer, and the forbidden band width is larger than that of the second semiconductor layer. a fifth semiconductor layer having the same conductivity as the substrate; A step of sequentially forming the fifth semiconductor layer by a liquid phase epitaxy method or a metal organic vapor phase epitaxy method, and a step of forming a third semiconductor layer 1' from the surface of the fifth semiconductor layer.
A forbidden band width is formed in the groove and on the fifth semiconductor surface other than the groove by an etching process to form a strip-shaped groove reaching the surface or inside of the semiconductor layer, and an organic metal/metal vapor phase epitaxy method. A method for manufacturing a semiconductor device, comprising: 1) forming a sixth semiconductor layer having the same conductivity as a second semiconductor layer and a third semiconductor layer.
JP4787983A 1983-03-24 1983-03-24 Semiconductor laser device and manufacture thereof Pending JPS59175181A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4787983A JPS59175181A (en) 1983-03-24 1983-03-24 Semiconductor laser device and manufacture thereof
GB08407470A GB2139422B (en) 1983-03-24 1984-03-22 Semiconductor laser and method of fabricating the same
US06/592,956 US4740976A (en) 1983-03-24 1984-03-23 Semiconductor laser device
DE19843410793 DE3410793A1 (en) 1983-03-24 1984-03-23 SEMICONDUCTOR LASER DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4787983A JPS59175181A (en) 1983-03-24 1983-03-24 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59175181A true JPS59175181A (en) 1984-10-03

Family

ID=12787666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4787983A Pending JPS59175181A (en) 1983-03-24 1983-03-24 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59175181A (en)

Similar Documents

Publication Publication Date Title
JP4445292B2 (en) Semiconductor light emitting device
JP3521793B2 (en) Manufacturing method of semiconductor laser
JPS59175181A (en) Semiconductor laser device and manufacture thereof
JPH02156588A (en) Semiconductor laser and its manufacture
JP2626570B2 (en) Method for manufacturing semiconductor laser device
JPH06112592A (en) Fabrication of semiconductor laser element
JPS6367350B2 (en)
JPS6119186A (en) Manufacture of two-wavelength monolithic semiconductor laser array
JPS60126880A (en) Semiconductor laser device
JPS5864085A (en) Semiconductor laser and manufacture thereof
JPS596588A (en) Semiconductor laser
JPS62296582A (en) Semiconductor laser device
JPH05304334A (en) Fabrication of semiconductor laser
JPH05226774A (en) Semiconductor laser element and its production
JP3592730B2 (en) Semiconductor laser device
JPS6175585A (en) Buried semiconductor laser
JPH02240988A (en) Semiconductor laser
JPS58154287A (en) Semiconductor light emitting device
JPS5856992B2 (en) semiconductor laser equipment
JPH02260587A (en) Semiconductor laser with optical waveguide
JPH03288489A (en) Distribution feedback semiconductor laser device
JPH06302914A (en) Semiconductor light emitting device and its manufacture
JPH07170020A (en) Semiconductor optical waveguide and its manufacture
JPH01243490A (en) Manufacture of semiconductor crystal and two beam array semiconductor laser device
JPS6191990A (en) Semiconductor laser and manufacture thereof