JPS59174532A - Manufacture of iron oxide hydrate - Google Patents

Manufacture of iron oxide hydrate

Info

Publication number
JPS59174532A
JPS59174532A JP58045326A JP4532683A JPS59174532A JP S59174532 A JPS59174532 A JP S59174532A JP 58045326 A JP58045326 A JP 58045326A JP 4532683 A JP4532683 A JP 4532683A JP S59174532 A JPS59174532 A JP S59174532A
Authority
JP
Japan
Prior art keywords
iron oxide
nuclei
oxide hydrate
hydrated iron
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58045326A
Other languages
Japanese (ja)
Inventor
Nobuo Takagi
高木 伸夫
Masanori Konno
金野 聖憲
Takeo Kobayashi
武夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP58045326A priority Critical patent/JPS59174532A/en
Publication of JPS59174532A publication Critical patent/JPS59174532A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain iron oxide hydrate suitable for use as a starting material for needlelike magnetic powder of iron oxide or metallic iron for a magnetic recording medium by forming nuclei of iron oxide hydrate crystals in an acidic state, adding an alkali, and growing the crystals. CONSTITUTION:A suspension contg. Fe(OH)3 prepd. by reacting a ferric salt such as Fe2(SO4)3 or FeCl3 with an aqueous soln. of an alkli such as NaOH is aged to manufacture iron oxide hydrate as a starting material for magnetic powder. At this time, nuclei of iron oxide hydrate crystals are formed by aging at 1-6 pH and 20-100 deg.C for 5-240min, the alkali is further added, and the crystals are grown at 10-13.5pH. Relatively coarse particles of iron oxide hydrate are obtd. when the nuclei forming stage is carried out at a lower temp. for a shorter time, and the alkali is added before many nuclei are formed. Relatively fine particles of iron oxide hydrate are obtd. when the nuclei forming stage is carried out at a higher temp. for a longer time and the alkali is added after many nuclei are formed.

Description

【発明の詳細な説明】 本発明は磁気記録媒体用の針状酸化鉄磁性粉末あるいは
針状金属鉄磁性粉末製造の出発原料として好適な含水酸
化鉄の製造法に関する。更忙詳しくは枝分れがなく、粒
度分布巾のせまい針状含水酸化鉄を長軸の長さを自由に
制御して製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrated iron oxide suitable as a starting material for producing acicular iron oxide magnetic powder or acicular metal iron magnetic powder for magnetic recording media. More specifically, the present invention relates to a method for producing acicular hydrated iron oxide with no branching and a narrow particle size distribution by freely controlling the length of the major axis.

一般に酸化鉄磁性粉末あるいは金属鉄磁性粉末の粒子形
状は、出発原料物質である含水酸化鉄(a −FeOO
H−β−FeOOH又はr−FeOOH)の形状忙大き
く依存するため、原料として使用する含水酸化鉄の形状
が極めて重要である。
In general, the particle shape of iron oxide magnetic powder or metal iron magnetic powder is based on the starting material hydrated iron oxide (a -FeOO
The shape of the hydrated iron oxide used as a raw material is extremely important, since the shape of the hydrated iron oxide (H-β-FeOOH or r-FeOOH) greatly depends on the shape.

従来含水酸化鉄の製法としては第1鉄塩にアルカリ水溶
液と酸素含有ガスを作用させて含水酸化鉄を生成させる
方法が汎用されているが、この方法は生成含水酸化鉄の
針状性(長軸と短軸との比が優れた、ものが得られ、か
つ含水酸化鉄粒子の大きさの制御が比較的容易でおる反
面、枝分れが発生し易いことおよび粒度分布範囲が広い
ことという欠点を有する。一方第2鉄塩とアルカリ水溶
液とを反応して得られる水酸化第2鉄を含む懸濁液を熟
成させて含水酸化鉄を得る方法も提案されているが、こ
の方法による含水酸化鉄は枝分れがない反面含水酸化鉄
粒子の大きさの制御が困難で特に微細なものが得られに
くくかつ粒度分布範囲が欠点を排除した枝分れがなく、
粒度分布範囲が狭く、かつ粒子の大きさを制御すること
が容易な微細な含水酸化鉄の製造法を提供することにあ
る。
Conventionally, hydrated iron oxide has been produced by treating ferrous salt with an alkaline aqueous solution and an oxygen-containing gas to produce hydrated iron oxide. Although it is possible to obtain products with an excellent ratio of the axis to short axis, and it is relatively easy to control the size of the hydrated iron oxide particles, on the other hand, branching is likely to occur and the particle size distribution range is wide. On the other hand, a method for obtaining hydrated iron oxide by aging a suspension containing ferric hydroxide obtained by reacting a ferric salt with an alkaline aqueous solution has been proposed; Although iron oxide is unbranched, it is difficult to control the size of hydrated iron oxide particles, making it difficult to obtain particularly fine particles, and the particle size distribution range eliminates the drawbacks.
It is an object of the present invention to provide a method for producing fine hydrated iron oxide having a narrow particle size distribution range and easily controlling the particle size.

本発明者は本発明の目的を達成するために鉄塩から含水
酸化鉄の生成条件並に結晶成長条件を変本発明は第2鉄
塩とアルカリ水溶液とを反応させて得られた尿酸化第2
鉄を含む懸濁液を熟成させることによシ磁性粉の出発原
料となる含水酸化鉄を製造する方法において、PH1〜
6.温度20〜100℃で5〜240分反応せしめ含水
酸化鉄結晶の核を発生させた後、更にアルカリを加えP
H10〜13.5として結晶を成長させることを特徴と
する含水酸化鉄の製造方法にある。
In order to achieve the object of the present invention, the present inventor changed the conditions for producing hydrated iron oxide from iron salt and the crystal growth conditions. 2
In a method for producing hydrated iron oxide, which is a starting material for magnetic powder, by aging an iron-containing suspension, the pH is 1 to 1.
6. After reacting at a temperature of 20 to 100°C for 5 to 240 minutes to generate nuclei of hydrated iron oxide crystals, an alkali is further added to P.
A method for producing hydrated iron oxide characterized by growing crystals as H10-13.5.

含水酸化鉄生成における本発明方法によれば、酸性側で
は生成含水酸化鉄の結晶核は容易に生成するが、その結
晶成長は非常に遅いため、時間の経過に従って発生する
結晶核の数は増大するが、一つ一つの核の成長は殆んど
みられない。また核の成長時の温度を変化させると、温
度が高いほど核の数は増大する。酸性側で5〜7240
分結晶核を発生させた後アルカリを添加してPHを10
以上にすると新たな結晶核の発生はなく、専ら既存の結
晶核が、t’t ’y均等忙成長することが認められた
According to the method of the present invention for producing hydrated iron oxide, crystal nuclei of the produced hydrated iron oxide are easily generated on the acidic side, but since the crystal growth is very slow, the number of crystal nuclei generated increases as time passes. However, the growth of individual nuclei is hardly observed. Furthermore, when the temperature at which the nuclei grow is changed, the number of nuclei increases as the temperature increases. 5-7240 on the acidic side
After generating crystal nuclei, add alkali to raise the pH to 10.
In the above manner, no new crystal nuclei were generated, and it was observed that the existing crystal nuclei were uniformly grown.

以上の事から明らかな様に比較的大きな粒子の含水酸化
鉄を得ようとする場合には結晶核発生期の温度を低温に
し時間を短くして発生する核の数が少い内にアルカリを
加えて結晶核を成長させればよく、比較的小さな粒子の
含水酸化鉄を得ようとする場合には結晶核発生期の温度
を高部にし時間を長くして発生する核の数が多くなって
からアルカリを加えて結晶核を成長させればよい。
As is clear from the above, when attempting to obtain relatively large particles of hydrated iron oxide, the temperature during the crystal nucleation stage should be lowered and the time should be shortened, and the alkali should be added while the number of nuclei generated is small. In addition, it is sufficient to grow crystal nuclei, and if you are trying to obtain relatively small particles of hydrated iron oxide, increase the number of nuclei generated by setting the temperature during the crystal nucleus generation stage to a high temperature and increasing the time. Then add alkali to grow crystal nuclei.

含水酸酸鉄の結晶核発生段階において、PH1未満では
含水酸化鉄は生成↓ルも溶解の方が速く。
At the stage of crystal nucleation of hydrated iron oxide, at pH below 1, hydrated iron oxide is formed and dissolved faster.

またPH6を越えると水酸化第2鉄が安定となるため含
水酸化鉄か生成され難く、いずれの場合も充分な結晶核
が得られないのてPH条件は1〜6好ましくは2.5〜
4.0である。またこの結晶核発生段階における温度は
20℃未満では核の発生速度が遅く、核発生が不充分な
ため、アルカリ性にした時にも新たな核が発生して異常
成長をし、異常に大きな結晶が混在することになシ好ま
しくない。
In addition, if the pH exceeds 6, ferric hydroxide becomes stable, making it difficult to produce hydrated iron oxide, and in either case, sufficient crystal nuclei cannot be obtained, so the pH condition is 1-6, preferably 2.5-6.
It is 4.0. In addition, if the temperature at this stage of crystal nucleation is less than 20°C, the rate of nucleation is slow and nucleation is insufficient, so even when the temperature is made alkaline, new nuclei will be generated and abnormal growth will occur, resulting in abnormally large crystals. It is not desirable to mix them together.

また100℃を越えても均一な結晶核は得られるが、こ
の時は結晶核の生成が極めて早いため結晶核の数が鉄の
総tK対して多くなシすぎ成長させても結晶の長軸径が
0.1μ以下となシ微小すぎて磁性粉出発原料として好
適ではなくなる。
In addition, uniform crystal nuclei can be obtained even at temperatures exceeding 100°C, but at this time the crystal nuclei are formed extremely quickly, so the number of crystal nuclei is large relative to the total tK of iron. If the diameter is 0.1μ or less, it is too small to be suitable as a starting material for magnetic powder.

結晶成長段階においてPH10未満では水酸化第2#c
が比較的安定なため含水酸化鉄の成長がおそく、また成
長しても結晶性か悪い。またPH13,5を越えると粒
状のα・Fet03が生成し磁性粉出発原料として好適
ではない。従ってPH条件は10〜16.5好ましくは
11〜16である。又この場合の温度条件は特に制限は
なく結晶核発生段階の温度と同じでもよいが温度を上げ
た方が成長速度が早く、熟成完了までの時間が短縮され
工業的に有利である。
At the crystal growth stage, if the pH is less than 10, hydroxide #2
Because iron oxide is relatively stable, the growth of hydrated iron oxide is slow, and even if it does grow, it has poor crystallinity. Moreover, when the pH exceeds 13.5, granular α·Fet03 is produced, which is not suitable as a starting material for magnetic powder. Therefore, the pH condition is 10-16.5, preferably 11-16. The temperature conditions in this case are not particularly limited and may be the same as the temperature at the crystal nucleation stage; however, raising the temperature is industrially advantageous because the growth rate is faster and the time required to complete ripening is shortened.

本発明において使用する第2鉄塩としては硫酸第二鉄、
塩化第二鉄、硝酸第二鉄などが挙げられる。また硫酸第
1鉄堪を過酸化水素などの適当な酸化剤を用いて酸化し
たものでもよい。またアルカリとしては通常水酸化ナト
リウム、水酸化カリウムなどの苛性アルカリ水溶液が用
いられるが他に炭酸ナトリウム、重炭酸ナトリウム、炭
酸アンモニウムなどの水溶液を使用してもよい。
The ferric salts used in the present invention include ferric sulfate,
Examples include ferric chloride and ferric nitrate. Alternatively, ferrous sulfate may be oxidized using a suitable oxidizing agent such as hydrogen peroxide. As the alkali, an aqueous caustic alkali solution such as sodium hydroxide or potassium hydroxide is usually used, but an aqueous solution of sodium carbonate, sodium bicarbonate, ammonium carbonate, etc. may also be used.

以下本発明を実施例に基き比較例と共に述べる。The present invention will be described below based on Examples and Comparative Examples.

実施例1゜ 0.50 m、oL/1の硫酸第2鉄水溶液500−に
水酸化ナトリウム水溶液を加えてPH2,9とした後液
量を1tとし温度801℃で、反応時間条件のみを30
゜分(試験A1)1時間(試験2)2時間(試験屋6)
4時間(試験A4)に変更し各時間攪拌した後、更に水
酸化ナトリウム溶液を加え、PH12,3とし4時間成
長させて夫々試験41〜4を行い、含水酸化鉄α−Fe
OOHを得た。これら試験条件及び得られた含水酸化鉄
(α−F e OOH)を電子顕微鏡にて観察し得られ
た結晶の平均粒径(長軸)を第1表に示す。更に試験A
2の30,000倍電子顕微鏡写真を参考写真A1に試
験A4の63,000倍電子顕微鏡写真を参考写真A2
として示した。
Example 1 A sodium hydroxide aqueous solution was added to a 500-mL ferric sulfate aqueous solution of 0.50 m, oL/1 to adjust the pH to 2.9, and then the liquid volume was 1 t, the temperature was 801°C, and the reaction time was 30°C.
°min (Test A1) 1 hour (Test 2) 2 hours (Testing shop 6)
After changing the time to 4 hours (Test A4) and stirring for each hour, a sodium hydroxide solution was further added to adjust the pH to 12.3, and the growth was performed for 4 hours, and Tests 41 to 4 were conducted respectively.
Got OOH. Table 1 shows these test conditions and the average grain size (long axis) of the crystals obtained by observing the obtained hydrated iron oxide (α-Fe OOH) with an electron microscope. Further test A
Reference photo A1 is the 30,000x electron micrograph of Test 2. Reference photo A2 is the 63,000x electron micrograph of Test A4.
It was shown as

第1表及び参考写真の結果が示す如く含水酸化鉄の結晶
平均粒径は0.1〜0.5μと結晶核発生時間を変更す
ることによシ平均粒径を制御し得て、枝分れがなく又第
1図に示す如く粒度分布範囲が狭い含水酸化鉄が得られ
た。
As shown in Table 1 and the reference photos, the average crystal grain size of hydrated iron oxide is 0.1 to 0.5μ, and the average grain size can be controlled by changing the crystal nucleation time. Hydrous iron oxide was obtained without any droplets and with a narrow particle size distribution range as shown in FIG.

実施例2 0、5 mo1/lの硫酸第1鉄水溶液500−に65
%過酸化水素水17.5−を加えて酸化した後水酸化す
) IJウム水溶液を加えてPHを6.5に調整し液量
を16とした後60℃で2時間攪拌抜水酸化ナトリウム
水溶液を加えてPHを12.41Cすると共に80℃に
昇漉し、4時間攪拌を続は念。得られた含水酸化鉄(α
−Fe OOH)は第1表に示す如く平均粒径0.25
μで粒度分布のせまいものであった。
Example 2 0.5 mo1/l ferrous sulfate aqueous solution 500-65
After oxidizing by adding 17.5% hydrogen peroxide solution, hydroxide is added) Add IJum aqueous solution to adjust the pH to 6.5, bring the liquid volume to 16, and stir at 60°C for 2 hours to remove sodium hydroxide. Add an aqueous solution to bring the pH to 12.41C, raise the temperature to 80°C, strain, and continue stirring for 4 hours. The obtained hydrated iron oxide (α
-Fe OOH) has an average particle size of 0.25 as shown in Table 1.
μ, the particle size distribution was narrow.

実施例6 0、5 mol、/lの塩化第2鉄水溶液500−に水
酸化ナトリウム水溶液を加えてPHを3.1に調整し液
量を1tとした後90℃に昇温し30分攪拌後水酸化ナ
トリウム水溶液を加えてPHを11.8とした後4時間
攪拌を続けた。得られた含水酸化鉄(β−Fe00H)
は第1表に示す如く平均粒径0.65μで粒度分布のせ
まいものであった。
Example 6 A sodium hydroxide aqueous solution was added to a 0.5 mol/l ferric chloride aqueous solution to adjust the pH to 3.1, the liquid volume was brought to 1 t, and then the temperature was raised to 90°C and stirred for 30 minutes. After adding an aqueous sodium hydroxide solution to adjust the pH to 11.8, stirring was continued for 4 hours. Obtained hydrated iron oxide (β-Fe00H)
As shown in Table 1, the average particle size was 0.65μ and the particle size distribution was narrow.

比較例1゜ 実施例1における試験扁3の結晶生成時のPH2,9を
PH7,0とした以外は全く同じ条件にて反応せしめ結
晶の熟成を行ったが、針状の含水酸化鉄は得られなかっ
た。
Comparative Example 1゜The reaction was carried out under exactly the same conditions as in Example 1, except that the pH 2.9 at the time of crystal formation of the test plate 3 was changed to PH 7.0, and the crystals were aged. I couldn't.

比較例2゜ 0、5 mot/lの硫酸第2鉄水溶液500 m/に
水酸化ナトリウム水溶液を加えてPH12,3として液
量を1tとし、温度80℃で5時間攪拌して含水酸化鉄
α−FeOOHを得たが結晶長軸の分布は1〜3μで熟
成時間が長すぎると結晶性が悪い結果を示した。
Comparative Example 2 A sodium hydroxide aqueous solution was added to 500 m/l of a 0.5 mot/l ferric sulfate aqueous solution to adjust the pH to 12.3, and the liquid volume was adjusted to 1 t, and the mixture was stirred at a temperature of 80°C for 5 hours to obtain hydrated iron oxide α. -FeOOH was obtained, but the distribution of crystal long axes was 1 to 3μ, and if the ripening time was too long, the crystallinity was poor.

比較例3 0、5 mol、/lの硫酸第1鉄水溶液500dK3
5%適酸化水素水17.5−を加えて酸化した後水酸化
ナトリウム水溶液を加えてPHを12.5に調整し液1
・を1tとして20℃にて24時間攪拌した後80℃に
昇温し8時間攪拌を続けた。得られた含水酸化鉄(α−
FeOOH)は第1表に示す如く平均粒径0.8μで粒
度分布は第1図に示す如く、本発明方法の実施例′1と
比較して広いものであった。
Comparative Example 3 0.5 mol/l ferrous sulfate aqueous solution 500 dK3
After oxidizing by adding 17.5% of 5% hydrogen oxide solution, add sodium hydroxide aqueous solution to adjust the pH to 12.5, and make liquid 1.
After stirring at 20° C. for 24 hours, the temperature was raised to 80° C. and stirring was continued for 8 hours. The obtained hydrated iron oxide (α-
As shown in Table 1, the average particle size of FeOOH) was 0.8 μm, and the particle size distribution was wider than that of Example '1 of the method of the present invention, as shown in FIG.

以上の実施例差に比較例の実験条件及び得られた含水酸
化鉄(α−Fe00H)の平均粒径(長軸)を第1表に
、また実施例1における試験A1と比較例3の得られた
含水酸化鉄の粒度分布を第1図に示す。
In addition to the differences in the above examples, the experimental conditions of the comparative example and the average particle diameter (long axis) of the obtained hydrated iron oxide (α-Fe00H) are shown in Table 1. Figure 1 shows the particle size distribution of the hydrated iron oxide.

叙上の如く本発明による含水酸化鉄は磁気記録媒体用の
針状酸化鉄磁性粉末あるいは針状金属鉄磁性粉末の製造
用原料として好適なもので゛ある。
As mentioned above, the hydrated iron oxide according to the present invention is suitable as a raw material for producing acicular iron oxide magnetic powder or acicular metal iron magnetic powder for magnetic recording media.

で夫々製造した含水酸化鉄の粒径(長軸の長さ)の分布
図である。
FIG. 3 is a distribution diagram of the particle size (length of major axis) of hydrated iron oxide produced in each of the above.

代理人 弁理士 木 村 三 朗 第1因 難イ仝()) 1、事件の表示 特願昭58−45326 2、発明の名称 含水酸化鉄の製造方法 3、補市をする者 事件との関係   O許出願人 8 ”(618)三井金属鉱業株式会社(氏 名) 4、代理人 7、浦IFの内容 1、発明の名称の「含水酸化鉄の製造法」をr含水酸化
鉄の製造方法jと補正する。
Agent Patent Attorney Mitsuro Kimura 1st cause ()) 1. Indication of the case Patent application 1982-45326 2. Name of the invention Process for producing hydrated iron oxide 3. Relationship with the case of the person making the case O Applicant 8” (618) Mitsui Kinzoku Mining Co., Ltd. (name) 4. Agent 7. Contents of Ura IF 1. The title of the invention “method for producing hydrated iron oxide”. Correct it as j.

Claims (1)

【特許請求の範囲】 1、第2鉄塩とアルカリ水溶液とを反応させて得られた
水酸化第2鉄を含む懸濁液を熟成させることによシ磁性
粉の出発原料となる含水酸化鉄を製造する方法において
、 Pt(1〜6、温度20〜100℃で、5〜240
分反応せしめ含水酸化鉄結晶の核を発生させた後、更に
アルカリを加えPHIO〜16.5として結晶を成長さ
せることを特徴とする含水酸化鉄の製造方法。 2、前記第2鉄塩が硫酸第2鉄、塩化第2鉄、又は硝酸
第2鉄である特許請求範囲第1項記載の含水酸化鉄の製
造方法。 6、含水酸化鉄が、α−FeOOH,β−FeOOH−
又はr−Fe00Hである特許請求範囲第1項記載の含
水酸化鉄の製造方法。 4、前記第2鉄塩が第1鉄塩を過酸化水素などの酸化剤
にて酸化したものである特許請求の範囲第1項及び第2
項記載の含水酸化鉄の製造方法、
[Claims] 1. Hydrous iron oxide, which is a starting material for magnetic powder, is produced by aging a suspension containing ferric hydroxide obtained by reacting a ferric salt with an aqueous alkaline solution. In the method for producing Pt (1 to 6, at a temperature of 20 to 100°C, 5 to 240
1. A method for producing hydrated iron oxide, which comprises reacting to generate a nucleus of hydrated iron oxide crystals, and then adding an alkali to grow crystals at PHIO~16.5. 2. The method for producing hydrated iron oxide according to claim 1, wherein the ferric salt is ferric sulfate, ferric chloride, or ferric nitrate. 6. Hydrous iron oxide is α-FeOOH, β-FeOOH-
or r-Fe00H, the method for producing hydrated iron oxide according to claim 1. 4. Claims 1 and 2, wherein the ferric salt is a ferrous salt oxidized with an oxidizing agent such as hydrogen peroxide.
The method for producing hydrated iron oxide described in
JP58045326A 1983-03-19 1983-03-19 Manufacture of iron oxide hydrate Pending JPS59174532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58045326A JPS59174532A (en) 1983-03-19 1983-03-19 Manufacture of iron oxide hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58045326A JPS59174532A (en) 1983-03-19 1983-03-19 Manufacture of iron oxide hydrate

Publications (1)

Publication Number Publication Date
JPS59174532A true JPS59174532A (en) 1984-10-03

Family

ID=12716186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58045326A Pending JPS59174532A (en) 1983-03-19 1983-03-19 Manufacture of iron oxide hydrate

Country Status (1)

Country Link
JP (1) JPS59174532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020920A (en) * 2016-08-02 2018-02-08 清水建設株式会社 Manufacturing method of akaganeite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020920A (en) * 2016-08-02 2018-02-08 清水建設株式会社 Manufacturing method of akaganeite

Similar Documents

Publication Publication Date Title
US4729846A (en) Method for manufacturing lepidocrocite
US4597958A (en) Method of producing hydrated iron oxide
JPS59174532A (en) Manufacture of iron oxide hydrate
GB2085860A (en) Methods of producing gamma ferric hydroxyoxide powder
KR890000703B1 (en) A process for preparing acicular alpha-feooh
KR20220002285A (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced thereby
JPH10259026A (en) Production of fine particle of acicular goethite
JP2569580B2 (en) Method for producing acicular goethite
JPS62223022A (en) Production of acicular crystal of goethite particle powder
JP3087778B2 (en) Method for producing acicular goethite particle powder
JP3087780B2 (en) Method for producing acicular goethite particle powder
JPS6350326A (en) Production of hematite
JP3087777B2 (en) Method for producing acicular goethite particle powder
JPS6081029A (en) Manufacture of goethite
US4255409A (en) Process for producing acicular goethite
JP2743000B2 (en) Spindle-shaped goethite particles and method for producing the same
JPS6126708A (en) Production of magnetic metallic powder
JPS58167432A (en) Production of needle-like crystalline iron oxide particle powder
JPH0616426A (en) Production of spindle-shaped goethite granular powder
JPS59119704A (en) Manufacture of acicular goethite
JPS60137832A (en) Production of iron alpha-oxyhydroxide in strip state
JPS60118630A (en) Production of alpha-ferric hydroxide oxide
JPH0259431A (en) Production of iron oxyhydroxide
JPH02267123A (en) Production of lepidocrosite
JP3003777B2 (en) Method for producing spindle-shaped magnetic iron oxide particles