JPS59175142A - Microwave semiconductor device - Google Patents

Microwave semiconductor device

Info

Publication number
JPS59175142A
JPS59175142A JP58048269A JP4826983A JPS59175142A JP S59175142 A JPS59175142 A JP S59175142A JP 58048269 A JP58048269 A JP 58048269A JP 4826983 A JP4826983 A JP 4826983A JP S59175142 A JPS59175142 A JP S59175142A
Authority
JP
Japan
Prior art keywords
strip conductor
slits
length
microscopic
parallel slits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58048269A
Other languages
Japanese (ja)
Inventor
Akio Iida
明夫 飯田
Makoto Matsunaga
誠 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58048269A priority Critical patent/JPS59175142A/en
Publication of JPS59175142A publication Critical patent/JPS59175142A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Waveguides (AREA)

Abstract

PURPOSE:To independently perform a matching in each frequency without detaching semiconductor elements from the substrate in the titled device by a method wherein the length of a strip conductor provided on the back surface of the microwave integrated circuit substrate and the distance up to the semiconductor elements and microscopic slits are respectively adjusted. CONSTITUTION:A strip conductor 10 is made the length thereof vary by making gold ribbons, etc., connect to microscopic conductors 11a-11d. Microscopic slits 12a-12c are electrically eliminated by properly connecting gold ribbons to microscopic conductors 13a-13c. Signal electric power is converted into odd number modes of two mutually parallel slits 3a and 3b by a branch 6, while the signal electric power is coupled to the strip conductor 10, which intersects at right angles with the two parallel slits 3a and 3b, as the power is transmitted in the TE wave. A susceptance corresponding to the length of the strip conductor is joined in a line laid in between mixer diodes 4a and 4b and a converting part 7. Accordingly, a favorable matching can be effected by adjusting the length of the strip conductor and by mutually connecting the microscopic conductors 13a- 13c with gold ribbons.

Description

【発明の詳細な説明】 この発明は、誘電体基板上に、マイクロ岐集積回路(以
下MICと略す)化した平衝ミクサあるいは平衝変調器
等等の動作をするマイクロ波半導体装#に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microwave semiconductor device # that operates as a balance mixer, a balance modulator, etc., which is formed into a micro-multiplex integrated circuit (hereinafter abbreviated as MIC) on a dielectric substrate. It is.

(す まず、第1図に示す従来のこの種のマイクロ岐牛導体装
置につbて簡単に説明する。
(First, a brief explanation will be given of this type of conventional micro-circuit conductor device shown in FIG. 1.

第1図は、この種のマイクロ肢半導体装置の一例であり
、ここでは9 この装置が平衝ミクサとして、動作する
場合の説明を行なうものとする。第1図においてはR電
体基板の一方の面に設けた金属膜上に、エツチング等に
よ)加工されたスリットを実線で示し、金属膜を設けな
い面上に設けるストリップ導体を破線で示している。第
1図において9(1)は金R111i、 (2)uス9
 yト、  (3a)、 (3b) U平行なスリット
、  (4−)(4b)はミクサダイオード。
FIG. 1 shows an example of this type of micro-limb semiconductor device, and here we will explain the case where this device operates as a balance mixer. In Fig. 1, solid lines indicate slits formed on the metal film provided on one side of the R electric board (by etching, etc.), and dotted lines indicate strip conductors provided on the side without the metal film. ing. In Figure 1, 9(1) is gold R111i, (2) usu9
(3a), (3b) U parallel slits, (4-) (4b) is a mixer diode.

(5)はマイクロストリップ線路である。(5) is a microstrip line.

いま、スリット(2)に信号電力を入力し、マイクロス
トリップ線路(5)に局部発振電力を入力する場合を考
える。ミクサダイオードにより変換された中間周岐数電
力は、マイクロストリップ線路に庄じ、一般には、マイ
クロスト9ツグ線路上に設けた帯域通過ろ岐器および低
域通過ろ岐器によって局部発振電力と分離されるが、こ
こて鉱簡単のため省略し、信号電力と岡部発孫電力のダ
イオード(2) ヘの整合につ−て詳しく説明する。
Now, consider the case where signal power is input to the slit (2) and local oscillation power is input to the microstrip line (5). The intermediate frequency power converted by the mixer diode is sent to a microstrip line, and is generally separated from the local oscillation power by a bandpass filter and a lowpass filter installed on the microstrip line. However, for the sake of simplicity, this will be omitted here, and the matching of the signal power and the Okabe power to the diode (2) will be explained in detail.

まず、信号電力はスリット(2)よル入カし1分岐(6
)で平行な2本のスリブ) (3a)、 (3b)に変
換され。
First, the signal power is input through the slit (2) and branched into 1 (6
) is converted into two parallel slabs) (3a) and (3b).

平行な2本のスリット上を奇モードで伝搬する。It propagates in an odd mode on two parallel slits.

この時の電気力111!は第1図に実線で示すが、奇モ
ードの波はTE枝であ先進行方向に磁界成分を侍ってい
る。変換部(7)は、平行な2本のスリット上の偶モー
ドの岐をマイクロストリップ線絡f5Jに変換する構造
であ勺、奇モードの枝はマイクロストリップ線路(5)
に変換されず、変換部(7)にて反射する。
Electric power at this time 111! is shown by a solid line in FIG. 1, and the odd mode wave is a TE branch and is accompanied by a magnetic field component in the forward direction. The converter (7) has a structure that converts the even mode branch on two parallel slits into a microstrip line f5J, and the odd mode branch is a microstrip line (5).
It is reflected at the converting section (7).

従って、信号電力を整合良くミクサダイオード(4a)
 (4b)に加えるためには、変換部(7)とミクサダ
イオード(4a) (4b)との間の距離tilQを所
定の値に設定する必要がある。
Therefore, the mixer diode (4a)
(4b), it is necessary to set the distance tilQ between the converter (7) and the mixer diodes (4a) (4b) to a predetermined value.

次に、局部発揚電力は。マイクロストリップ線路(5)
よシ入力し、裏表の導体を導通させるための導通孔(8
)を持つ、変換部(7)によって、平行な2本のスリブ
) (3a) (3b)上の偶モードの波に変換される
。この偶モードの肢の電気力線は第1図中破線(3) の矢印で示したが、この枝はTEM岐であり、進行方向
の磁界を持たない。また、このj&!は、  ’l’E
M技であるため、平行な2本のスリットにf′i式まれ
る導体(9)が無すと9伝搬できないので1分岐(6)
にて反射する。
Next, what is the local lifting power? Microstrip line (5)
A conductive hole (8
) is converted into an even mode wave on two parallel sleeves ) (3a) (3b) by the converter (7). The electric lines of force in this even-mode limb are indicated by the broken line (3) in Figure 1, but this branch is a TEM branch and does not have a magnetic field in the traveling direction. Also, this j&! 'l'E
Since it is an M technique, 9 propagation is not possible without the conductor (9) that is connected to the f′i equation in two parallel slits, so there is one branch (6)
Reflect.

従って9局部発揚電力を整合良くミクサダイオード(4
a) (4b)に加えるためには1分岐(6)とミクサ
ダイオード(4a) (4b)との間の距HtLoをP
IrNの値に設定する必要がある。
Therefore, the mixer diode (4
a) To add to (4b), set the distance HtLo between the 1st branch (6) and the mixer diodes (4a) and (4b) to P
It is necessary to set it to the value of IrN.

一方、マイクロ汲螢以上の高い周波数帯においては、ミ
キサダイオードの特性のばらつきは、大きくなるので、
良好な整合を得るためには、ムIGおよびlLoは、使
用するダイオードに合わせて。
On the other hand, in high frequency bands above micro-wavelength, the variation in mixer diode characteristics increases, so
For good matching, match IG and ILo to the diode used.

調整する必要がある。Need to adjust.

その方法の1つとして、  tilGとlLoを微小変
化させた数種数のMICパターンを作成しておき、ミク
サダイオードの装着および取りはずしを〈シ返し調整を
行なう方法が考えられる。しかし、このような高い周波
数帯におけるMIC化回路に用いる半導体は、チップ状
あるいはビームリード状の形(4) 状をしており、  MIC基板にボンディングにより装
着されるため、何度もつけかえて調整することは不可能
に近い。
One possible method is to create several types of MIC patterns in which tilG and lLo are slightly changed, and then perform repeated adjustments for mounting and removing the mixer diode. However, the semiconductors used in MIC circuits in such high frequency bands are in the form of chips or beam leads (4) and are attached to the MIC board by bonding, so they must be replaced and adjusted many times. It's almost impossible to do.

また、別の方法として、信号周波数における整合は9局
部発揚電力が伝わらないスリット(2)に整合回路を設
け9局部発根周#数における整合は。
Another method is to provide a matching circuit in the slit (2) through which the local power is not transmitted, and to perform matching at the signal frequency.

信号電力が伝わらないマイクロストリップ線路(6)に
整合回路を設ける方法が考えられる。しかし。
One possible method is to provide a matching circuit in the microstrip line (6) through which signal power is not transmitted. but.

この方法でニ、ミクサダイオードから離れた位置で整合
を行なうとするため、整合がとれる周波数が狭帯域どな
る欠点がある。
In this method, matching is performed at a location away from the mixer diode, so there is a drawback that the frequency at which matching can be achieved is a narrow band.

この発明は9以上のような欠点を除去するために、平行
な2本のスリブ) (3a)(3b)の所定の位置の基
板裏面に、スリブ)K直交し、長さの調整できるストリ
ップ導体を設け、かつミクサダイオード(4a) (4
b)と分岐(6)との間の2本の平行なスリットにはさ
まれる導体(9)に微小スリットを数個設けたもので、
以下図面について詳細に説明する。
In order to eliminate the above drawbacks, this invention has two parallel slits (3a) and (3b) on the back surface of the board at predetermined positions, and a strip conductor that is perpendicular to the slits (slips) K and whose length can be adjusted. and a mixer diode (4a) (4
A conductor (9) sandwiched between two parallel slits between b) and a branch (6) is provided with several minute slits.
The drawings will be explained in detail below.

第2図は、この発明の一実施例を示す図である。FIG. 2 is a diagram showing an embodiment of the present invention.

図において、(1ωけストリップ導体、  (lla)
〜(Ild)(5) は微小導体、  (12a) (12c)は微小スリッ
ト、  (1aa)〜(13c)は平行な2本のスリッ
トと微小スリット(12a)〜(12C)により囲まれ
る微小導体であシ、ストリップ導体00)は微小導体(
n−)〜(lld)に金リボン等を接続することにより
、その長さを変化させることができるようになっている
。また、微小導体(13a)〜(13c)を適宜金ジボ
ン等で接続することによル、微小スリッh (12a)
〜(12c)を電気的に無くすことができるようになっ
ている。
In the figure, (1ω strip conductor, (lla)
~(Ild) (5) is a microconductor, (12a) (12c) is a microslit, (1aa) to (13c) are microconductors surrounded by two parallel slits and microslits (12a) to (12C) strip conductor 00) is a micro conductor (
By connecting gold ribbons or the like to n-) to (lld), the length can be changed. In addition, by connecting the micro conductors (13a) to (13c) with gold wire etc., a micro slit (12a) can be formed.
~(12c) can be electrically eliminated.

信号電力は1分岐(6)によシ平行な2本のスリット(
3a)(3b)の奇モード例変換されるが、この時。
The signal power is transmitted through one branch (6) and two parallel slits (
3a) The odd mode example of (3b) is converted, but at this time.

微小スリット(12a) 〜(12C)の長さくL)、
および幅面を波長に比べ十分小さくしておくことにょ多
信号電力は乱されることなく、2本の平行なスリットへ
と伝わる。また、この信号電力は、前に述べたようにT
E枝で伝わるので、2本の平行なスリットに直交するス
トリップ導体α0)に結合する。そして、ストリップ導
体の長さに対応するサセプタンスが、ミキサダイオード
(4−) (4b)と変換部(7)との間の線路に加わ
るため、この発明では、ストリッ(す グ導体の長さを変えることKよシt11G  を物理的
に変えることなく1avaを変えたと同じ効果を得るこ
とができる。
Minute slit (12a) to (12C) length L),
By making the width sufficiently smaller than the wavelength, the multi-signal power is transmitted to the two parallel slits without being disturbed. Also, this signal power is T
Since it is transmitted through the E branch, it is coupled to the strip conductor α0) orthogonal to the two parallel slits. Since a susceptance corresponding to the length of the strip conductor is added to the line between the mixer diode (4-) (4b) and the converter (7), in this invention, the length of the strip conductor is By changing K, you can obtain the same effect as changing 1ava without physically changing t11G.

一方、TEM岐で伝搬する局部発振電力は、進行方向の
磁界成分を持たないため、ストリップ導体(IQ+とは
結合しない。従って9局部発止電力は何の影響も受けず
、2本の平行なスリブ) (3a) (3b)を伝わる
。また、前に述べたようにTEM汲は、2本の平行なス
リットにはさまれる導体(9)が無くなる位置で反射す
るので、この発明によればスリットに囲まれる微小導体
03a)〜(13C)の間を、金リボン等で接続するこ
とによシ、  tLoの調整が可能である。
On the other hand, since the local oscillation power propagating in the TEM branch does not have a magnetic field component in the traveling direction, it does not couple with the strip conductor (IQ+. Therefore, the 9 local oscillation power is not affected by the two parallel (3a) (3b). Furthermore, as mentioned earlier, the TEM beam is reflected at the position where the conductor (9) sandwiched between the two parallel slits disappears, so according to the present invention, the microconductors 03a) to (13C) surrounded by the slits are ), it is possible to adjust tLo by connecting with a gold ribbon or the like.

なお9以上の説明では、スリット(2)から信号電力を
加え、マイクロストリップ線路(5)から局部発振電力
を加えるようにしているが、スリット(2)に局部発振
電力を、マイクロスト9ツグ線路(5)に信号電力を・
加えるようにしても良い。
Note that in the above explanation, the signal power is applied from the slit (2) and the local oscillation power is applied from the microstrip line (5). (5) Signal power
You may also add it.

以上の説明においては、ストリップ導体QOIおよび微
小スリット(12a)〜(12C)を同時に設けている
(7) が、それぞれ単独に用いてもよいことは言うまでもない
In the above description, the strip conductor QOI and the minute slits (12a) to (12C) are provided at the same time (7), but it goes without saying that each may be used independently.

また、スト9ッグ導体tmO数は1本に限ることil:
なく、オ・3図に示すように複数個使用してもよく、ス
トリップ導体を設ける位置も第3図忙示すように、ミク
サダイオードの近傍ならば、どの位置に置いてもよい。
In addition, the number of strut conductors tmO must be limited to one:
Alternatively, a plurality of strip conductors may be used as shown in Fig. 3, and the strip conductor may be placed at any position as long as it is near the mixer diode, as shown in Fig. 3.

また1以上の説明では、牛導体累子として、ミクサダイ
オードを用い、平衡ミクサとして動作させているが、こ
の発明は、これに限ることなく。
Further, in one or more of the explanations, a mixer diode is used as the conductor resistor and is operated as a balanced mixer, but the present invention is not limited to this.

半導体素子としては、  PINダイオードFET等を
用いてもよく、さらに、平衡変m器として動作させても
よい。
As the semiconductor element, a PIN diode FET or the like may be used, and furthermore, it may be operated as a balanced transformer.

また以上の説明では。マイクロストリップ線路(5)の
汲を平行な2本のスリット(3a) (3b)上の偶モ
ードの汲に変換する変換部(7)は導通孔(8)を使う
形状としているが、これに限らず、偶モードを@振する
回路ならばすべてよく0図4に示すように。
Also in the above explanation. The conversion part (7) that converts the flow of the microstrip line (5) to the even mode flow on the two parallel slits (3a) (3b) has a shape that uses a conduction hole (8). As shown in Figure 4, any circuit that oscillates in even mode is suitable.

う変換部としてもよい。It may also be used as a converter.

(8) 以上のように、この発明は、  MIC基板の裏面に設
けたスト9ッグ導体の長さ調整および、半導体素子と微
小スリットまでの距離の調整によシ、半導体素子をMI
C基板から取シはずすことなく、各周〃数における整合
を独立にとることができる利点を侍っている。さらに、
この発明はダイオードの極く近傍に整合用の素子を設け
ているので、広帯域な特性が得られる利点を持っている
(8) As described above, the present invention allows semiconductor devices to be integrated into MI by adjusting the length of the string conductor provided on the back surface of the MIC substrate and adjusting the distance between the semiconductor device and the minute slit.
It has the advantage of being able to independently match each rotation without removing it from the C board. moreover,
Since this invention provides a matching element very close to the diode, it has the advantage of providing broadband characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

A−1図は、従来のマイクロ汲半導体装置の主要部分を
示す図、第2図は、この発明の一実施例を示す図、第3
図は、この発明の他の実施例を示す図、第4図はこの発
明の他の実施例を示す図である。 図中(1)は金属M、 f2)はスリット、  (3a
)(3b)は2本の平行なスリブ)、  (4aン(4
b)はミクサダイオード、00)はストリップ導体、 
 (12,) (12b) (12C)は微小スリット
である。 なお1.図中、同一あるいは、相当部分には同一符号を
付して示しである。 (9) 第1図 第2図 1r
Figure A-1 is a diagram showing the main parts of a conventional micro-scale semiconductor device, Figure 2 is a diagram showing an embodiment of the present invention, and Figure 3 is a diagram showing an embodiment of the present invention.
This figure shows another embodiment of the invention, and FIG. 4 shows another embodiment of the invention. In the figure, (1) is metal M, f2) is slit, (3a
) (3b) is two parallel slabs), (4a (4
b) is a mixer diode, 00) is a strip conductor,
(12,) (12b) (12C) is a minute slit. Note 1. In the drawings, the same or corresponding parts are designated by the same reference numerals. (9) Figure 1 Figure 2 1r

Claims (1)

【特許請求の範囲】[Claims] 一方の面に金属膜を設けた誘電体基板の金属膜上の1本
のスリットが、平行な2本のスリットに分岐され上記平
行な2本のスリットの所定の位置にそれぞれ半導体素子
を装着したマイクロ汲半導体装置において、平行な2本
のスリットの所定の位置の誘電体基板裏面に、長さを調
整できるストリップ導体を必要数設け、且つ、上記48
導体累子と1本のスリットとの間の上記平行な2本のス
リットにはさまれる導体に、上記平行な2本のスリット
に直交する微小スリットを必要箇数設けたことを特徴と
するマイクロ汲半導体装置。
One slit on the metal film of a dielectric substrate provided with a metal film on one surface was branched into two parallel slits, and a semiconductor element was mounted at a predetermined position of each of the two parallel slits. In the micro-circuit semiconductor device, a necessary number of strip conductors whose lengths can be adjusted are provided on the back surface of the dielectric substrate at predetermined positions of two parallel slits, and the above-mentioned 48
The micro slit is characterized in that the conductor sandwiched between the two parallel slits between the conductor transponder and one slit is provided with a necessary number of minute slits orthogonal to the two parallel slits. Semiconductor equipment.
JP58048269A 1983-03-23 1983-03-23 Microwave semiconductor device Pending JPS59175142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58048269A JPS59175142A (en) 1983-03-23 1983-03-23 Microwave semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58048269A JPS59175142A (en) 1983-03-23 1983-03-23 Microwave semiconductor device

Publications (1)

Publication Number Publication Date
JPS59175142A true JPS59175142A (en) 1984-10-03

Family

ID=12798714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58048269A Pending JPS59175142A (en) 1983-03-23 1983-03-23 Microwave semiconductor device

Country Status (1)

Country Link
JP (1) JPS59175142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209309A (en) * 1987-02-26 1988-08-30 Mitsubishi Electric Corp Microwave semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535530A (en) * 1978-09-06 1980-03-12 Nippon Telegr & Teleph Corp <Ntt> Mic double balance type mixer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5535530A (en) * 1978-09-06 1980-03-12 Nippon Telegr & Teleph Corp <Ntt> Mic double balance type mixer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63209309A (en) * 1987-02-26 1988-08-30 Mitsubishi Electric Corp Microwave semiconductor device

Similar Documents

Publication Publication Date Title
JP3859340B2 (en) Semiconductor device
JP2019530373A (en) Package structure including at least one transition forming a contactless interface
US20100295701A1 (en) Interconnection device for electronic circuits, notably microwave electronic circuits
USRE35869E (en) Miniature active conversion between microstrip and coplanar wave guide
EP0729669B1 (en) Dual-sided push-pull amplifier
Strauss et al. Millimeter-wave monolithic integrated circuit interconnects using electromagnetic field coupling
Toker et al. Branch-line couplers using unequal line lengths
US3530407A (en) Broadband microstrip hybrid tee
JPS59175142A (en) Microwave semiconductor device
JP3619396B2 (en) High frequency wiring board and connection structure
JP4304784B2 (en) Semiconductor chip mounting substrate and high frequency device
JPH0522001A (en) Transmission line structure
JPH08250911A (en) High frequency air-tight module
JPS6345901A (en) Directiional coupler
JPH11186458A (en) Connecting structure for transmission path for high frequency and wiring board
JP3181036B2 (en) Mounting structure of high frequency package
JPH04276905A (en) Manufacture of strip line
JPH01198804A (en) Meander line
KR101938227B1 (en) Waveguide package
JPS644362B2 (en)
JPS6397001A (en) Microwave semiconductor device
JP2619097B2 (en) Coupler
JPS62245804A (en) 90× hybrid
JP2001251109A (en) Structure of conversion line of high frequency transmission line, high frequency circuit board using the same and its mounting structure
EP4165718A1 (en) Integrated circulator system