JPH10259026A - Production of fine particle of acicular goethite - Google Patents

Production of fine particle of acicular goethite

Info

Publication number
JPH10259026A
JPH10259026A JP6685297A JP6685297A JPH10259026A JP H10259026 A JPH10259026 A JP H10259026A JP 6685297 A JP6685297 A JP 6685297A JP 6685297 A JP6685297 A JP 6685297A JP H10259026 A JPH10259026 A JP H10259026A
Authority
JP
Japan
Prior art keywords
suspension
fine particles
solution
ferric
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6685297A
Other languages
Japanese (ja)
Inventor
Kazuharu Iwasaki
和春 岩崎
Sumie Hayashi
澄江 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6685297A priority Critical patent/JPH10259026A/en
Publication of JPH10259026A publication Critical patent/JPH10259026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain fine particles of acicular goethite excellent in acicularity, sharp in size distribution and having no twin crystal, and additionally having durability against various heat treatments in its post-process and retaining its shapes as acicular fine particles, by adding a solution of alkali carbonate to a suspended resultant mixture of ferric salt solution and strong alkaline solution so as to contain a specific concentration of carbonate ion. SOLUTION: This method is to produce fine particles of acicular goethite by aging a suspension containing at least one gelatinized amorphous substance obtained from a mixture of ferric salt solution and strong alkaline solution, i.e., ferric hydroxide and/or FeOOH with a little water therein. In the production, a solution of alkali carbonate is added to the suspension so that the molar ratio of carbonate ion to ferric ion may be 6.0 to 10.0 and the aging is conducted preferably at 35 to 80 deg.C. Preferably, the concentration of the ferric salt solution in the suspension is 0.01 to 0.10 mol/l and the suspension is at pH12.6 to 13.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は針状ゲーサイト微粒
子の製造方法に関し、さらに詳しくは、塗布型の高密度
磁気記録媒体用の磁性粉末原料や、顔料等として好適な
針状ゲーサイト微粒子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing acicular goethite microparticles, and more particularly, to a method of producing acicular goethite microparticles suitable as a pigment or the like as a magnetic powder raw material for a coating type high density magnetic recording medium. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】塗布型の磁気記録媒体に使用される針状
γ−Fe2 3 やFe3 4 、およびこれらにCoを被
着した酸化鉄系磁性粉末、あるいは針状FeやFe−C
o合金等の金属系磁性粉末の出発原料として、針状ゲー
サイト(Goethite;α−FeOOH)微粒子が
広く用いられている。これら磁性粉末の磁気特性、粉体
特性および塗料特性は、出発原料である針状ゲーサイト
の粒子形状等に大きく影響される。したがって、磁気特
性やレオロジー特性に優れた磁性粉末を得るためには、
微粒子で針状性に優れ、またこれらの分布がシャープで
あること、分岐形状すなわち双晶がないこと、かつ後工
程で加えられる脱水、還元や酸化等の各種熱処理に対し
て耐久性を示し針状微粒子形状が良好に保存されること
等の条件を満たす単分散の針状ゲーサイト微粒子を作成
する必要がある。
2. Description of the Related Art Needle-like γ-Fe 2 O 3 and Fe 3 O 4 used for a coating type magnetic recording medium, and iron oxide-based magnetic powder obtained by coating Co on them, or acicular Fe or Fe- C
As starting materials for metal-based magnetic powders such as o-alloys, acicular goethite (α-FeOOH) fine particles are widely used. The magnetic properties, powder properties, and coating properties of these magnetic powders are greatly affected by the particle shape of acicular goethite, which is the starting material. Therefore, to obtain a magnetic powder with excellent magnetic and rheological properties,
Fine needles with excellent needle-like properties, sharp distribution of these, no branching, that is, no twins, and durability against various heat treatments such as dehydration, reduction, and oxidation added in the subsequent process. It is necessary to prepare monodisperse needle-like goethite fine particles satisfying conditions such as good preservation of the shape of the fine fine particles.

【0003】従来、針状ゲーサイト微粒子の製造方法と
して何種類かの方法が提案されており、例えば第一鉄塩
溶液にアルカリ溶液を加えて得られる水酸化第一鉄のコ
ロイドを酸性、中性あるいはアルカリ性懸濁液中で酸化
する方法、第二鉄塩溶液にアルカリ溶液を加えて得られ
る水酸化第二鉄のコロイドを強アルカリ濁液中で高温高
圧処理する水熱合成法、および第二鉄塩溶液にアルカリ
溶液を加えて得られる水酸化第二鉄のコロイドを強アル
カリ濁液中で比較的低温で熟成する方法等が知られてい
る。
Hitherto, several methods have been proposed as a method for producing acicular goethite fine particles. For example, a ferrous hydroxide colloid obtained by adding an alkali solution to a ferrous salt solution is converted into an acidic, medium, A method of oxidizing in a neutral or alkaline suspension, a hydrothermal synthesis method in which a ferric hydroxide colloid obtained by adding an alkali solution to a ferric salt solution is subjected to high-temperature and high-pressure treatment in a strong alkali turbid solution, and A method is known in which a ferric hydroxide colloid obtained by adding an alkali solution to a ferrous salt solution is aged at a relatively low temperature in a strong alkali turbid solution.

【0004】これらの方法のうち、最初の水酸化第一鉄
のコロイドを酸化する方法では粒度分布が拡がりやす
く、また約120°の角度をなす双晶構造の粒子を生成
しやすい。このような不揃いな針状ゲーサイト微粒子を
出発原料とした磁性粉末は、粒子間の焼結が起こりやす
く、これを磁気記録媒体の磁気記録層に適用すると、磁
性粉末の分散性や配向性等に劣り、電磁変換特性の向上
は困難となる。また二番目の水熱合成法では、100℃
以上の高温で合成するため、しばしばα−Fe2 3
立方状結晶が発生しこれが針状ゲーサイト微粒子に混入
したり、あるいは針状ゲーサイト微粒子同士が凝集して
針状性が劣化するので、高密度磁気記録媒体用の磁性粉
末の原料としては不適切である。さらに三番目の水酸化
第二鉄のコロイドを強アルカリ濁液中で比較的低温で熟
成する方法は、前述の従来方法を改善するために提案さ
れた方法であり、例えば特公昭55−4695号公報に
開示されている。しかしながら、熟成条件の設定により
針状ゲーサイト微粒子の粒子形態が大きく変動し、安定
して針状性の優れた微細粒子を合成することが困難であ
った。
Of these methods, the first method of oxidizing ferrous hydroxide colloids tends to broaden the particle size distribution and easily produce particles having a twin structure forming an angle of about 120 °. Magnetic powder starting from such irregular needle-like goethite fine particles tends to cause sintering between the particles, and when this is applied to the magnetic recording layer of a magnetic recording medium, the dispersibility and orientation of the magnetic powder can be reduced. And it is difficult to improve the electromagnetic conversion characteristics. In the second hydrothermal synthesis method, 100 ° C.
Because of the synthesis at the above high temperature, cubic crystals of α-Fe 2 O 3 are often generated and mixed into the acicular goethite fine particles, or the acicular goethite fine particles aggregate to deteriorate the acicularity. Therefore, it is not suitable as a raw material of a magnetic powder for a high-density magnetic recording medium. The third method of aging ferric hydroxide colloid in a strong alkaline turbid solution at a relatively low temperature is a method proposed to improve the above-mentioned conventional method. For example, Japanese Patent Publication No. 55-4695 It is disclosed in the gazette. However, the particle morphology of the acicular goethite fine particles fluctuates greatly depending on the setting of the aging conditions, and it has been difficult to stably synthesize fine particles having excellent acicularity.

【0005】そこで、熟成法において粒度分布に優れ枝
分かれのない針状性に優れた針状ゲーサイト微粒子の製
造方法として、第二鉄塩溶液に水酸化アルカリを添加し
pH6〜8の中性領域で水酸化第二鉄のコロイドを生成
させ、このコロイド溶液中にさらに炭酸アルカリを添加
後、熟成する方法が提案されている。しかしながら、こ
の方法で生成した針状ゲーサイト微粒子中にも粒状ない
し立方状のα−Fe2 3 粒子が副生し混在する場合が
あり、この方法による針状ゲーサイト微粒子を出発原料
として磁性粉末を製造すると、針状磁性粉末の他に粒状
磁性粉末が混在することになり、磁気記録媒体用磁性粉
末として好ましくない。しかもゲル状水酸化第二鉄コロ
イドの沈澱生成時の懸濁液のpHが6〜8と低いため
に、α−FeOOH粒子への結晶化が阻害され、生成し
た針状ゲーサイト微粒子中に結晶化していない水酸化第
二鉄のゲル状アモルファス物質が混入し易い。
[0005] Therefore, as a method for producing acicular goethite fine particles having an excellent particle size distribution and excellent branch-free acicularity in the aging method, an alkali hydroxide is added to a ferric salt solution and the pH is adjusted to a neutral range of 6 to 8. A method has been proposed in which a ferric hydroxide colloid is produced by adding the alkali metal carbonate to the colloid solution, followed by aging. However, there are also cases where granular or cubic α-Fe 2 O 3 particles are produced as by-products and mixed in the acicular goethite fine particles produced by this method. When the powder is produced, a granular magnetic powder is mixed in addition to the acicular magnetic powder, which is not preferable as a magnetic powder for a magnetic recording medium. In addition, since the pH of the suspension at the time of precipitation of the gelled ferric hydroxide colloid is as low as 6 to 8, crystallization into α-FeOOH particles is inhibited, and the resulting needle-like goethite fine particles are crystallized. A gel-like amorphous substance of ferric hydroxide that has not been converted is likely to be mixed.

【0006】さらに、これらの欠点の改良法として水酸
化アルカリ溶液中に第二鉄塩溶液を添加し、pH9.0
〜12.0のアルカリ領域で水酸化第二鉄のコロイドを
沈澱生成させ、この水酸化第二鉄のコロイド懸濁液に炭
酸アルカリをCO3 2-/Fe3+のモル比が0.4〜4.
8となるように添加した後、熟成して針状ゲーサイト微
粒子を得る方法が、特開昭59−119704号公報に
提案されている。しかしこの方法においても、生成され
る針状ゲーサイト微粒子の微細化が不充分で、最近の高
密度磁気記録媒体用の磁性粉末として好ましくない。こ
のように、いずれの方法においても微細で針状性に優
れ、また熱安定性にも優れた針状ゲーサイト微粒子の製
造方法は、未だ確立されていないと言ってよい。
Further, as a method for improving these disadvantages, a ferric salt solution is added to an alkali hydroxide solution to adjust the pH to 9.0.
A ferric hydroxide colloid is precipitated and formed in an alkali region of about 12.0, and alkali carbonate is added to the ferric hydroxide colloid suspension at a molar ratio of CO 3 2− / Fe 3+ of 0.4. ~ 4.
JP-A-59-119704 proposes a method for obtaining needle-like goethite microparticles after adding so as to obtain a fine particle having a particle size of 8. However, even in this method, the fineness of the acicular goethite fine particles to be generated is insufficient, which is not preferable as a magnetic powder for a recent high-density magnetic recording medium. As described above, it can be said that a method of producing fine acicular goethite fine particles which is fine and excellent in acicularity and excellent in thermal stability in any method has not yet been established.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような技
術的背景のもとに提案するものであり、微粒子で針状性
に優れ、またこれらの分布がシャープであること、分岐
形状すなわち双晶がないこと、かつ後工程で加えられる
脱水、還元や酸化等の各種熱処理に対して耐久性を示
し、針状微粒子形状が良好に保存されること等が可能な
針状ゲーサイト微粒子の製造方法を提供することをその
課題とする。
DISCLOSURE OF THE INVENTION The present invention is based on such a technical background, and is intended to provide fine and fine needle-like properties, a sharp distribution of the fine particles, and a bifurcated shape, that is, a double shape. Manufacture of needle-like goethite fine particles having no crystals and exhibiting durability against various heat treatments such as dehydration, reduction and oxidation added in a later step, and capable of favorably preserving the shape of the needle-like fine particles. The task is to provide a method.

【0008】[0008]

【課題を解決するための手段】本発明の針状ゲーサイト
微粒子の製造方法は、上述の課題を解決するために提案
するものであり、第二鉄塩溶液と強アルカリ溶液とを混
合して生成される、水酸化第二鉄および微量の水分を内
部に含むFeOOHのうちの少なくとも一方のゲル状ア
モルファス物質を含有する懸濁液を熟成することにより
得られる、針状ゲーサイト微粒子の製造方法において、
この懸濁液中に、第二鉄イオンに対する炭酸イオンのモ
ル比が6.0以上10.0以下となるように炭酸アルカ
リ溶液を添加して熟成することを特徴とするものであ
る。第二鉄イオンに対する炭酸イオンのモル比、すなわ
ちCO3 2-/Fe3+のモル比が6.0未満では生成され
る針状ゲーサイト微粒子の微細化が不充分となり、また
単分散の粒子形態を採ることができない。またCO3 2-
/Fe3+のモル比が10.0を超えると、針状ゲーサイ
ト微粒子の微細化の効果が飽和するので炭酸イオンを過
剰に添加することが無意味となる。
The method for producing acicular goethite fine particles of the present invention is proposed to solve the above-mentioned problems, and comprises mixing a ferric salt solution with a strong alkali solution. Method for producing needle-like goethite microparticles obtained by aging the resulting suspension containing at least one gel-like amorphous substance of ferric hydroxide and FeOOH containing a trace amount of water therein At
An alkali carbonate solution is added to the suspension so that the molar ratio of carbonate ion to ferric ion becomes 6.0 or more and 10.0 or less, and the suspension is aged. If the molar ratio of carbonate ion to ferric ion, that is, the molar ratio of CO 3 2− / Fe 3+ is less than 6.0, the resulting fine needle-like goethite particles are insufficiently refined, and the monodisperse particles Cannot take form. CO 3 2-
If the molar ratio of / Fe 3+ exceeds 10.0, the effect of miniaturizing the acicular goethite fine particles is saturated, and it is meaningless to add excessive carbonate ions.

【0009】本発明において、この懸濁液中の第二鉄塩
濃度を0.01mol/l以上0.10mol/l以下
の範囲として熟成することが望ましい。第二鉄塩濃度が
この範囲を超えると、生成する針状ゲーサイト微粒子同
士が凝集し易く単分散の状態で得られ難くなり、また第
二鉄塩濃度がこの範囲未満の場合には、針状ゲーサイト
微粒子の収量が低下するので工業的な製造方法として不
適切となる。
In the present invention, it is desirable that the suspension be fermented with the ferric salt concentration in the range of 0.01 mol / l to 0.10 mol / l. If the ferric salt concentration exceeds this range, the resulting needle-like goethite fine particles are easily aggregated and difficult to obtain in a monodispersed state, and if the ferric salt concentration is less than this range, the needle Since the yield of the goethite-like fine particles decreases, it is unsuitable as an industrial production method.

【0010】また、この懸濁液すなわち懸濁母液のpH
は12.6以上13.5以下であることが望ましい。懸
濁液のpHが13.5を超えると針状ゲーサイト微粒子
同士の凝集が起きやすくなり好ましくない。また懸濁液
のpHが12.6未満では粒状α−Fe2 3 の生成が
起きやすくなり、また後工程での各種熱処理に対する耐
熱性に乏しくなる。したがって、pHを12.6以上1
3.5以下の範囲に選ぶことにより、粒径が小さくまた
粒度分布がシャープとなり、しかも枝別れ結晶である双
晶のない、針状性に優れた針状ゲーサイト微粒子を得る
ことができる。
The pH of this suspension, ie, the suspension mother liquor,
Is desirably 12.6 or more and 13.5 or less. If the pH of the suspension exceeds 13.5, the aggregation of the acicular goethite particles tends to occur, which is not preferable. If the pH of the suspension is less than 12.6, the formation of particulate α-Fe 2 O 3 is likely to occur, and the heat resistance to various heat treatments in the subsequent steps will be poor. Therefore, the pH should be 12.6 or more and 1
By selecting the range of 3.5 or less, it is possible to obtain needle-like goethite fine particles having a small particle size and a sharp particle size distribution, and having no twins which are branched crystals and having excellent needle-like properties.

【0011】また熟成は、35℃以上80℃以下の温度
範囲で施すことが望ましい。熟成温度が80℃を超える
と粒状α−Fe2 3 が生成し易く好ましくない。また
熟成温度が35℃未満では針状ゲーサイト微粒子の結晶
化が充分でなく、ゲル状アモルファス物質からなる未反
応粒子が残留しやすい。
It is preferable that the aging is performed in a temperature range of 35 ° C. or more and 80 ° C. or less. If the aging temperature exceeds 80 ° C., particulate α-Fe 2 O 3 is easily formed, which is not preferable. If the aging temperature is lower than 35 ° C., crystallization of the acicular goethite fine particles is not sufficient, and unreacted particles composed of a gel-like amorphous substance are likely to remain.

【0012】本発明で使用される第二鉄塩としては、針
状ゲーサイト微粒子を製造するために通常用いられるも
のであればいずれも採用でき、例えば塩化第二鉄、硫酸
第二鉄あるいは硝酸第二鉄等が例示される。これら第二
鉄塩は水等の溶媒に溶解し、第二鉄塩溶液として反応に
供される。
As the ferric salt used in the present invention, any one usually used for producing needle-like goethite fine particles can be employed, for example, ferric chloride, ferric sulfate or nitric acid. Ferric iron and the like are exemplified. These ferric salts are dissolved in a solvent such as water and used for the reaction as a ferric salt solution.

【0013】第二鉄塩溶液と混合される強アルカリとし
てはこれも特に限定はなく、例えば水酸化ナトリウム、
水酸化カリウムあるいは水酸化リチウム等の水酸化アル
カリ金属等を水等の溶媒に溶解して用いられる。
The strong alkali mixed with the ferric salt solution is not particularly limited either.
It is used by dissolving an alkali metal hydroxide such as potassium hydroxide or lithium hydroxide in a solvent such as water.

【0014】炭酸イオン源として供される炭酸塩として
はこれも特に限定はなく、例えば炭酸ナトリウム、炭酸
カリウム、炭酸アンモニウム、炭酸水素ナトリウムおよ
び炭酸水素カリウム等の炭酸アルカリを水等の溶媒に溶
解して用いられる。
The carbonate used as the carbonate ion source is not particularly limited either. For example, an alkali carbonate such as sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate is dissolved in a solvent such as water. Used.

【0015】本発明において、Fe以外の他の金属、例
えばZn、CrあるいはTi等を含有した針状ゲーサイ
ト微粒子を製造することも可能である。例えば、Zn含
有の針状ゲーサイト微粒子は、硫酸亜鉛等を用いZn含
有の水酸化第二鉄のゲル状アモルファス物質を含有する
懸濁液を熟成することにより得ることができる。他の金
属を含有した針状ゲーサイト微粒子についても同様に得
ることができる。
In the present invention, it is possible to produce needle-like goethite fine particles containing a metal other than Fe, for example, Zn, Cr or Ti. For example, acicular goethite fine particles containing Zn can be obtained by aging a suspension containing a gel-like amorphous substance of ferric hydroxide containing Zn using zinc sulfate or the like. Needle-like goethite fine particles containing another metal can be obtained in the same manner.

【0016】本発明において第二鉄塩溶液と強アルカリ
溶液および炭酸アルカリ溶液とを混合する順序はいかな
る方法でもよい。すなわち、第二鉄塩溶液を強アルカリ
溶液に滴下して混合してもその逆でもよい。またライン
ミキサ等の混合手段により、両溶液を一定量づつ連続的
に混合してもよい。いずれの混合方法によっても粒子形
態に差のない針状ゲーサイト微粒子を得ることができ
る。また第二鉄塩溶液と強アルカリ溶液および炭酸アル
カリ溶液との混合開始から終了に至るまでの所要時間
は、短時間、例えば5分以内が好ましい。混合所要時間
が長時間におよぶと、先に混合を終えた水酸化第二鉄、
あるいは微量(例えば10重量%程度)の水分を内部に
含むFeOOHのゲル状アモルファス物質を含有する懸
濁液は、針状ゲーサイト微粒子の核生成から核成長の段
階に進むことがあり、最終生成物である針状ゲーサイト
微粒子の粒度分布が拡がり、また単分散粒子を得ること
が困難となる。
In the present invention, the order of mixing the ferric salt solution, the strong alkali solution and the alkali carbonate solution may be any method. That is, the ferric salt solution may be dropped into the strong alkaline solution and mixed, or vice versa. Alternatively, both solutions may be continuously mixed in a fixed amount by a mixing means such as a line mixer. Acetic goethite fine particles having no difference in particle morphology can be obtained by any of the mixing methods. The time required from the start to the end of the mixing of the ferric salt solution with the strong alkali solution and the alkali carbonate solution is preferably short, for example, within 5 minutes. If the mixing time is long, ferric hydroxide, which has been mixed earlier,
Alternatively, a suspension containing a gel-like amorphous substance of FeOOH containing a small amount (for example, about 10% by weight) of water therein may proceed from the nucleation of needle-like goethite fine particles to the nucleus growth stage, and the final formation may occur. The particle size distribution of the acicular goethite fine particles, which is the product, is widened, and it is difficult to obtain monodisperse particles.

【0017】なお第二鉄塩溶液と強アルカリ溶液および
炭酸アルカリ溶液との混合は室温でおこない、熟成の前
処理として、室温を保持したまま水酸化第二鉄のゲル状
アモルファス物質を含有する懸濁液の混合を継続して分
散均一化しておくことが望ましい。かかる前処理を施す
ことにより、針状ゲーサイト微粒子の結晶化が均一とな
り粒度分布にも優れた影響をおよぼす。
The ferric salt solution is mixed with the strong alkali solution and the alkali carbonate solution at room temperature. As a pretreatment for aging, the suspension containing the gelled amorphous substance of ferric hydroxide while maintaining the room temperature is maintained. It is desirable to continue the mixing of the suspension to make the dispersion uniform. By performing such a pretreatment, the crystallization of the acicular goethite fine particles becomes uniform, and this has an excellent effect on the particle size distribution.

【0018】また熟成の所要時間は熟成温度に依存し、
一般に熟成温度を高くすれば反応所要時間を短縮するこ
とができる。したがって、生成する針状ゲーサイト微粒
子の形状に悪影響を及ぼさない範囲内で、また収量等を
勘案の上、熟成温度を選択すればよい。
The time required for aging depends on the aging temperature.
In general, the higher the aging temperature, the shorter the required reaction time. Therefore, the ripening temperature may be selected within a range that does not adversely affect the shape of the generated needle-like goethite fine particles and in consideration of the yield and the like.

【0019】[0019]

【実施例】以下、本発明の具体的実施例につき比較例を
交えながら詳細な説明を加えるが、本発明はこれら実施
例に何ら限定されるものではない。
The present invention will now be described in detail with reference to specific examples of the present invention and comparative examples, but the present invention is not limited to these examples.

【0020】実施例1 以下の実施例1〜3は、水酸化第二鉄および/または微
量の水分を内部に含むFeOOHのゲル状アモルファス
物質を含有する懸濁液中に添加する炭酸アルカリ量、こ
こでは炭酸アルカリ溶液量を変えて第二鉄イオンに対す
る炭酸イオンのモル比を変え、針状ゲーサイト微粒子を
作成した例である。塩化第二鉄六水和物(FeCl3
6H2 O)を蒸留水に溶解し、0.075mol/lの
塩化第二鉄溶液2500mlを用意した。この塩化第二
鉄溶液を撹拌しながら、水酸化ナトリウム(NaOH)
を蒸留水に溶解した0.375mol/lの水酸化ナト
リウム溶液1625mlを滴下混合し、水酸化第二鉄お
よび/または微量の水分を内部に含むFeOOHのゲル
状アモルファス物質を含有する懸濁液を調製した。この
時点で懸濁液のpHは13.0であった。続けてこの懸
濁液に炭酸ナトリウム(Na2 CO3 )を蒸留水に溶解
して3.75mol/lとした溶液300mlを添加
し、更に撹拌混合した。この懸濁液中の第二鉄塩濃度は
単純計算で0.042mol/lであり、またpHは1
3.1であった。またCO3 2-/Fe3+のモル比は6.
0であった。この後、この懸濁液を熟成保温器に移し、
熟成温度35℃で96時間熟成し、実施例1の針状ゲー
サイト微粒子を得た。
Example 1 The following Examples 1 to 3 show the amounts of alkali carbonate added to a suspension containing a gelled amorphous substance of ferric hydroxide and / or FeOOH containing a trace amount of water, In this example, needle-like goethite fine particles are prepared by changing the amount of alkali carbonate solution and changing the molar ratio of carbonate ion to ferric ion. Ferric chloride hexahydrate (FeCl 3.
6H 2 O) was dissolved in distilled water to prepare 2500 ml of a 0.075 mol / l ferric chloride solution. While stirring the ferric chloride solution, sodium hydroxide (NaOH)
Was dissolved in distilled water and 1625 ml of a 0.375 mol / l sodium hydroxide solution was dropped and mixed, and a suspension containing a gel-like amorphous substance of ferric hydroxide and / or FeOOH containing a trace amount of water therein was added. Prepared. At this point the pH of the suspension was 13.0. Subsequently, 300 ml of a solution obtained by dissolving sodium carbonate (Na 2 CO 3 ) in distilled water to a concentration of 3.75 mol / l was added to the suspension, followed by stirring and mixing. The concentration of ferric salt in this suspension was 0.042 mol / l by simple calculation, and the pH was 1
3.1. The molar ratio of CO 3 2- / Fe 3+ is 6.
It was 0. Thereafter, the suspension is transferred to an aged incubator,
Aging was conducted at an aging temperature of 35 ° C. for 96 hours to obtain needle-like goethite fine particles of Example 1.

【0021】実施例2 塩化第二鉄六水和物(FeCl3 ・6H2 O)を蒸留水
に溶解し、0.075mol/lの塩化第二鉄溶液25
00mlを用意した。この塩化第二鉄溶液を撹拌しなが
ら、水酸化ナトリウム(NaOH)を蒸留水に溶解した
0.375mol/lの水酸化ナトリウム溶液1650
mlを滴下混合し、水酸化第二鉄および/または微量の
水分を内部に含むFeOOHのゲル状アモルファス物質
を含有する懸濁液を調製した。この時点で懸濁液のpH
は13.0であった。続けてこの懸濁液に炭酸ナトリウ
ム(Na2 CO3 )を蒸留水に溶解して3.75mol
/lとした溶液400mlを添加し、更に撹拌混合し
た。この懸濁液中の第二鉄塩濃度は単純計算で0.04
1mol/lであり、またpHは13.1であった。ま
たCO3 2-/Fe3+のモル比は8.0であった。この
後、この懸濁液を熟成保温器に移し、熟成温度35℃で
96時間熟成し、実施例2の針状ゲーサイト微粒子を得
た。
Example 2 Ferric chloride hexahydrate (FeCl 3 .6H 2 O) was dissolved in distilled water, and a 0.075 mol / l ferric chloride solution 25 was dissolved.
00 ml was prepared. While stirring the ferric chloride solution, sodium hydroxide (NaOH) was dissolved in distilled water to obtain a 0.375 mol / l sodium hydroxide solution 1650.
The resulting mixture was dropped and mixed to prepare a suspension containing ferric hydroxide and / or a gelled amorphous substance of FeOOH containing a trace amount of water therein. At this point the pH of the suspension
Was 13.0. Subsequently, sodium carbonate (Na 2 CO 3 ) was dissolved in distilled water to give 3.75 mol of the suspension.
/ L of the solution was added, followed by stirring and mixing. The ferric salt concentration in this suspension was 0.04 by simple calculation.
It was 1 mol / l and the pH was 13.1. The molar ratio of CO 3 2− / Fe 3+ was 8.0. Thereafter, the suspension was transferred to an aging warmer and aged at an aging temperature of 35 ° C. for 96 hours to obtain needle-like goethite fine particles of Example 2.

【0022】実施例3 塩化第二鉄六水和物(FeCl3 ・6H2 O)を蒸留水
に溶解し、0.075mol/lの塩化第二鉄溶液25
00mlを用意した。この塩化第二鉄溶液を撹拌しなが
ら、水酸化ナトリウム(NaOH)を蒸留水に溶解した
0.375mol/lの水酸化ナトリウム溶液1650
mlを滴下混合し、水酸化第二鉄および/または微量の
水分を内部に含むFeOOHのゲル状アモルファス物質
を含有する懸濁液を調製した。この時点で懸濁液のpH
は13.0であった。続けてこの懸濁液に炭酸ナトリウ
ム(Na2 CO3 )を蒸留水に溶解して3.75mol
/lとした溶液500mlを添加し、更に撹拌混合し
た。この懸濁液中の第二鉄塩濃度は、単純計算で0.0
40mol/lであり、またpHは13.1であった。
またCO3 2-/Fe3+のモル比は10.0であった。こ
の後、この懸濁液を熟成保温器に移し、熟成温度35℃
で96時間熟成し、実施例3の針状ゲーサイト微粒子を
得た。
Example 3 Ferric chloride hexahydrate (FeCl 3 .6H 2 O) was dissolved in distilled water, and a 0.075 mol / l ferric chloride solution 25 was dissolved.
00 ml was prepared. While stirring the ferric chloride solution, sodium hydroxide (NaOH) was dissolved in distilled water to obtain a 0.375 mol / l sodium hydroxide solution 1650.
The resulting mixture was dropped and mixed to prepare a suspension containing ferric hydroxide and / or a gelled amorphous substance of FeOOH containing a trace amount of water therein. At this point the pH of the suspension
Was 13.0. Subsequently, sodium carbonate (Na 2 CO 3 ) was dissolved in distilled water to give 3.75 mol of the suspension.
/ L of the solution was added, and the mixture was further stirred and mixed. The concentration of ferric salt in this suspension was 0.0
It was 40 mol / l and the pH was 13.1.
The molar ratio of CO 3 2− / Fe 3+ was 10.0. Thereafter, the suspension was transferred to an aging incubator, and an aging temperature of 35 ° C.
For 96 hours to obtain needle-like goethite fine particles of Example 3.

【0023】実施例4 以下の実施例4〜5は、前実施例1〜3と同じく第二鉄
イオンに対する炭酸イオンのモル比を変え、針状ゲーサ
イト微粒子を作成した例であり、前実施例1〜3より熟
成温度を高めた例である。塩化第二鉄六水和物(FeC
3 ・6H2 O)を蒸留水に溶解し、0.075mol
/lの塩化第二鉄溶液2500mlを用意した。この塩
化第二鉄溶液を撹拌しながら、水酸化ナトリウム(Na
OH)を蒸留水に溶解した0.375mol/lの水酸
化ナトリウム溶液1690mlを滴下混合し、水酸化第
二鉄および/または微量の水分を内部に含むFeOOH
のゲル状アモルファス物質を含有する懸濁液を調製し
た。この時点で懸濁液のpHは13.0であった。続け
てこの懸濁液に炭酸ナトリウム(Na2 CO3 )を蒸留
水に溶解して3.75mol/lとした溶液300ml
を添加し、更に撹拌混合した。この懸濁液中の第二鉄塩
濃度は単純計算で0.042mol/lであり、またp
Hは13.1であった。またCO3 2-/Fe3+のモル比
は6.0であった。この後、この懸濁液を熟成保温器に
移し、熟成温度55℃で44時間熟成し、実施例4の針
状ゲーサイト微粒子を得た。
Example 4 The following Examples 4 and 5 are examples in which the molar ratio of carbonate ion to ferric ion was changed to produce needle-like goethite fine particles as in Examples 1 to 3 above. This is an example in which the aging temperature is higher than in Examples 1 to 3. Ferric chloride hexahydrate (FeC
l 3 · 6H the 2 O) was dissolved in distilled water, 0.075 mol
2500 l / l ferric chloride solution was prepared. While stirring the ferric chloride solution, sodium hydroxide (Na
OH) dissolved in distilled water is mixed dropwise with 1690 ml of a 0.375 mol / l sodium hydroxide solution, and ferric hydroxide and / or FeOOH containing a trace amount of water therein.
A suspension containing the gelled amorphous material of was prepared. At this point the pH of the suspension was 13.0. Subsequently, 300 ml of a solution obtained by dissolving sodium carbonate (Na 2 CO 3 ) in distilled water to 3.75 mol / l was added to this suspension.
Was added and further mixed by stirring. The concentration of ferric salt in this suspension was 0.042 mol / l by simple calculation, and p
H was 13.1. The molar ratio of CO 3 2− / Fe 3+ was 6.0. Thereafter, the suspension was transferred to an aging incubator and aged at an aging temperature of 55 ° C. for 44 hours to obtain needle-like goethite fine particles of Example 4.

【0024】実施例5 塩化第二鉄六水和物(FeCl3 ・6H2 O)を蒸留水
に溶解し、0.075mol/lの塩化第二鉄溶液25
00mlを用意した。この塩化第二鉄溶液を撹拌しなが
ら、水酸化ナトリウム(NaOH)を蒸留水に溶解した
0.375mol/lの水酸化ナトリウム溶液1720
mlを滴下混合し、水酸化第二鉄および/または微量の
水分を内部に含むFeOOHのゲル状アモルファス物質
を含有する懸濁液を調製した。この時点で懸濁液のpH
は13.0であった。続けてこの懸濁液に炭酸ナトリウ
ム(Na2 CO3 )を蒸留水に溶解して3.75mol
/lとした溶液400mlを添加し、更に撹拌混合し
た。この懸濁液中の第二鉄塩濃度は単純計算で0.04
1mol/lであり、またpHは13.1であった。ま
たCO3 2-/Fe3+のモル比は8.0であった。この
後、この懸濁液を熟成保温器に移し、熟成温度55℃で
44時間熟成し、実施例5の針状ゲーサイト微粒子を得
た。
Example 5 Ferric chloride hexahydrate (FeCl 3 .6H 2 O) was dissolved in distilled water to obtain a 0.075 mol / l ferric chloride solution 25.
00 ml was prepared. While stirring the ferric chloride solution, a 0.375 mol / l sodium hydroxide solution 1720 in which sodium hydroxide (NaOH) was dissolved in distilled water was used.
The resulting mixture was dropped and mixed to prepare a suspension containing ferric hydroxide and / or a gelled amorphous substance of FeOOH containing a trace amount of water therein. At this point the pH of the suspension
Was 13.0. Subsequently, sodium carbonate (Na 2 CO 3 ) was dissolved in distilled water to give 3.75 mol of the suspension.
/ L of the solution was added, followed by stirring and mixing. The ferric salt concentration in this suspension was 0.04 by simple calculation.
It was 1 mol / l and the pH was 13.1. The molar ratio of CO 3 2− / Fe 3+ was 8.0. Thereafter, the suspension was transferred to an aging incubator and aged at an aging temperature of 55 ° C. for 44 hours to obtain needle-like goethite fine particles of Example 5.

【0025】実施例6 以下の実施例6〜7はCO3 2-/Fe3+のモル比を一定
とし、また懸濁液のpHを前実施例よりも若干下げてこ
れも一定とし、熟成温度を変えた例である。塩化第二鉄
六水和物(FeCl3 ・6H2 O)を蒸留水に溶解し、
0.075mol/lの塩化第二鉄溶液2500mlを
用意した。この塩化第二鉄溶液を撹拌しながら、水酸化
ナトリウム(NaOH)を蒸留水に溶解した0.289
mol/lの水酸化ナトリウム溶液1950mlを滴下
混合し、水酸化第二鉄および/または微量の水分を内部
に含むFeOOHのゲル状アモルファス物質を含有する
懸濁液を調製した。この時点で懸濁液のpHは12.5
であった。続けてこの懸濁液に炭酸ナトリウム(Na2
CO3 )を蒸留水に溶解して3.75mol/lとした
溶液300mlを添加し、更に撹拌混合した。この懸濁
液中の第二鉄塩濃度は単純計算で0.040mol/l
であり、またpHは12.6であった。またCO3 2-
Fe3+のモル比は6.0であった。この後、この懸濁液
を熟成保温器に移し、熟成温度35℃で162時間熟成
し、実施例6の針状ゲーサイト微粒子を得た。
Example 6 In the following Examples 6 to 7, the molar ratio of CO 3 2− / Fe 3+ was kept constant, and the pH of the suspension was slightly lowered from that of the previous example, which was kept constant. This is an example in which the temperature is changed. Dissolved ferric chloride hexahydrate and (FeCl 3 · 6H 2 O) in distilled water,
2500 ml of a 0.075 mol / l ferric chloride solution was prepared. While stirring the ferric chloride solution, 0.289 of sodium hydroxide (NaOH) dissolved in distilled water was added.
A 1950 ml mol / l sodium hydroxide solution was dropped and mixed to prepare a suspension containing ferric hydroxide and / or a gelled amorphous substance of FeOOH containing a trace amount of water therein. At this point the pH of the suspension is 12.5
Met. Subsequently, sodium carbonate (Na 2
300 ml of a solution obtained by dissolving CO 3 ) in distilled water was adjusted to 3.75 mol / l, and the mixture was further stirred and mixed. The concentration of ferric salt in this suspension was 0.040 mol / l by simple calculation.
And the pH was 12.6. CO 3 2- /
The molar ratio of Fe 3+ was 6.0. Thereafter, the suspension was transferred to an aging incubator and aged at an aging temperature of 35 ° C. for 162 hours to obtain needle-like goethite fine particles of Example 6.

【0026】実施例7 塩化第二鉄六水和物(FeCl3 ・6H2 O)を蒸留水
に溶解し、0.075mol/lの塩化第二鉄溶液25
00mlを用意した。この塩化第二鉄溶液を撹拌しなが
ら、水酸化ナトリウム(NaOH)を蒸留水に溶解した
0.321mol/lの水酸化ナトリウム溶液1870
mlを滴下混合し、水酸化第二鉄および/または微量の
水分を内部に含むFeOOHのゲル状アモルファス物質
を含有する懸濁液を調製した。この時点で懸濁液のpH
は12.5であった。続けてこの懸濁液に炭酸ナトリウ
ム(Na2 CO3 )を蒸留水に溶解して3.75mol
/lとした溶液300mlを添加し、更に撹拌混合し
た。この懸濁液中の第二鉄塩濃度は単純計算で0.04
0mol/lであり、またpHは12.6であった。ま
たCO3 2-/Fe3+のモル比は6.0であった。この
後、この懸濁液を熟成保温器に移し、熟成温度55℃で
71時間熟成し、実施例7の針状ゲーサイト微粒子を得
た。
Example 7 Ferric chloride hexahydrate (FeCl 3 .6H 2 O) was dissolved in distilled water to obtain a 0.075 mol / l ferric chloride solution 25.
00 ml was prepared. While stirring the ferric chloride solution, a sodium hydroxide solution (1870) of 0.321 mol / l sodium hydroxide (NaOH) was dissolved in distilled water.
The resulting mixture was dropped and mixed to prepare a suspension containing ferric hydroxide and / or a gelled amorphous substance of FeOOH containing a trace amount of water therein. At this point the pH of the suspension
Was 12.5. Subsequently, sodium carbonate (Na 2 CO 3 ) was dissolved in distilled water to give 3.75 mol of the suspension.
/ L of the solution was added, followed by stirring and mixing. The ferric salt concentration in this suspension was 0.04 by simple calculation.
It was 0 mol / l and the pH was 12.6. The molar ratio of CO 3 2− / Fe 3+ was 6.0. Thereafter, the suspension was transferred to an aging incubator and aged at an aging temperature of 55 ° C. for 71 hours to obtain needle-like goethite fine particles of Example 7.

【0027】比較例1 以下の比較例1〜3は、CO3 2-/Fe3+のモル比が本
発明の範囲から逸脱した例である。塩化第二鉄六水和物
(FeCl3 ・6H2 O)を蒸留水に溶解し、0.07
5mol/lの塩化第二鉄溶液2500mlを用意し
た。この塩化第二鉄溶液を撹拌しながら、水酸化ナトリ
ウム(NaOH)を蒸留水に溶解した0.375mol
/lの水酸化ナトリウム溶液1625mlを滴下混合
し、水酸化第二鉄および/または微量の水分を内部に含
むFeOOHのゲル状アモルファス物質を含有する懸濁
液を調製した。この時点で懸濁液のpHは13.0であ
った。続けてこの懸濁液に炭酸ナトリウム(Na2 CO
3 )を蒸留水に溶解して3.75mol/lとした溶液
100mlを添加し、更に撹拌混合した。この懸濁液中
の第二鉄塩濃度は単純計算で0.044mol/lであ
り、またpHは13.1であった。またCO3 2-/Fe
3+のモル比は2.0であった。この後、この懸濁液を熟
成保温器に移し、熟成温度35℃で96時間熟成し、比
較例1の針状ゲーサイト微粒子を得た。
Comparative Example 1 The following Comparative Examples 1 to 3 are examples in which the molar ratio of CO 3 2− / Fe 3+ deviates from the scope of the present invention. Dissolved ferric chloride hexahydrate and (FeCl 3 · 6H 2 O) in distilled water, 0.07
2500 ml of a 5 mol / l ferric chloride solution was prepared. 0.375 mol of sodium hydroxide (NaOH) dissolved in distilled water while stirring the ferric chloride solution.
A suspension containing a ferric hydroxide and / or a gel-like amorphous substance of FeOOH containing a trace amount of water therein was prepared by dropwise mixing 1625 ml of a 1 / l sodium hydroxide solution. At this point the pH of the suspension was 13.0. Subsequently, sodium carbonate (Na 2 CO 3) was added to this suspension.
3 ) was dissolved in distilled water, and 100 ml of a solution having a concentration of 3.75 mol / l was added thereto, followed by stirring and mixing. The ferric salt concentration in this suspension was 0.044 mol / l by simple calculation, and the pH was 13.1. CO 3 2- / Fe
The 3+ molar ratio was 2.0. Thereafter, the suspension was transferred to an aging incubator and aged at an aging temperature of 35 ° C. for 96 hours to obtain needle-like goethite fine particles of Comparative Example 1.

【0028】比較例2 塩化第二鉄六水和物(FeCl3 ・6H2 O)を蒸留水
に溶解し、0.075mol/lの塩化第二鉄溶液25
00mlを用意した。この塩化第二鉄溶液を撹拌しなが
ら、水酸化ナトリウム(NaOH)を蒸留水に溶解した
0.375mol/lの水酸化ナトリウム溶液1625
mlを滴下混合し、水酸化第二鉄および/または微量の
水分を内部に含むFeOOHのゲル状アモルファス物質
を含有する懸濁液を調製した。この時点で懸濁液のpH
は13.0であった。続けてこの懸濁液に炭酸ナトリウ
ム(Na2 CO3 )を蒸留水に溶解して3.75mol
/lとした溶液200mlを添加し、更に撹拌混合し
た。この懸濁液中の第二鉄塩濃度は単純計算で0.04
3mol/lであり、またpHは13.1であった。ま
たCO3 2-/Fe3+のモル比は4.0であった。この
後、この懸濁液を熟成保温器に移し、熟成温度35℃で
96時間熟成し、比較例2の針状ゲーサイト微粒子を得
た。
Comparative Example 2 Ferric chloride hexahydrate (FeCl 3 .6H 2 O) was dissolved in distilled water, and a 0.075 mol / l ferric chloride solution 25 was dissolved.
00 ml was prepared. While stirring this ferric chloride solution, a 0.375 mol / l sodium hydroxide solution 1625 in which sodium hydroxide (NaOH) was dissolved in distilled water was used.
The resulting mixture was dropped and mixed to prepare a suspension containing ferric hydroxide and / or a gelled amorphous substance of FeOOH containing a trace amount of water therein. At this point the pH of the suspension
Was 13.0. Subsequently, sodium carbonate (Na 2 CO 3 ) was dissolved in distilled water to give 3.75 mol of the suspension.
/ L of the solution was added, followed by stirring and mixing. The ferric salt concentration in this suspension was 0.04 by simple calculation.
It was 3 mol / l and the pH was 13.1. The molar ratio of CO 3 2− / Fe 3+ was 4.0. Thereafter, the suspension was transferred to an aging incubator and aged at an aging temperature of 35 ° C. for 96 hours to obtain needle-like goethite fine particles of Comparative Example 2.

【0029】比較例3 塩化第二鉄六水和物(FeCl3 ・6H2 O)を蒸留水
に溶解し、0.075mol/lの塩化第二鉄溶液25
00mlを用意した。この塩化第二鉄溶液を撹拌しなが
ら、水酸化ナトリウム(NaOH)を蒸留水に溶解した
0.375mol/lの水酸化ナトリウム溶液1625
mlを滴下混合し、水酸化第二鉄および/または微量の
水分を内部に含むFeOOHのゲル状アモルファス物質
を含有する懸濁液を調製した。この時点で懸濁液のpH
は13.0であった。続けてこの懸濁液に炭酸ナトリウ
ム(Na2 CO3 )を蒸留水に溶解して3.75mol
/lとした溶液600mlを添加し、更に撹拌混合し
た。この懸濁液中の第二鉄塩濃度は、単純計算で0.0
40mol/lであり、またpHは13.2であった。
またCO3 2-/Fe3+のモル比は12.0であった。こ
の後、この懸濁液を熟成保温器に移し、熟成温度35℃
で96時間熟成し、比較例3の針状ゲーサイト微粒子を
得た。
Comparative Example 3 Ferric chloride hexahydrate (FeCl 3 .6H 2 O) was dissolved in distilled water, and a 0.075 mol / l ferric chloride solution 25 was dissolved.
00 ml was prepared. While stirring this ferric chloride solution, a 0.375 mol / l sodium hydroxide solution 1625 in which sodium hydroxide (NaOH) was dissolved in distilled water was used.
The resulting mixture was dropped and mixed to prepare a suspension containing ferric hydroxide and / or a gelled amorphous substance of FeOOH containing a trace amount of water therein. At this point the pH of the suspension
Was 13.0. Subsequently, sodium carbonate (Na 2 CO 3 ) was dissolved in distilled water to give 3.75 mol of the suspension.
/ L of the solution was added, and the mixture was further stirred and mixed. The concentration of ferric salt in this suspension was 0.0
It was 40 mol / l and the pH was 13.2.
The molar ratio of CO 3 2− / Fe 3+ was 12.0. Thereafter, the suspension was transferred to an aging incubator, and an aging temperature of 35 ° C.
For 96 hours to obtain needle-like goethite fine particles of Comparative Example 3.

【0030】以上の実施例1〜7、および比較例1〜3
の10種の針状ゲーサイト微粒子の熟成条件を、〔表
1〕にまとめて示す。
Examples 1 to 7 and Comparative Examples 1 to 3
The aging conditions for the ten types of needle-like goethite microparticles are summarized in [Table 1].

【0031】[0031]

【表1】 [Table 1]

【0032】以上得られた実施例1〜7および比較例1
〜3の10種の針状ゲーサイト微粒子の粉体特性を測定
した。累積平均径およびその標準偏差は、ドップラー散
乱光解析法により求めた。また結晶子径は、Scher
rer法により求めた。さらに、針状粒子の長軸および
短軸ならびに軸比は、TEM(透過型電子顕微鏡)写真
から寸法測定して求めた。これらの結果を〔表2〕に示
す。
Examples 1 to 7 and Comparative Example 1 obtained above
The powder properties of 10 types of acicular goethite fine particles of Nos. 1 to 3 were measured. The cumulative average diameter and its standard deviation were determined by Doppler scattered light analysis. The crystallite diameter is
It was determined by the rr method. Further, the major axis and minor axis of the acicular particles and the axial ratio were determined by measuring the dimensions from a TEM (transmission electron microscope) photograph. The results are shown in [Table 2].

【0033】[0033]

【表2】 [Table 2]

【0034】〔表2〕の結果から明らかなように、実施
例の針状ゲーサイト微粒子は比較例1および2の針状ゲ
ーサイト微粒子に比較して、微細で粒度分布が揃ってお
り、またTEMによる観察でも双晶や凝集の少ないもの
であった。また、後工程で加えられる脱水、還元や酸化
等の各種熱処理に対して耐久性を示し針状微粒子形状が
良好に保存された。また比較例3の針状ゲーサイト微粒
子は実施例に比較して微細粒子が得られる点は遜色ない
ものの、微細化の効果は飽和しており、大過剰の炭酸ア
ルカリを添加する意味は薄い。
As is clear from the results in Table 2, the acicular goethite fine particles of the examples are finer and have a uniform particle size distribution as compared with the acicular goethite fine particles of Comparative Examples 1 and 2. Observation with a TEM showed that twins and aggregation were small. Further, it exhibited durability against various heat treatments such as dehydration, reduction, and oxidation added in a later step, and the shape of the acicular fine particles was well preserved. Further, the needle-like goethite fine particles of Comparative Example 3 are comparable to the examples in that fine particles can be obtained, but the effect of the fineness is saturated, and it is less meaningful to add a large excess of alkali carbonate.

【0035】以上、本発明を詳細に説明したが、本発明
はこれら実施例に何ら限定されるものではない。例え
ば、炭酸アルカリ塩の種類として実施例の炭酸ナトリウ
ム以外の各種化合物を採用することが可能である。また
第二鉄塩の種類や強アルカリの種類も、実施例の塩化第
二鉄や水酸化ナトリウム以外の各種化合物を選択するこ
とができ、その組み合わせも任意である。その他、第二
鉄塩溶液と強アルカリの混合方法も各種態様が可能であ
る。
Although the present invention has been described in detail above, the present invention is not limited to these embodiments. For example, it is possible to adopt various compounds other than the sodium carbonate of the examples as the kind of the alkali carbonate. The type of ferric salt and the type of strong alkali can also be selected from various compounds other than ferric chloride and sodium hydroxide of the examples, and the combination thereof is also optional. In addition, various modes are also possible for the method of mixing the ferric salt solution and the strong alkali.

【0036】[0036]

【発明の効果】以上の説明から明らかなように、本発明
によれば、粒子径が微細で針状性に優れ、またこれらの
分布がシャープで双晶がない単分散の針状ゲーサイト微
粒子の製造方法を提供することが可能である。また本発
明により得られる針状ゲーサイト微粒子は、後工程で加
えられる脱水、還元や酸化等の各種熱処理に対して耐久
性を示し針状微粒子形状が良好に保存される。したがっ
て、抗磁力や残留磁束密度等あるいは角型比等の磁気特
性や配向性、あるいは表面性に優れた塗布型磁気記録媒
体を提供することができる。また本発明の針状ゲーサイ
ト微粒子は粒度分布に優れるので、彩度が向上した顔料
としても好適に用いることができる。
As is clear from the above description, according to the present invention, monodisperse needle-like goethite fine particles having a fine particle diameter and excellent needle-like properties, and having a sharp distribution and no twins. Can be provided. Further, the acicular goethite fine particles obtained by the present invention exhibit durability against various heat treatments such as dehydration, reduction, and oxidation added in a later step, and the shape of the acicular fine particles is well preserved. Accordingly, it is possible to provide a coating type magnetic recording medium having excellent magnetic properties such as coercive force, residual magnetic flux density, squareness ratio, etc., orientation, and surface properties. Further, since the needle-like goethite fine particles of the present invention have an excellent particle size distribution, they can be suitably used as pigments having improved chroma.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第二鉄塩溶液と強アルカリ溶液とを混合
して生成される、水酸化第二鉄および微量の水分を内部
に含むFeOOHのうちの少なくとも一方のゲル状アモ
ルファス物質を含有する懸濁液を熟成することにより得
られる、針状ゲーサイト微粒子の製造方法において、 前記懸濁液中に、第二鉄イオンに対する炭酸イオンのモ
ル比が6.0以上10.0以下となるように炭酸アルカ
リ溶液を添加して熟成することを特徴とする針状ゲーサ
イト微粒子の製造方法。
1. A gel-like amorphous substance containing at least one of ferric hydroxide and FeOOH containing a trace amount of water therein, which is produced by mixing a ferric salt solution and a strong alkali solution. A method for producing needle-like goethite fine particles obtained by aging a suspension, wherein the molar ratio of carbonate ions to ferric ions in the suspension is 6.0 or more and 10.0 or less. A method for producing acicular goethite fine particles, comprising adding an alkali carbonate solution to the mixture and aging the mixture.
【請求項2】 前記懸濁液中の第二鉄塩濃度を、0.0
1mol/l以上0.10mol/l以下の範囲として
熟成することを特徴とする請求項1記載の針状ゲーサイ
ト微粒子の製造方法。
2. The ferric salt concentration in the suspension is set at 0.0
2. The method for producing needle-like goethite fine particles according to claim 1, wherein the ripening is performed in a range of 1 mol / l to 0.10 mol / l.
【請求項3】 前記懸濁液のpHは、12.6以上1
3.5以下であることを特徴とする請求項1記載の針状
ゲーサイト微粒子の製造方法。
3. The pH of the suspension is 12.6 or more and 1 or more.
2. The method for producing acicular goethite fine particles according to claim 1, wherein the particle size is 3.5 or less.
【請求項4】 前記熟成は、35℃以上80℃以下の温
度範囲で施すことを特徴とする請求項1記載の針状ゲー
サイト微粒子の製造方法。
4. The method for producing acicular goethite fine particles according to claim 1, wherein the aging is performed in a temperature range of 35 ° C. or more and 80 ° C. or less.
JP6685297A 1997-03-19 1997-03-19 Production of fine particle of acicular goethite Pending JPH10259026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6685297A JPH10259026A (en) 1997-03-19 1997-03-19 Production of fine particle of acicular goethite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6685297A JPH10259026A (en) 1997-03-19 1997-03-19 Production of fine particle of acicular goethite

Publications (1)

Publication Number Publication Date
JPH10259026A true JPH10259026A (en) 1998-09-29

Family

ID=13327807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6685297A Pending JPH10259026A (en) 1997-03-19 1997-03-19 Production of fine particle of acicular goethite

Country Status (1)

Country Link
JP (1) JPH10259026A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010081288A1 (en) * 2008-12-30 2010-07-22 北京三聚环保新材料股份有限公司 Preparation and repeated regeneration of material containing amorphous iron oxyhydroxide, desulfurization agents containing the material and preparation and repeated regeneration thereof
EP2383036A1 (en) * 2008-12-30 2011-11-02 Beijing Sanju Environmental Protection and New Material Co., Ltd. Method for regenerating amorphous iron oxyhydroxide and desulfurizer containing amorphous iron oxyhydroxide as active component
EP2384814A1 (en) * 2008-12-30 2011-11-09 Beijing Sanju Environmental Protection and New Material Co., Ltd. Methods for preparing and regenerating materials containing amorphous iron oxyhydroxide and desulfurizer comprising the same
EP2438986A1 (en) * 2009-05-31 2012-04-11 Beijing Sanju Environmental Protection and New Material Co., Ltd. Renewable and reusable desulfurizer and preparation method and regeneration method thereof
US8591847B2 (en) 2008-12-30 2013-11-26 Beijing Sanju Environmental Protection and New Material Co., Ltd. Method for removing hydrogen sulfide from gaseous stream at normal temperature
US8603215B2 (en) 2006-08-28 2013-12-10 Beijing Sanju Environmental Protection and New Material Co., Ltd. Composition of amorphous iron oxide hydroxide, desulfurizer comprising the same, and methods for preparing and regenerating the desulfurizer

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603215B2 (en) 2006-08-28 2013-12-10 Beijing Sanju Environmental Protection and New Material Co., Ltd. Composition of amorphous iron oxide hydroxide, desulfurizer comprising the same, and methods for preparing and regenerating the desulfurizer
EP2384814A4 (en) * 2008-12-30 2012-07-25 Beijing Sanju Environmental Prot & New Material Co Ltd Methods for preparing and regenerating materials containing amorphous iron oxyhydroxide and desulfurizer comprising the same
EP2383036A1 (en) * 2008-12-30 2011-11-02 Beijing Sanju Environmental Protection and New Material Co., Ltd. Method for regenerating amorphous iron oxyhydroxide and desulfurizer containing amorphous iron oxyhydroxide as active component
EP2384814A1 (en) * 2008-12-30 2011-11-09 Beijing Sanju Environmental Protection and New Material Co., Ltd. Methods for preparing and regenerating materials containing amorphous iron oxyhydroxide and desulfurizer comprising the same
WO2010081288A1 (en) * 2008-12-30 2010-07-22 北京三聚环保新材料股份有限公司 Preparation and repeated regeneration of material containing amorphous iron oxyhydroxide, desulfurization agents containing the material and preparation and repeated regeneration thereof
EP2383036A4 (en) * 2008-12-30 2012-07-25 Beijing Sanju Environmental Prot & New Material Co Ltd Method for regenerating amorphous iron oxyhydroxide and desulfurizer containing amorphous iron oxyhydroxide as active component
US9283539B2 (en) 2008-12-30 2016-03-15 Beijing Sanju Environmental Protection and New Material Co., Ltd. Methods for preparing and regenerating materials containing amorphous iron oxide hydroxide and desulfurizer comprising the same
EP2383227A4 (en) * 2008-12-30 2012-07-25 Beijing Sanju Environmental Prot & New Material Co Ltd Preparation and repeated regeneration of material containing amorphous iron oxyhydroxide, desulfurization agents containing the material and preparation and repeated regeneration thereof
EA023776B1 (en) * 2008-12-30 2016-07-29 Беиджинг Санджу Энвиронмент Протекшин Энд Нью Материал Ко., Лтд. Method for preparing a composition comprising amorphous iron oxyhydroxide
US8585993B2 (en) 2008-12-30 2013-11-19 Beijing Sanju Enviromental Protection and New Material Co., Ltd. Method for regenerating amorphous iron oxide hydroxide and desulfurizer containing amorphous iron oxide hydroxide as active component
US8591847B2 (en) 2008-12-30 2013-11-26 Beijing Sanju Environmental Protection and New Material Co., Ltd. Method for removing hydrogen sulfide from gaseous stream at normal temperature
EP2383227A1 (en) * 2008-12-30 2011-11-02 Beijing Sanju Environmental Protection and New Material Co., Ltd. Preparation and repeated regeneration of material containing amorphous iron oxyhydroxide, desulfurization agents containing the material and preparation and repeated regeneration thereof
US8647600B2 (en) 2008-12-30 2014-02-11 Beijing Sanju Environmental Protection and New Material Co., Ltd. Methods for preparing and regenerating materials containing amorphous iron oxide hydroxide and desulfurizer comprising the same
US8652427B2 (en) 2008-12-30 2014-02-18 Beijing Sanju Environmental Protection and New Material Co., Ltd. Preparation and repeated regeneration of material containing amorphous iron oxide hydroxide, desulfurization agents containing the material, and preparation and repeated regeneration thereof
EP2438986A1 (en) * 2009-05-31 2012-04-11 Beijing Sanju Environmental Protection and New Material Co., Ltd. Renewable and reusable desulfurizer and preparation method and regeneration method thereof
EP2438986A4 (en) * 2009-05-31 2012-12-05 Beijing Sanju Environmental Prot & New Material Co Ltd Renewable and reusable desulfurizer and preparation method and regeneration method thereof

Similar Documents

Publication Publication Date Title
JPH10259026A (en) Production of fine particle of acicular goethite
JPS6163526A (en) Preparation of spherical basic magnesium carbonate
JPH10259025A (en) Production of fine particle of acicuiar goethite
JPS5891039A (en) Manufacture of needlelike alpha-feooh for magnetic recording material
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP2569580B2 (en) Method for producing acicular goethite
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
KR0136152B1 (en) Manufacturing method of hematite powder
JP3011221B2 (en) Method for producing acicular goethite particle powder
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JP2965606B2 (en) Method for producing metal magnetic powder
JP3003777B2 (en) Method for producing spindle-shaped magnetic iron oxide particles
JP2001240500A (en) Geothite whisker and its manufacturing method
JPS5891102A (en) Production of magnetic particle powder of needle crystal alloy
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JP3087777B2 (en) Method for producing acicular goethite particle powder
JPS59119704A (en) Manufacture of acicular goethite
JPH0551221A (en) Production of acicular goethite particle powder
JPH11329815A (en) Manufacture of needle-shaped goethite particulate including co and needle-shaped magnetic particulate including co
JP2935291B2 (en) Method for producing acicular goethite particle powder
JPH0415601B2 (en)
JPH11329816A (en) Manufacture of co containing needle like goethite fine particles and co containing needle like magnetic fine particles
JPS6021818A (en) Preparation of acicular crystal of alphaoxy iron hydroxide
JPH038083B2 (en)