JPH11329816A - Manufacture of co containing needle like goethite fine particles and co containing needle like magnetic fine particles - Google Patents

Manufacture of co containing needle like goethite fine particles and co containing needle like magnetic fine particles

Info

Publication number
JPH11329816A
JPH11329816A JP10133835A JP13383598A JPH11329816A JP H11329816 A JPH11329816 A JP H11329816A JP 10133835 A JP10133835 A JP 10133835A JP 13383598 A JP13383598 A JP 13383598A JP H11329816 A JPH11329816 A JP H11329816A
Authority
JP
Japan
Prior art keywords
fine particles
needle
ferric
goethite
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10133835A
Other languages
Japanese (ja)
Inventor
Kazuharu Iwasaki
和春 岩崎
Sumie Hayashi
澄江 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP10133835A priority Critical patent/JPH11329816A/en
Publication of JPH11329816A publication Critical patent/JPH11329816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve needle like property as a fine particle shape by specifying Co/Fe ratio in Co containing needle-like goethite fine particle, adding alkali carbonate to soil suspension thereof to specify the mole ratio of carbonate ion to ferric ion and aging it. SOLUTION: A ferric salt solution containing Co salt is adjusted by dissolving Co salt and ferric salt to water. In the process, the ratio of Co salt to ferric salt is selected to make Co/Fe ratio in finally obtained Co containing needle like goethite fine particles which does not exceed about 15 at%. Then, strong akalline solution is mixed with the Co salt containing ferric salt solution and is agitated, and soil suspension is formed. Alkali carbonate is added to the soil suspension to make the mole ratio of carbonate ion to ferric ion to be about 6.0 or more and about 10.0 or less and is aged. Thereby, twin-free Co containing needle-like goethite fine particles which have fine grain diameter and are superior in needle-like property is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はCo含有針状ゲーサ
イト微粒子の製造方法およびCo含有針状磁性微粒子に
関し、さらに詳しくは、塗布型の高密度磁気記録媒体用
の磁性粉末原料として好適なCo含有針状ゲーサイト微
粒子の製造方法、およびこれにより得られたCo含有針
状ゲーサイト微粒子を熱処理して得られるCo含有針状
磁性微粒子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing Co-containing acicular goethite fine particles and Co-containing acicular magnetic fine particles. The present invention relates to a method for producing ac-containing acicular goethite fine particles, and to Co-containing acicular magnetic fine particles obtained by heat-treating the obtained ac-containing acicular goethite fine particles.

【0002】[0002]

【従来の技術】塗布型の高密度磁気記録媒体に使用され
る、Co含有針状γ−Fe2 3 、Fe3 4 あるいは
Fe−Co合金微粒子の出発原料として、Co含有針状
ゲーサイト(Goethite ;α−FeOOH)微粒子が広く
用いられている。これらCo含有針状磁性微粒子の磁気
特性、粉体特性および塗料特性等は、出発原料であるC
o含有針状ゲーサイトの粒子形状等に大きく影響され
る。したがって、磁気特性やレオロジー特性に優れた磁
性粉末を得るためには、微粒子で針状性に優れ、またこ
れらの分布がシャープであること、分岐形状すなわち双
晶がないこと、かつ後工程で加えられる脱水、還元や酸
化等の各種熱処理に対して耐久性を示し針状微粒子形状
が良好に保存されること等の条件を満たす単分散のCo
含有針状ゲーサイト微粒子を作成する必要がある。
2. Description of the Related Art As a starting material for Co-containing acicular γ-Fe 2 O 3 , Fe 3 O 4 or Fe—Co alloy fine particles used for a coating type high density magnetic recording medium, a Co-containing acicular goethite is used. (Goethite; α-FeOOH) fine particles are widely used. The magnetic properties, powder properties, paint properties, and the like of these Co-containing needle-like magnetic fine particles are determined by the starting material C
It is greatly affected by the particle shape of the o-containing acicular goethite. Therefore, in order to obtain a magnetic powder having excellent magnetic properties and rheological properties, it is necessary to use fine particles and excellent needle-like properties, and that their distribution is sharp, that there is no branching shape, that is, there are no twins, and that they are added in a later step. Monodisperse Co that exhibits durability against various heat treatments such as dehydration, reduction and oxidation, and satisfies the conditions such as that the shape of the acicular fine particles is well preserved.
It is necessary to prepare containing needle-like goethite particles.

【0003】従来、針状ゲーサイト微粒子の製造方法と
して何種類かの方法が提案されている。例えば、 (1)第一鉄塩溶液にアルカリ溶液を加えて得られる水
酸化第一鉄のコロイドを酸性、中性あるいはアルカリ性
懸濁液中で酸化する方法 (2)第二鉄塩溶液にアルカリ溶液を加えて得られる水
酸化第二鉄のコロイドを強アルカリ濁液中で高温高圧処
理する水熱合成法 (3)第二鉄塩溶液にアルカリ溶液を加えて得られる水
酸化第二鉄のコロイドを強アルカリ濁液中で比較的低温
で熟成する方法 等が知られている。
Heretofore, several methods have been proposed for producing needle-like goethite fine particles. For example, (1) a method of oxidizing a ferrous hydroxide colloid obtained by adding an alkali solution to a ferrous salt solution in an acidic, neutral, or alkaline suspension; Hydrothermal synthesis method in which a colloid of ferric hydroxide obtained by adding a solution is subjected to high-temperature and high-pressure treatment in a strong alkali turbid solution. (3) Ferric hydroxide obtained by adding an alkaline solution to a ferric salt solution A method of aging a colloid at a relatively low temperature in a strong alkaline suspension is known.

【0004】これらの方法のうち、(1)の水酸化第一
鉄のコロイドを酸化する方法は粒度分布が拡がりやす
く、また約120°の角度をなす双晶構造の粒子を生成
しやすい。このような不揃いなCo含有針状ゲーサイト
微粒子を出発原料とした磁性粉末は、粒子間の焼結が起
こりやすく、これを磁気記録媒体の磁気記録層に適用す
ると、磁性粉末の分散性、充填性や配向性等に劣り、電
磁変換特性の向上は困難となる。また(2)の水熱合成
法では、100℃以上の高温で合成するため、しばしば
α−Fe2 3 の立方状結晶が発生しこれがCo含有針
状ゲーサイト微粒子に混入したり、あるいはCo含有針
状ゲーサイト微粒子同士が凝集して針状性が劣化するの
で、高密度磁気記録媒体用の磁性粉末の原料としては不
適切である。さらに(3)の水酸化第二鉄のコロイドを
強アルカリ濁液中で比較的低温で熟成する方法は、前述
の従来方法を改善するために提案された方法であり、例
えば特公昭55−4695号公報に開示されている。し
かしながら、熟成条件の設定により針状ゲーサイト微粒
子の粒子形態が大きく変動し、安定して針状性の優れた
微細粒子を合成することが困難である。
Among these methods, the method (1) of oxidizing a ferrous hydroxide colloid tends to broaden the particle size distribution and to easily generate particles having a twin structure forming an angle of about 120 °. Magnetic powder starting from such irregular Co-containing acicular goethite fine particles tends to cause sintering between the particles, and when this is applied to the magnetic recording layer of a magnetic recording medium, the dispersibility and filling of the magnetic powder can be improved. Inferior in properties and orientation, it is difficult to improve the electromagnetic conversion characteristics. Further, in the hydrothermal synthesis method (2), since the synthesis is performed at a high temperature of 100 ° C. or more, cubic crystals of α-Fe 2 O 3 are often generated and mixed into the Co-containing acicular goethite fine particles, or The needle-containing goethite-containing fine particles are agglomerated with each other and the needle-like property is deteriorated. Further, the method (3) of aging the ferric hydroxide colloid at a relatively low temperature in a strong alkali turbid solution is a method proposed to improve the above-mentioned conventional method. For example, Japanese Patent Publication No. 55-4695 No. 6,086,045. However, the particle morphology of the acicular goethite fine particles varies greatly depending on the setting of the aging conditions, and it is difficult to stably synthesize fine particles having excellent acicularity.

【0005】これらの針状ゲーサイト微粒子に、さらに
Coを含有させる場合には、針状微粒子の形状制御が一
層に困難となり、安定したCo含有針状ゲーサイト微粒
子の製造方法は未だ確立されていないと言ってよい。
When Co is further added to these needle-like goethite fine particles, it becomes more difficult to control the shape of the needle-like fine particles, and a method for producing stable Co-containing needle-like goethite fine particles has not yet been established. You can say no.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような技
術的背景のもとに提案するものであり、微粒子形状で針
状性に優れ、またこれらの分布がシャープであること、
分岐形状すなわち双晶がないこと、かつ後工程で加えら
れる脱水、還元や酸化等の各種熱処理に対して耐久性を
示し、針状微粒子形状が良好に保存されること等が可能
なCo含有針状ゲーサイト微粒子の製造方法を提供する
ことをその課題とする。
DISCLOSURE OF THE INVENTION The present invention is based on such a technical background, and it is proposed that fine particles have excellent acicularity and that their distribution is sharp.
Co-containing needle that has no branched shape, ie, twins, and has durability against various heat treatments such as dehydration, reduction, and oxidation added in a later step, and is capable of favorably preserving the shape of acicular fine particles. It is an object of the present invention to provide a method of producing fine goethite fine particles.

【0007】また本発明の別の課題は、このような製造
方法により得られたCo含有針状ゲーサイト微粒子を、
所定雰囲気中で熱処理することにより得られる、微粒子
形状と磁気特性に優れた高密度磁気記録媒体用のCo含
有針状磁性微粒子を提供することである。
Another object of the present invention is to provide a Co-containing acicular goethite fine particle obtained by such a production method,
An object of the present invention is to provide Co-containing needle-like magnetic fine particles for a high-density magnetic recording medium which are obtained by heat treatment in a predetermined atmosphere and have excellent fine particle shape and magnetic properties.

【0008】[0008]

【課題を解決するための手段】本発明のCo含有針状ゲ
ーサイト微粒子の製造方法は、上述の課題を解決するた
めに提案するものであり、Co塩を含む第二鉄塩溶液
と、強アルカリ溶液とを混合撹拌して懸濁液を調製する
工程、この懸濁液を熟成する工程を具備するCo含有針
状ゲーサイト微粒子の製造方法であって、このCo含有
針状ゲーサイト微粒子中のCo/Fe比が15at%以
下であるとともに、この懸濁液中に、第二鉄イオンに対
する炭酸イオンのモル比が6.0以上10.0以下とな
るように炭酸アルカリを添加して熟成することを特徴と
する。
Means for Solving the Problems The method of the present invention for producing Co-containing acicular goethite fine particles is proposed to solve the above-mentioned problems, and comprises a ferric salt solution containing a Co salt, A method for producing Co-containing acicular goethite fine particles comprising a step of preparing a suspension by mixing and stirring with an alkali solution, and a step of aging the suspension. Is added to the suspension so that the molar ratio of carbonate ion to ferric ion is 6.0 or more and 10.0 or less. It is characterized by doing.

【0009】Co含有針状ゲーサイト微粒子中のCo/
Fe比が15at%を超えると、Coは針状ゲーサイト
微粒子にドーピングされず、Co含有針状ゲーサイト微
粒子の他に粒状のCoフェライト粒子が生成混入してく
るので、高密度磁気記録媒体用として不適切となる。C
o/Fe比の下限は特に限定はない。しかしながら、C
oを針状磁性微粒子中に添加する趣旨は磁気特性の制御
であるので、所望とする磁気特性により決定される設計
事項である。ただし、微量のCoを添加しても磁気特性
制御の効果は薄いので、通常は0.5%以上の値が採用
される。
In the Co-containing acicular goethite fine particles, Co /
If the Fe ratio exceeds 15 at%, Co is not doped into the acicular goethite fine particles, and granular Co ferrite particles are generated and mixed in addition to the Co-containing acicular goethite fine particles. As inappropriate. C
The lower limit of the o / Fe ratio is not particularly limited. However, C
The purpose of adding o to the acicular magnetic fine particles is to control the magnetic properties, and is a design matter determined by the desired magnetic properties. However, even if a small amount of Co is added, the effect of controlling the magnetic properties is small, so a value of 0.5% or more is usually adopted.

【0010】またCo塩としてはこれも特に限定され
ず、硫酸Co、硝酸Co、塩化Coあるいは臭化Co等
の水溶性塩が採用される。
The Co salt is not particularly limited, and a water-soluble salt such as Co sulfate, Co nitrate, Co chloride or Co bromide is employed.

【0011】本発明において、Co以外の他の金属、例
えばZn、CrあるいはTi等を含有した針状ゲーサイ
ト微粒子を製造することも可能である。例えば、Zn含
有の針状ゲーサイト微粒子は、硫酸亜鉛等を用いZn含
有の水酸化第二鉄のゲル状アモルファス物質を含有する
懸濁液を熟成することにより得ることができる。他の金
属を含有した針状ゲーサイト微粒子についても同様に得
ることができる。
In the present invention, it is also possible to produce acicular goethite fine particles containing a metal other than Co, for example, Zn, Cr or Ti. For example, acicular goethite fine particles containing Zn can be obtained by aging a suspension containing a gel-like amorphous substance of ferric hydroxide containing Zn using zinc sulfate or the like. Needle-like goethite fine particles containing another metal can be obtained in the same manner.

【0012】Co塩を含む第二鉄塩溶液と混合される強
アルカリとしてはこれも特に限定はなく、水酸化ナトリ
ウム、水酸化カリウムあるいは水酸化リチウム等の水酸
化アルカリ金属等が例示され、これらを水等の溶媒に溶
解して用いられる。
The strong alkali mixed with the ferric salt solution containing a Co salt is not particularly limited, and examples thereof include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide. Is used by dissolving in a solvent such as water.

【0013】第二鉄イオンに対する炭酸イオンのモル
比、すなわち、炭酸イオン/第二鉄イオンのモル比が
6.0未満では生成されるCo含有針状ゲーサイト微粒
子の微細化が不充分となり、また単分散の粒子形態を採
ることができない。また炭酸イオン/第二鉄イオンのモ
ル比が10を超えると、Co含有針状ゲーサイト微粒子
の微細化の効果が飽和するので、炭酸イオンを過剰に添
加することが無意味となりまた製造コストの上昇を招
く。
If the molar ratio of carbonate ion to ferric ion, that is, the molar ratio of carbonate ion / ferric ion is less than 6.0, the resulting fine Co-containing needle-like goethite particles are insufficiently refined, Further, it cannot take a monodisperse particle form. If the molar ratio of carbonate ion / ferric ion exceeds 10, the effect of refining the Co-containing needle-like goethite fine particles is saturated, so that it is meaningless to add excessive carbonate ions and the production cost is reduced. Invite a rise.

【0014】炭酸イオン源として用いられる炭酸塩とし
ては特に限定はなく、例えば炭酸ナトリウム、炭酸カリ
ウム、炭酸アンモニウム、炭酸水素ナトリウムあるいは
炭酸水素カリウム等の炭酸アルカリを単独あるいは混合
して用いることができる。
The carbonate used as the carbonate ion source is not particularly limited. For example, alkali carbonates such as sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate can be used alone or in combination.

【0015】懸濁液中の第二鉄濃度は、0.01mol
/l以上0.10mol/l以下の範囲として熟成する
ことが望ましい。懸濁液は、Co含有水酸化第二鉄コロ
イド、あるいは微量の水分を内部に含むCo含有FeO
OHコロイドが反応母液中に懸濁したものである。この
懸濁液中の第二鉄濃度が0.10mol/lを超える
と、生成する針状ゲーサイト微粒子同士が凝集し易くな
り単分散の状態で得られ難くなる。また0.01mol
/lに満たない場合には、針状ゲーサイト微粒子の収量
が低下するので工業的な製造方法として不適切となる。
The concentration of ferric iron in the suspension is 0.01 mol
It is desirable that the ripening be performed in a range of not less than 0.10 mol / l and not more than 0.10 mol / l. The suspension may be a Co-containing ferric hydroxide colloid or a Co-containing FeO containing a trace amount of water therein.
OH colloid is suspended in the reaction mother liquor. If the concentration of ferric iron in this suspension exceeds 0.10 mol / l, the generated needle-like goethite fine particles are likely to aggregate with each other, making it difficult to obtain a monodispersed state. Also 0.01mol
If the ratio is less than / l, the yield of needle-like goethite fine particles decreases, which is unsuitable as an industrial production method.

【0016】懸濁液を調製する際に用いられる第二鉄塩
としては、針状ゲーサイト微粒子を製造するために通常
用いられるものであればいずれも採用でき、例えば塩化
第二鉄、硫酸第二鉄あるいは硝酸第二鉄等が例示され
る。これら第二鉄塩は水等の溶媒に溶解し、第二鉄塩溶
液として反応に供される。
As the ferric salt used in preparing the suspension, any ferric salt that is usually used for producing needle-like goethite fine particles can be used, and examples thereof include ferric chloride and sulfuric acid sulfate. Examples thereof include ferric iron and ferric nitrate. These ferric salts are dissolved in a solvent such as water and used for the reaction as a ferric salt solution.

【0017】熟成に際して、懸濁液のpHは、11.0
以上13.5以下であることが望ましい。pHが13.
5を超えると針状ゲーサイト微粒子の長軸が著しく成長
し、このため粒子形状が極端に細長くなり、粒子同士の
凝集が起きやすくなり好ましくない。また懸濁液のpH
が11.0未満では針状ゲーサイト微粒子の結晶性が低
下し、後工程での各種熱処理に対する耐熱性に乏しくな
る。また粒状α−Fe2 3 の生成が起きやすくなる。
したがって、pHをこの範囲に選ぶことにより、粒径が
小さくまた粒度分布がシャープで、しかも双晶のない結
晶性に優れた針状ゲーサイト微粒子を得ることができ
る。
During aging, the pH of the suspension is 11.0
It is desirable that it is not less than 13.5. pH 13.
If it exceeds 5, the major axis of the needle-like goethite fine particles grows remarkably, and therefore the particle shape becomes extremely elongated, and aggregation of the particles easily occurs, which is not preferable. Also the pH of the suspension
If it is less than 11.0, the crystallinity of the acicular goethite fine particles decreases, and the heat resistance to various heat treatments in the subsequent steps becomes poor. Further, generation of granular α-Fe 2 O 3 is likely to occur.
Therefore, by selecting the pH within this range, it is possible to obtain needle-like goethite fine particles having a small particle size, a sharp particle size distribution, and excellent twin crystal-free crystallinity.

【0018】またこの熟成は、45℃以上80℃以下の
温度範囲で施すことが望ましい。熟成温度が80℃を超
えると粒状α−Fe2 3 が生成し、磁気特性上好まし
くない。また熟成温度が45℃以下では針状ゲーサイト
微粒子の結晶化が充分でなく、ゲル状アモルファス物質
からなる未反応粒子が残留しやすい。
The aging is preferably performed at a temperature in the range of 45 ° C. to 80 ° C. If the aging temperature exceeds 80 ° C., particulate α-Fe 2 O 3 is generated, which is not preferable in terms of magnetic properties. When the aging temperature is 45 ° C. or lower, the crystallization of the acicular goethite fine particles is not sufficient, and unreacted particles composed of a gel-like amorphous substance tend to remain.

【0019】本発明においてCo塩を含む第二鉄塩溶液
と強アルカリ溶液および炭酸アルカリとを混合する順序
はいかなる方法でもよい。すなわち、Co塩を含む第二
鉄塩溶液を強アルカリ溶液に滴下して混合してもその逆
でもよい。炭酸アルカリはどの段階で添加してもよい。
またラインミキサ等の混合手段により、両溶液を一定量
ずつ連続的に混合してもよい。いずれの混合方法によっ
ても粒子形態に差のない針状ゲーサイト微粒子を得るこ
とができる。またCo塩を含む第二鉄塩溶液と強アルカ
リ溶液および炭酸アルカリとの混合開始から終了に至る
までの所要時間は、短時間、例えば5分以内が好まし
い。混合所要時間が長時間におよぶと、先に混合を終え
たCoを含む水酸化第二鉄、あるいは微量(例えば10
重量%程度)の水分を内部に含むFeOOHのゲル状ア
モルファス物質を含有する懸濁液は、針状ゲーサイト微
粒子の核生成から核成長の段階に進むことがあり、最終
生成物である針状ゲーサイト微粒子の粒度分布が拡が
り、単分散粒子を得ることが困難となる。
In the present invention, the order of mixing the ferric salt solution containing the Co salt with the strong alkali solution and the alkali carbonate may be any method. That is, a ferric salt solution containing a Co salt may be dropped into a strong alkaline solution and mixed, or vice versa. The alkali carbonate may be added at any stage.
Alternatively, both solutions may be continuously mixed in a fixed amount by a mixing means such as a line mixer. Acetic goethite fine particles having no difference in particle morphology can be obtained by any of the mixing methods. The time required from the start to the end of the mixing of the ferric salt solution containing the Co salt with the strong alkali solution and the alkali carbonate is preferably short, for example, within 5 minutes. If the mixing time is long, ferric hydroxide containing Co that has been mixed previously or a trace amount (for example, 10
(% By weight) of a suspension containing a gel-like amorphous material of FeOOH containing water therein sometimes progresses from the nucleation of acicular goethite fine particles to the stage of nucleus growth. The particle size distribution of the goethite fine particles expands, making it difficult to obtain monodisperse particles.

【0020】なおCo塩を含む第二鉄塩溶液と強アルカ
リ溶液および炭酸アルカリとの混合は室温でおこない、
熟成の前処理として、室温を保持したままCoを含む水
酸化第二鉄のゲル状アモルファス物質を含有する懸濁液
の混合を継続して分散均一化しておくことが望ましい。
かかる前処理を施すことにより、針状ゲーサイト微粒子
の結晶化が均一となり粒度分布にも優れた影響をおよぼ
す。
The ferric salt solution containing a Co salt is mixed with a strong alkali solution and alkali carbonate at room temperature.
As a pretreatment for aging, it is desirable to continue mixing of a suspension containing a gel-like amorphous substance of ferric hydroxide containing Co while maintaining room temperature to make the dispersion uniform.
By performing such a pretreatment, the crystallization of the acicular goethite fine particles becomes uniform, and this has an excellent effect on the particle size distribution.

【0021】また熟成の所要時間は熟成温度に依存し、
一般に熟成温度を高くすれば反応所要時間を短縮するこ
とができる。したがって、生成する針状ゲーサイト微粒
子の形状に悪影響を及ぼさない範囲内で、また収量等を
勘案の上、熟成温度を選択すればよい。
The time required for aging depends on the aging temperature.
In general, the higher the aging temperature, the shorter the required reaction time. Therefore, the ripening temperature may be selected within a range that does not adversely affect the shape of the generated needle-like goethite fine particles and in consideration of the yield and the like.

【0022】つぎに本発明のCo含有針状磁性微粒子
は、かかる製造方法により製造されたCo含有針状ゲー
サイト微粒子を、所定雰囲気中で加熱処理して得ること
を特徴とする。Co含有針状磁性微粒子としては、Co
含有γ−Fe2 3 、Co含有Fe34 、Co含有γ
−Fe2 3 /Fe3 4 中間体(ベルトライド化合
物)、Co含有窒化鉄、あるいはFe−Co合金微粒子
等が例示される。
Next, the Co-containing acicular magnetic fine particles of the present invention are characterized by being obtained by subjecting the Co-containing acicular goethite fine particles produced by such a production method to a heat treatment in a predetermined atmosphere. Examples of the Co-containing needle-like magnetic fine particles include Co
Content γ-Fe 2 O 3 , Co content Fe 3 O 4 , Co content γ
-Fe 2 O 3 / Fe 3 O 4 Intermediate (berthollide compound), Co-containing iron nitride or Fe-Co alloy fine particles and the like.

【0023】これらの中でも、特にFe−Co合金微粒
子が高密度磁気記録媒体として望ましい。Fe−Co合
金微粒子を製造する場合には、例えば窒素や空気等、非
還元性雰囲気中で加熱脱水してCo含有針状ヘマタイト
微粒子に変換後、これを水素等の還元性雰囲気中で40
0℃以上700℃以下、より好ましくは500℃以上6
50℃以下の温度範囲で熱処理することにより得られ
る。熱処理温度が400℃未満では還元反応が不充分で
マグネタイトが混在する。また700℃を超えると、得
られるFe−Co合金微粒子の粒子内および粒子間の焼
結が進み、磁気特性、分散性および配向性等の観点から
好ましくない。その他の酸化鉄系あるいは窒化鉄系Co
含有針状磁性微粒子においても、本発明のCo含有針状
ゲーサイト微粒子の製造方法により得られたCo含有針
状ゲーサイト微粒子に、従来より用いられている所定雰
囲気での加熱処理条件をそのまま適用して製造すること
ができる。
Among these, Fe—Co alloy fine particles are particularly desirable as a high-density magnetic recording medium. When producing Fe—Co alloy fine particles, for example, after heating and dehydrating in a non-reducing atmosphere such as nitrogen or air to convert them into Co-containing needle-like hematite fine particles, this is converted to 40% in a reducing atmosphere such as hydrogen.
0 ° C or more and 700 ° C or less, more preferably 500 ° C or more and 6
It is obtained by heat treatment in a temperature range of 50 ° C. or less. If the heat treatment temperature is lower than 400 ° C., the reduction reaction is insufficient and magnetite is mixed. On the other hand, when the temperature exceeds 700 ° C., sintering of the obtained Fe—Co alloy fine particles within and between the particles proceeds, which is not preferable from the viewpoint of magnetic properties, dispersibility, orientation and the like. Other iron oxide-based or iron nitride-based Co
In the case of the acicular magnetic fine particles containing Co, the heat treatment conditions in a predetermined atmosphere conventionally used are directly applied to the Co-containing acicular goethite fine particles obtained by the method for producing the Co-containing acicular goethite fine particles of the present invention. Can be manufactured.

【0024】本発明のCo含有針状ゲーサイト微粒子の
製造方法によれば、Co/Fe比や、炭酸イオン濃度等
を最適条件とすることにより、微細な針状の粒子形状と
結晶性に優れたCo含有針状ゲーサイト微粒子を製造す
ることができる。特に炭酸イオンを多量に添加すること
により、軸比を過大にすることなくCo含有針状ゲーサ
イト微粒子の粒子サイズを縮小することができる。この
理由は必ずしも明らかではないが、以下のように推察さ
れる。すなわち、塩素イオン、硫酸イオン、燐酸イオン
あるいは水酸基イオン等のアニオンは吸着性が強く、こ
の中でも塩素イオンおよび水酸基イオンはゲーサイト微
粒子のc軸方向(長さ方向)に平行な面、すなわち、ゲ
ーサイト微粒子のb軸方向(幅方向)およびa軸方向
(厚さ方向)の面に特異吸着する性質がある(ゲーサイ
ト微粒子は便宜上針状と表記しているが、厳密には笹の
葉状に近い板状粒子である)。このため、一般的にはゲ
ーサイト微粒子の側面方向の成長が抑制され、長さ方向
が選択的に成長する結果、軸比が過大となる。一方、炭
酸イオンは、もともと吸着性が塩素イオンや水酸基イオ
ンより小さい上に、特異結晶面への選択吸着性もない。
したがって、炭酸イオンを塩素イオンや水酸基イオンよ
り多量に添加することにより、炭酸イオンが優先的かつ
各結晶面に均等に吸着する。したがって、ゲーサイト微
粒子のa軸、b軸およびc軸方向の成長が均等となり、
長軸のみが成長することなく、微粒子化が達成される。
According to the method for producing ac-containing acicular goethite fine particles of the present invention, by setting the Co / Fe ratio, carbonate ion concentration and the like to optimum conditions, fine acicular particle shapes and excellent crystallinity are obtained. Thus, Co-containing needle-like goethite fine particles can be produced. In particular, by adding a large amount of carbonate ions, the particle size of the Co-containing needle-like goethite fine particles can be reduced without increasing the axial ratio. The reason for this is not necessarily clear, but is presumed as follows. That is, anions such as chloride ion, sulfate ion, phosphate ion and hydroxyl ion have strong adsorptivity. Among them, chloride ion and hydroxyl ion are the surfaces parallel to the c-axis direction (length direction) of the goethite fine particles, that is, It has the property of specifically adsorbing to the b-axis direction (width direction) and a-axis direction (thickness direction) of the site fine particles (the goethite fine particles are described as needle-shaped for convenience, but strictly speaking, they are shaped like bamboo leaves). Close plate-like particles). For this reason, in general, the growth of the goethite fine particles in the lateral direction is suppressed, and the longitudinal direction is selectively grown, resulting in an excessive axial ratio. On the other hand, carbonate ions originally have lower adsorptivity than chloride ions and hydroxyl ions, and have no selective adsorption to a specific crystal plane.
Therefore, by adding the carbonate ion in a larger amount than the chlorine ion or the hydroxyl group ion, the carbonate ion is preferentially and uniformly adsorbed on each crystal face. Therefore, the growth of the goethite particles in the a-axis, b-axis and c-axis directions becomes uniform,
Micronization is achieved without growing only the major axis.

【0025】また本発明のCo含有針状磁性微粒子は、
かかる製造方法により得られたCo含有針状ゲーサイト
微粒子を所定雰囲気、すなわち還元性あるいは酸化性等
の雰囲気中で熱処理することにより、針状性と結晶性に
優れ、この結果高密度磁気記録媒体に適した磁性粒子を
提供することが可能となる。
The Co-containing acicular magnetic fine particles of the present invention are
By heat-treating the Co-containing acicular goethite fine particles obtained by such a production method in a predetermined atmosphere, that is, an atmosphere such as a reducing or oxidizing atmosphere, excellent acicularity and crystallinity can be obtained. It is possible to provide magnetic particles suitable for the above.

【0026】[0026]

【発明の実施の形態】以下、本発明の具体的実施形態例
につき図面を参照して説明する。図1は本発明のCo含
有針状ゲーサイト微粒子の製造方法を示すプロセスフロ
ー図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a process flow chart illustrating a method for producing Co-containing acicular goethite fine particles of the present invention.

【0027】〔SP1〕Co塩を含む第二鉄塩溶液、強
アルカリ溶液および炭酸アルカリを準備する工程 Co塩および第二鉄塩を水に溶解し、Co塩を含む第二
鉄塩溶液を調製する。第二鉄塩に対するCo塩の割合
(Co2+/Fe3+)は、最終的に得られるCo含有針状
ゲーサイト微粒子中のCo/Fe比が15at%以下と
なるように選ぶ。一般に、Co含有針状ゲーサイト微粒
子中のCo/Fe比は、Co塩を含む第二鉄溶液中のC
2+/Fe3+比より若干、すなわち5%から15%程度
の範囲内で大きくなる。一方、水酸化アルカリ金属等を
水に溶解し、強アルカリ溶液を別途調製する。さらに、
炭酸アルカリを水に溶解し、炭酸アルカリ溶液を別途調
製する。
[SP1] Step of Preparing a Ferric Salt Solution Containing a Co Salt, a Strongly Alkaline Solution, and an Alkaline Carbonate The Co salt and the ferric salt are dissolved in water to prepare a ferric salt solution containing a Co salt. I do. The ratio of the Co salt to the ferric salt (Co 2+ / Fe 3+ ) is selected so that the Co / Fe ratio in the finally obtained Co-containing acicular goethite fine particles is 15 at% or less. Generally, the Co / Fe ratio in the Co-containing acicular goethite fine particles is determined by the C / Fe ratio in the ferric solution containing the Co salt.
It is slightly higher than the o 2+ / Fe 3+ ratio, that is, within a range of about 5% to 15%. Meanwhile, an alkali metal hydroxide or the like is dissolved in water to separately prepare a strong alkali solution. further,
The alkali carbonate is dissolved in water to separately prepare an alkali carbonate solution.

【0028】〔SP2〕混合撹拌工程 Co塩を含む第二鉄塩溶液、強アルカリ溶液および炭酸
アルカリ溶液を混合撹拌する。
[SP2] Mixing and Stirring Step A ferric salt solution containing a Co salt, a strong alkali solution and an alkali carbonate solution are mixed and stirred.

【0029】〔SP3〕懸濁液形成工程 SP2の混合撹拌工程の結果として懸濁液が形成され
る。この懸濁液中には、Co含有水酸化第二鉄およびC
o含有FeOOH等が含まれ、いずれもコロイド状態で
ある。懸濁液中の第二鉄濃度は0.01mol/l以上
0.10mol/l以下となるようにすることが望まし
い。また懸濁液のpHは、11.0以上13.5以下と
なることが望ましい。
[SP3] Step of forming suspension A suspension is formed as a result of the mixing and stirring step of SP2. In this suspension, Co-containing ferric hydroxide and C
o-containing FeOOH and the like, all of which are in a colloidal state. It is desirable that the concentration of ferric iron in the suspension be 0.01 mol / l or more and 0.10 mol / l or less. Further, the pH of the suspension is desirably 11.0 or more and 13.5 or less.

【0030】〔SP4〕熟成工程 前工程で得られた懸濁液を熟成する。熟成は、45℃以
上80℃以下の温度範囲で施すことが望ましい。所要熟
成時間は熟成温度によるが、通常数十時間から数百時間
が選ばれる。
[SP4] Aging step The suspension obtained in the preceding step is aged. Aging is desirably performed in a temperature range of 45 ° C. or more and 80 ° C. or less. The required aging time depends on the aging temperature, but is usually selected from several tens to several hundred hours.

【0031】〔SP5〕Co含有針状ゲーサイト微粒子
形成工程 熟成工程の結果として、最終的にはCo含有針状ゲーサ
イト微粒子が得られる。Co含有針状ゲーサイト微粒子
中のCo/Fe比は15at%以下の範囲が選ばれる。
[SP5] Step of forming Co-containing acicular goethite fine particles As a result of the aging step, finally, Co-containing acicular goethite fine particles are obtained. The Co / Fe ratio in the Co-containing needle-like goethite fine particles is selected in a range of 15 at% or less.

【0032】この後の工程は、常法に準じて洗浄、乾燥
工程をへてCo含有針状ゲーサイト微粒子粉末を得る。
また必要に応じて、洗浄工程後に焼結防止剤被着工程を
加えてもよい。焼結防止剤としては、水ガラス、水酸化
アルミニウム等従来公知のものはいずれも使用できる。
In the subsequent steps, a Co-containing needle-like goethite fine particle powder is obtained through washing and drying steps according to a conventional method.
If necessary, a sintering inhibitor applying step may be added after the cleaning step. As the sintering inhibitor, any of conventionally known agents such as water glass and aluminum hydroxide can be used.

【0033】このようにして得られたCo含有針状ゲー
サイト微粒子は、所定雰囲気中で加熱処理することによ
り、Co−Fe合金等のCo含有針状磁性微粒子とする
ことができる。
The Co-containing acicular goethite fine particles thus obtained can be converted into Co-containing acicular magnetic fine particles such as a Co—Fe alloy by heating in a predetermined atmosphere.

【0034】[0034]

【実施例】以下、本発明のCo含有針状ゲーサイト微粒
子の製造方法およびCo含有針状磁性微粒子につき、比
較例を交えつつ実施例を参照してさらに詳しく説明す
る。ただし以下の実施例は本発明の理解を容易にするた
めの例示であり、本発明はこれら実施例になんら限定さ
れない。
EXAMPLES Hereinafter, the method for producing Co-containing acicular goethite fine particles and the Co-containing acicular magnetic fine particles of the present invention will be described in more detail with reference to Examples along with Comparative Examples. However, the following examples are exemplifications to facilitate understanding of the present invention, and the present invention is not limited to these examples.

【0035】〔実施例1〕塩化第二鉄六水和物(FeC
3 ・6H2 O)を蒸留水に溶解し、0.075mol
/lの塩化第二鉄溶液2500mlを用意した。別に塩
化コバルト六水和物(CoCl2 ・6H2 O)0.00
375molを蒸留水に溶解して350mlとし、塩化
コバルト溶液を用意した。両溶液を混合し、Co塩を含
む第二鉄塩溶液2850mlを調製した。この混合溶液
中のCo2+/Fe3+比は2.0at%である。この混合
溶液を撹拌しながら、別途用意した0.375mol/
lの水酸化ナトリウム溶液1850mlおよび3.75
mol/lの炭酸ナトリウム溶液300mlを滴下して
混合し、懸濁液を調製した。この懸濁液は、Co含有水
酸化第二鉄コロイドや、微量の水分を内部に含むCo含
有FeOOHコロイドが反応母液中に懸濁したものであ
る。この懸濁液中の第二鉄濃度は0.040mol/
l、pHは12.0であった。
Example 1 Ferric chloride hexahydrate (FeC
l 3 · 6H the 2 O) was dissolved in distilled water, 0.075 mol
2500 l / l ferric chloride solution was prepared. Separately, cobalt chloride hexahydrate (CoCl 2 .6H 2 O) 0.00
375 mol was dissolved in distilled water to make 350 ml, and a cobalt chloride solution was prepared. The two solutions were mixed to prepare 2850 ml of a ferric salt solution containing a Co salt. The Co 2+ / Fe 3+ ratio in this mixed solution is 2.0 at%. While stirring this mixed solution, 0.375 mol /
1850 ml of sodium hydroxide solution and 3.75
300 ml of a mol / l sodium carbonate solution was added dropwise and mixed to prepare a suspension. This suspension is a suspension of a Co-containing ferric hydroxide colloid and a Co-containing FeOOH colloid containing a trace amount of water therein in a reaction mother liquor. The concentration of ferric iron in this suspension was 0.040 mol /
1, pH was 12.0.

【0036】得られた懸濁液は、8000rpmの高速
回転翼による撹拌を10分間施した後、撹拌を停止し、
60℃で209時間熟成をおこなった。この熟成工程に
より、Co含有針状ゲーサイト微粒子が生成した。Co
含有針状ゲーサイト微粒子中のCo含有量すなわちCo
/Fe比は2.2at%であった。
The obtained suspension was stirred by a high-speed rotating blade at 8000 rpm for 10 minutes, and then the stirring was stopped.
Aging was performed at 60 ° C. for 209 hours. By this aging step, Co-containing acicular goethite fine particles were generated. Co
Co content in needle-containing goethite microparticles containing
The / Fe ratio was 2.2 at%.

【0037】得られたCo含有針状ゲーサイト微粒子を
濾過洗浄後、水中で高速分散させた状態で水ガラスによ
り表面処理し、焼結防止処置を施した。表面処理したC
o含有針状ゲーサイト微粒子を濾過し、80℃の乾燥条
件で乾燥し、Co含有針状ゲーサイト微粒子粉末を得
た。
The Co-containing needle-like goethite fine particles obtained were filtered and washed, and then surface-treated with water glass in a state of high-speed dispersion in water, to thereby perform a sintering prevention treatment. Surface treated C
The o-containing acicular goethite fine particles were filtered and dried under a drying condition at 80 ° C to obtain a Co-containing acicular goethite fine particle powder.

【0038】このCo含有針状ゲーサイト微粒子を窒素
雰囲気中550℃で1時間加熱脱水し、Co含有針状ヘ
マタイト微粒子を得た。続けて水素雰囲気中550℃で
3時間加熱還元した。還元終了後、還元炉を冷却し、微
量の酸素を含む窒素により室温で徐酸化して表面酸化膜
を形成して安定化させ、FeCo合金針状微粒子を得
た。
The Co-containing acicular goethite fine particles were heated and dehydrated at 550 ° C. for 1 hour in a nitrogen atmosphere to obtain Co-containing acicular hematite fine particles. Subsequently, reduction was carried out by heating at 550 ° C. for 3 hours in a hydrogen atmosphere. After the reduction was completed, the reduction furnace was cooled and gradually oxidized at room temperature with nitrogen containing a trace amount of oxygen to form and stabilize a surface oxide film, thereby obtaining needle-like FeCo alloy fine particles.

【0039】〔実施例2〕塩化第二鉄六水和物(FeC
3 ・6H2 O)を蒸留水に溶解し、0.075mol
/lの塩化第二鉄溶液2500mlを用意した。別に塩
化コバルト六水和物(CoCl2 ・6H2 O)0.00
75molを蒸留水に溶解して50mlとし、塩化コバ
ルト溶液を用意した。両溶液を混合し、Co塩を含む第
二鉄塩溶液2550mlを調製した。この混合溶液中の
Co2+/Fe3+比は4.0at%である。この混合溶液
を撹拌しながら、別途用意した0.375mol/lの
水酸化ナトリウム溶液1840mlおよび3.75mo
l/lの炭酸ナトリウム溶液300mlを滴下して混合
し、懸濁液を調製した。この懸濁液は、Co含有水酸化
第二鉄コロイドや、微量の水分を内部に含むCo含有F
eOOHコロイドが反応母液中に懸濁したものである。
この懸濁液中の第二鉄濃度は0.040mol/l、p
Hは12.0であった。
Example 2 Ferric chloride hexahydrate (FeC
l 3 · 6H the 2 O) was dissolved in distilled water, 0.075 mol
2500 l / l ferric chloride solution was prepared. Separately, cobalt chloride hexahydrate (CoCl 2 .6H 2 O) 0.00
75 mol was dissolved in distilled water to make 50 ml, and a cobalt chloride solution was prepared. The two solutions were mixed to prepare 2550 ml of a ferric salt solution containing a Co salt. The Co 2+ / Fe 3+ ratio in this mixed solution is 4.0 at%. While stirring the mixed solution, 1840 ml of a separately prepared 0.375 mol / l sodium hydroxide solution and 3.75 mol
300 ml of a 1 / l sodium carbonate solution was added dropwise and mixed to prepare a suspension. This suspension contains a Co-containing ferric hydroxide colloid or a Co-containing F containing a small amount of water therein.
The eOOH colloid is suspended in the reaction mother liquor.
The concentration of ferric iron in this suspension was 0.040 mol / l, p
H was 12.0.

【0040】得られた懸濁液は、8000rpmの高速
回転翼による撹拌を10分間施した後、撹拌を停止し、
60℃で209時間熟成をおこなった。この熟成工程に
より、Co含有針状ゲーサイト微粒子が生成した。Co
含有針状ゲーサイト微粒子中のCo含有量すなわちCo
/Fe比は4.3at%であった。
The obtained suspension was stirred by a high-speed rotating blade at 8000 rpm for 10 minutes, and then the stirring was stopped.
Aging was performed at 60 ° C. for 209 hours. By this aging step, Co-containing acicular goethite fine particles were generated. Co
Co content in needle-containing goethite microparticles containing
The / Fe ratio was 4.3 at%.

【0041】得られたCo含有針状ゲーサイト微粒子
を、実施例1に準じて洗浄、表面処理、乾燥ならびに所
定雰囲気中での加熱処理を施し、FeCo合金針状微粒
子を得た。
The obtained Co-containing acicular goethite fine particles were subjected to washing, surface treatment, drying, and heat treatment in a predetermined atmosphere according to Example 1 to obtain FeCo alloy acicular fine particles.

【0042】〔実施例3〕塩化第二鉄六水和物(FeC
3 ・6H2 O)を蒸留水に溶解し、0.075mol
/lの塩化第二鉄溶液2500mlを用意した。別に塩
化コバルト六水和物(CoCl2 ・6H2 O)0.01
125molを蒸留水に溶解して80mlとし、塩化コ
バルト溶液を用意した。両溶液を混合し、Co塩を含む
第二鉄塩溶液2580mlを調製した。この混合溶液中
のCo2+/Fe3+比は6.0at%である。この混合溶
液を撹拌しながら、別途用意した0.375mol/l
の水酸化ナトリウム溶液1840mlおよび3.75m
ol/lの炭酸ナトリウム溶液300mlを滴下して混
合し、懸濁液を調製した。この懸濁液は、Co含有水酸
化第二鉄コロイドや、微量の水分を内部に含むCo含有
FeOOHコロイドが反応母液中に懸濁したものであ
る。この懸濁液中の第二鉄濃度は0.040mol/
l、pHは12.0であった。
Example 3 Ferric chloride hexahydrate (FeC
l 3 · 6H the 2 O) was dissolved in distilled water, 0.075 mol
2500 l / l ferric chloride solution was prepared. Separately, cobalt chloride hexahydrate (CoCl 2 .6H 2 O) 0.01
125 mol was dissolved in distilled water to make 80 ml, and a cobalt chloride solution was prepared. The two solutions were mixed to prepare 2580 ml of a ferric salt solution containing a Co salt. The Co 2+ / Fe 3+ ratio in this mixed solution is 6.0 at%. While stirring this mixed solution, 0.375 mol / l separately prepared
Sodium hydroxide solution of 1840 ml and 3.75 m
300 ml of an ol / l sodium carbonate solution was added dropwise and mixed to prepare a suspension. This suspension is a suspension of a Co-containing ferric hydroxide colloid and a Co-containing FeOOH colloid containing a trace amount of water therein in a reaction mother liquor. The concentration of ferric iron in this suspension was 0.040 mol /
1, pH was 12.0.

【0043】得られた懸濁液は、8000rpmの高速
回転翼による撹拌を10分間施した後、撹拌を停止し、
60℃で144時間熟成をおこなった。この熟成工程に
より、Co含有針状ゲーサイト微粒子が生成した。Co
含有針状ゲーサイト微粒子中のCo含有量すなわちCo
/Fe比は6.4at%であった。
The obtained suspension was stirred by a high-speed rotating blade at 8000 rpm for 10 minutes, and then the stirring was stopped.
Aging was performed at 60 ° C. for 144 hours. By this aging step, Co-containing acicular goethite fine particles were generated. Co
Co content in needle-containing goethite microparticles containing
The / Fe ratio was 6.4 at%.

【0044】得られたCo含有針状ゲーサイト微粒子
を、実施例1に準じて洗浄、表面処理、乾燥ならびに所
定雰囲気中での加熱処理を施し、FeCo合金針状微粒
子を得た。
The obtained Co-containing acicular goethite fine particles were subjected to washing, surface treatment, drying, and heat treatment in a predetermined atmosphere according to Example 1, to obtain FeCo alloy acicular fine particles.

【0045】〔実施例4〕塩化第二鉄六水和物(FeC
3 ・6H2 O)を蒸留水に溶解し、0.075mol
/lの塩化第二鉄溶液2500mlを用意した。別に塩
化コバルト六水和物(CoCl2 ・6H2 O)0.01
5molを蒸留水に溶解して80mlとし、塩化コバル
ト溶液を用意した。両溶液を混合し、Co塩を含む第二
鉄塩溶液2580mlを調製した。この混合溶液中のC
2+/Fe3+比は8.0at%である。この混合溶液を
撹拌しながら、別途用意した0.375mol/lの水
酸化ナトリウム溶液1840mlおよび3.75mol
/lの炭酸ナトリウム溶液300mlを滴下して混合
し、懸濁液を調製した。この懸濁液は、Co含有水酸化
第二鉄コロイドや、微量の水分を内部に含むCo含有F
eOOHコロイドが反応母液中に懸濁したものである。
この懸濁液中の第二鉄濃度は0.040mol/l、p
Hは12.0であった。
Example 4 Ferric chloride hexahydrate (FeC
l 3 · 6H the 2 O) was dissolved in distilled water, 0.075 mol
2500 l / l ferric chloride solution was prepared. Separately, cobalt chloride hexahydrate (CoCl 2 .6H 2 O) 0.01
5 mol was dissolved in distilled water to make 80 ml, and a cobalt chloride solution was prepared. The two solutions were mixed to prepare 2580 ml of a ferric salt solution containing a Co salt. C in this mixed solution
The o 2+ / Fe 3+ ratio is 8.0 at%. While stirring the mixed solution, 1840 ml of a separately prepared 0.375 mol / l sodium hydroxide solution and 3.75 mol of a sodium hydroxide solution were prepared.
A 300 ml / l sodium carbonate solution was added dropwise and mixed to prepare a suspension. This suspension contains a Co-containing ferric hydroxide colloid or a Co-containing F containing a small amount of water therein.
The eOOH colloid is suspended in the reaction mother liquor.
The concentration of ferric iron in this suspension was 0.040 mol / l, p
H was 12.0.

【0046】得られた懸濁液は、8000rpmの高速
回転翼による撹拌を10分間施した後、撹拌を停止し、
60℃で144時間熟成をおこなった。この熟成工程に
より、Co含有針状ゲーサイト微粒子が生成した。Co
含有針状ゲーサイト微粒子中のCo含有量すなわちCo
/Fe比は8.7at%であった。
The obtained suspension was stirred for 10 minutes by a high-speed rotating blade at 8000 rpm, and then the stirring was stopped.
Aging was performed at 60 ° C. for 144 hours. By this aging step, Co-containing acicular goethite fine particles were generated. Co
Co content in needle-containing goethite microparticles containing
The / Fe ratio was 8.7 at%.

【0047】得られたCo含有針状ゲーサイト微粒子
を、実施例1に準じて洗浄、表面処理、乾燥ならびに所
定雰囲気中での加熱処理を施し、FeCo合金針状微粒
子を得た。
The obtained Co-containing acicular goethite fine particles were subjected to washing, surface treatment, drying, and heat treatment in a predetermined atmosphere according to Example 1 to obtain FeCo alloy acicular fine particles.

【0048】〔実施例5〕塩化第二鉄六水和物(FeC
3 ・6H2 O)を蒸留水に溶解し、0.075mol
/lの塩化第二鉄溶液2500mlを用意した。別に塩
化コバルト六水和物(CoCl2 ・6H2 O)0.03
75molを蒸留水に溶解して50mlとし、塩化コバ
ルト溶液を用意した。両溶液を混合し、Co塩を含む第
二鉄塩溶液2550mlを調製した。この混合溶液中の
Co2+/Fe3+比は2.0at%である。この混合溶液
を撹拌しながら、別途用意した0.375mol/lの
水酸化ナトリウム溶液1580mlおよび3.75mo
l/lの炭酸ナトリウム溶液300mlを滴下して混合
し、懸濁液を調製した。この懸濁液は、Co含有水酸化
第二鉄コロイドや、微量の水分を内部に含むCo含有F
eOOHコロイドが反応母液中に懸濁したものである。
この懸濁液中の第二鉄濃度は0.042mol/l、p
Hは11.3であった。
Example 5 Ferric chloride hexahydrate (FeC
l 3 · 6H the 2 O) was dissolved in distilled water, 0.075 mol
2500 l / l ferric chloride solution was prepared. Separately, cobalt chloride hexahydrate (CoCl 2 .6H 2 O) 0.03
75 mol was dissolved in distilled water to make 50 ml, and a cobalt chloride solution was prepared. The two solutions were mixed to prepare 2550 ml of a ferric salt solution containing a Co salt. The Co 2+ / Fe 3+ ratio in this mixed solution is 2.0 at%. While stirring the mixed solution, 1580 ml of a separately prepared 0.375 mol / l sodium hydroxide solution and 3.75 mol
300 ml of a 1 / l sodium carbonate solution was added dropwise and mixed to prepare a suspension. This suspension contains a Co-containing ferric hydroxide colloid or a Co-containing F containing a small amount of water therein.
The eOOH colloid is suspended in the reaction mother liquor.
The concentration of ferric iron in this suspension was 0.042 mol / l, p
H was 11.3.

【0049】得られた懸濁液は、8000rpmの高速
回転翼による撹拌を10分間施した後、撹拌を停止し、
45℃で165時間熟成をおこなった。この熟成工程に
より、Co含有針状ゲーサイト微粒子が生成した。Co
含有針状ゲーサイト微粒子中のCo含有量すなわちCo
/Fe比は2.2at%であった。
The obtained suspension was stirred by a high-speed rotating blade at 8000 rpm for 10 minutes, and then the stirring was stopped.
Aging was performed at 45 ° C. for 165 hours. By this aging step, Co-containing acicular goethite fine particles were generated. Co
Co content in needle-containing goethite microparticles containing
The / Fe ratio was 2.2 at%.

【0050】得られたCo含有針状ゲーサイト微粒子
を、実施例1に準じて洗浄、表面処理、乾燥ならびに所
定雰囲気中での加熱処理を施し、FeCo合金針状微粒
子を得た。
The obtained Co-containing acicular goethite fine particles were subjected to washing, surface treatment, drying and heat treatment in a predetermined atmosphere according to Example 1 to obtain FeCo alloy acicular fine particles.

【0051】〔実施例6〕塩化第二鉄六水和物(FeC
3 ・6H2 O)を蒸留水に溶解し、0.075mol
/lの塩化第二鉄溶液2500mlを用意した。別に塩
化コバルト六水和物(CoCl2 ・6H2 O)0.00
75molを蒸留水に溶解して50mlとし、塩化コバ
ルト溶液を用意した。両溶液を混合し、Co塩を含む第
二鉄塩溶液2550mlを調製した。この混合溶液中の
Co2+/Fe3+比は3.8at%である。この混合溶液
を撹拌しながら、別途用意した0.375mol/lの
水酸化ナトリウム溶液1700mlおよび3.75mo
l/lの炭酸ナトリウム溶液300mlを滴下して混合
し、懸濁液を調製した。この懸濁液は、Co含有水酸化
第二鉄コロイドや、微量の水分を内部に含むCo含有F
eOOHコロイドが反応母液中に懸濁したものである。
この懸濁液中の第二鉄濃度は0.041mol/l、p
Hは11.5であった。
Example 6 Ferric chloride hexahydrate (FeC
l 3 · 6H the 2 O) was dissolved in distilled water, 0.075 mol
2500 l / l ferric chloride solution was prepared. Separately, cobalt chloride hexahydrate (CoCl 2 .6H 2 O) 0.00
75 mol was dissolved in distilled water to make 50 ml, and a cobalt chloride solution was prepared. The two solutions were mixed to prepare 2550 ml of a ferric salt solution containing a Co salt. The Co 2+ / Fe 3+ ratio in this mixed solution is 3.8 at%. While stirring the mixed solution, 1700 ml of a separately prepared 0.375 mol / l sodium hydroxide solution and 3.75 mo were prepared.
300 ml of a 1 / l sodium carbonate solution was added dropwise and mixed to prepare a suspension. This suspension contains a Co-containing ferric hydroxide colloid or a Co-containing F containing a small amount of water therein.
The eOOH colloid is suspended in the reaction mother liquor.
The concentration of ferric iron in this suspension was 0.041 mol / l, p
H was 11.5.

【0052】得られた懸濁液は、8000rpmの高速
回転翼による撹拌を10分間施した後、撹拌を停止し、
45℃で165時間熟成をおこなった。この熟成工程に
より、Co含有針状ゲーサイト微粒子が生成した。Co
含有針状ゲーサイト微粒子中のCo含有量すなわちCo
/Fe比は4.3at%であった。
The obtained suspension was stirred for 10 minutes by a high-speed rotating blade at 8000 rpm, and then the stirring was stopped.
Aging was performed at 45 ° C. for 165 hours. By this aging step, Co-containing acicular goethite fine particles were generated. Co
Co content in needle-containing goethite microparticles containing
The / Fe ratio was 4.3 at%.

【0053】得られたCo含有針状ゲーサイト微粒子
を、実施例1に準じて洗浄、表面処理、乾燥ならびに所
定雰囲気中での加熱処理を施し、FeCo合金針状微粒
子を得た。
The obtained Co-containing acicular goethite fine particles were subjected to washing, surface treatment, drying and heat treatment in a predetermined atmosphere according to Example 1 to obtain FeCo alloy acicular fine particles.

【0054】〔比較例1〕塩化第二鉄六水和物(FeC
3 ・6H2 O)を蒸留水に溶解し、0.075mol
/lの塩化第二鉄溶液2500mlを用意した。この溶
液を撹拌しながら、別途用意した0.469mol/l
の水酸化ナトリウム溶液1750mlを滴下して混合
し、懸濁液を調製した。この懸濁液中の第二鉄濃度は
0.044mol/l、pHは12.5であった。
Comparative Example 1 Ferric chloride hexahydrate (FeC
l 3 · 6H the 2 O) was dissolved in distilled water, 0.075 mol
2500 l / l ferric chloride solution was prepared. While stirring this solution, 0.469 mol / l separately prepared
Was added dropwise and mixed to prepare a suspension. The concentration of ferric iron in this suspension was 0.044 mol / l, and the pH was 12.5.

【0055】得られた懸濁液は、8000rpmの高速
回転翼による撹拌を10分間施した後、撹拌を停止し、
60℃で209時間熟成をおこなった。この熟成工程に
より、針状ゲーサイト微粒子が生成した。
The obtained suspension was stirred by a high-speed rotating blade at 8000 rpm for 10 minutes, and then the stirring was stopped.
Aging was performed at 60 ° C. for 209 hours. By this aging step, acicular goethite fine particles were generated.

【0056】得られた針状ゲーサイト微粒子を、実施例
1に準じて洗浄、表面処理、乾燥ならびに所定雰囲気中
での加熱処理を施し、Fe金属針状微粒子を得た。
The obtained needle-like goethite fine particles were subjected to washing, surface treatment, drying and heat treatment in a predetermined atmosphere according to Example 1 to obtain Fe metal needle-like fine particles.

【0057】〔比較例2〕塩化第二鉄六水和物(FeC
3 ・6H2 O)を蒸留水に溶解し、0.75mol/
lの塩化第二鉄溶液250mlを用意した。別に塩化コ
バルト六水和物(CoCl2 ・6H2 O)0.0187
5molを蒸留水に溶解して50mlとし、塩化コバル
ト溶液を用意した。両溶液を混合し、Co塩を含む第二
鉄塩溶液300mlを調製した。この混合溶液中のCo
2+/Fe3+比は10.0at%である。この混合溶液を
撹拌しながら、別途用意した3.75mol/lの水酸
化ナトリウム溶液176mlを滴下して混合し、さらに
続けて0.75mol/lの水酸化ナトリウム溶液13
mlを滴下して混合し、懸濁液を調製した。この懸濁液
は、Co含有水酸化第二鉄コロイドや、微量の水分を内
部に含むCo含有FeOOHコロイドが反応母液中に懸
濁したものである。この懸濁液中の第二鉄濃度は0.3
83mol/l、pHは12.5であった。
Comparative Example 2 Ferric chloride hexahydrate (FeC
l 3 · 6H the 2 O) was dissolved in distilled water, 0.75 mol /
1 ml of a ferric chloride solution was prepared. Separately, cobalt chloride hexahydrate (CoCl 2 .6H 2 O) 0.0187
5 mol was dissolved in distilled water to make 50 ml, and a cobalt chloride solution was prepared. The two solutions were mixed to prepare 300 ml of a ferric salt solution containing a Co salt. Co in this mixed solution
The 2 + / Fe3 + ratio is 10.0 at%. While stirring this mixed solution, 176 ml of a separately prepared 3.75 mol / l sodium hydroxide solution was dropped and mixed, and further, a 0.75 mol / l sodium hydroxide solution 13 was added.
ml was added dropwise and mixed to prepare a suspension. This suspension is a suspension of a Co-containing ferric hydroxide colloid and a Co-containing FeOOH colloid containing a trace amount of water therein in a reaction mother liquor. The concentration of ferric iron in this suspension was 0.3
83 mol / l, pH was 12.5.

【0058】得られた懸濁液は、8000rpmの高速
回転翼による撹拌を10分間施した後、撹拌を停止し、
60℃で120時間熟成をおこなった。この熟成工程に
より、Co含有針状ゲーサイト微粒子が生成した。Co
含有針状ゲーサイト微粒子中のCo含有量すなわちCo
/Fe比は10.6at%であった。
The obtained suspension was stirred for 10 minutes by a high-speed rotating blade at 8000 rpm, and then the stirring was stopped.
Aging was performed at 60 ° C. for 120 hours. By this aging step, Co-containing acicular goethite fine particles were generated. Co
Co content in needle-containing goethite microparticles containing
The / Fe ratio was 10.6 at%.

【0059】得られたCo含有針状ゲーサイト微粒子
を、実施例1に準じて洗浄、表面処理、乾燥ならびに所
定雰囲気中での加熱処理を施し、FeCo合金針状微粒
子を得た。
The obtained Co-containing acicular goethite fine particles were subjected to washing, surface treatment, drying and heat treatment in a predetermined atmosphere according to Example 1 to obtain FeCo alloy acicular fine particles.

【0060】以上の実施例1〜6、および比較例1〜2
により得られたCo含有針状ゲーサイト微粒子、あるい
は針状ゲーサイト微粒子の製造条件を、〔表1〕にまと
めて示す。
The above Examples 1 to 6 and Comparative Examples 1 and 2
The production conditions of the Co-containing needle-like goethite fine particles or the needle-like goethite fine particles obtained by the above are summarized in [Table 1].

【0061】[0061]

【表1】 [Table 1]

【0062】また同じく、以上の実施例1〜6、および
比較例1〜2により得られたCo含有針状ゲーサイト微
粒子、あるいは針状ゲーサイト微粒子の粉体特性を、
〔表2〕にまとめて示す。これらのうち、針状粒子の形
状、すなわち長軸、短軸ならびに軸比は、TEM(透過
型電子顕微鏡)写真から寸法測定して求めた。また結晶
子径は、Debye-Scherrer法により(110)面から求め
た。
Similarly, the powder characteristics of the Co-containing acicular goethite fine particles or the acicular goethite fine particles obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were as follows:
The results are shown in [Table 2]. Among these, the shape of the acicular particles, that is, the major axis, the minor axis, and the axial ratio were determined by dimension measurement from a TEM (transmission electron microscope) photograph. The crystallite diameter was determined from the (110) plane by the Debye-Scherrer method.

【0063】[0063]

【表2】 [Table 2]

【0064】〔表2〕の結果から、本発明のCo含有針
状ゲーサイト微粒子の製造方法により得られるCo含有
針状ゲーサイト微粒子は、長軸、短軸の粒子径が適切な
範囲にあるとともに、軸比も適切な範囲内であることが
判る。また双晶の存在も認められず、単分散の状態であ
った。一方比較例1の針状ゲーサイト微粒子および比較
例2のCo含有針状ゲーサイト微粒子は、軸比が4.0
および3.5と小さい。また双晶を持つ微粒子がわずか
に混在しており、凝集が認められた。
From the results shown in Table 2, the Co-containing acicular goethite fine particles obtained by the method for producing the Co-containing acicular goethite fine particles of the present invention have the major axis and the minor axis in an appropriate range. At the same time, it is understood that the axial ratio is also within an appropriate range. In addition, the presence of twins was not recognized, and the particles were in a monodispersed state. On the other hand, the needle-like goethite fine particles of Comparative Example 1 and the Co-containing needle-like goethite fine particles of Comparative Example 2 have an axial ratio of 4.0.
And 3.5, which is small. Fine particles having twins were slightly mixed, and aggregation was observed.

【0065】つぎに、以上の実施例1〜6、および比較
例1〜2により得られたFeCo合金針状磁性微粒子、
Fe金属針状磁性微粒子の粉体特性を〔表3〕にまとめ
て示す。各針状磁性粒子の形状、すなわち長軸、短軸な
らびに軸比は、TEM写真から寸法測定して求めた。
Next, the FeCo alloy needle-like magnetic fine particles obtained in the above Examples 1 to 6 and Comparative Examples 1 and 2,
The powder characteristics of the Fe metal needle-shaped magnetic fine particles are summarized in [Table 3]. The shape of each acicular magnetic particle, that is, the major axis, minor axis, and axial ratio were determined by measuring the dimensions from a TEM photograph.

【0066】[0066]

【表3】 [Table 3]

【0067】〔表3〕の結果から、本発明のCo含有針
状ゲーサイト微粒子の製造方法により得られるCo含有
針状ゲーサイト微粒子から得られるFeCo合金針状微
粒子は、長軸、短軸の粒子径が高密度磁気記録媒体への
用途として適切な範囲にあるとともに、軸比も13.0
〜28.5と適切な範囲内であることが判る。一方比較
例1のFe金属針状磁性微粒子および比較例2のFeC
o合金針状磁性微粒子は、軸比が7.3および3.6と
小さく、配向性や抗磁力分布に問題を残す虞れがある。
From the results shown in Table 3, the FeCo alloy needle-like fine particles obtained from the Co-containing needle-like goethite fine particles obtained by the method for producing the Co-containing needle-like goethite fine particles of the present invention have long axis and short axis. The particle diameter is in an appropriate range for use in a high density magnetic recording medium, and the axial ratio is 13.0.
2828.5, which is within an appropriate range. On the other hand, Fe metal needle-shaped magnetic fine particles of Comparative Example 1 and FeC of Comparative Example 2
The o-alloy acicular magnetic fine particles have small axial ratios of 7.3 and 3.6, and may leave problems in the orientation and the coercive force distribution.

【0068】さらに、以上の実施例1〜6、および比較
例1〜2により得られたFeCo合金針状磁性微粒子、
Fe金属針状磁性微粒子の磁気特性を〔表4〕にまとめ
て示す。磁気特性は、VSM(試料振動型磁束計)を用
いて測定した。
Further, the needle-like magnetic fine particles of the FeCo alloy obtained in the above Examples 1 to 6 and Comparative Examples 1 and 2,
The magnetic properties of the Fe metal needle-shaped magnetic fine particles are summarized in [Table 4]. The magnetic properties were measured using a VSM (sample vibrating magnetometer).

【0069】[0069]

【表4】 [Table 4]

【0070】〔表4〕の結果から、本発明のCo含有針
状ゲーサイト微粒子の製造方法により得られるFeCo
合金針状微粒子は、高密度磁気記録媒体として要求され
る抗磁力Hcおよび飽和磁化モーメントσsを満たして
おり、さらに角型比σr/σsも磁性粉状態での測定値
として良好である。一方比較例1のFe金属針状磁性微
粒子および比較例2のFeCo合金針状磁性微粒子は、
いずれもその抗磁力が実施例に比べて小さく、高密度磁
気記録媒体の用途には問題を残す。
From the results in Table 4, it can be seen that FeCo obtained by the method for producing Co-containing acicular goethite fine particles of the present invention was obtained.
The alloy needle-shaped fine particles satisfy the coercive force Hc and the saturation magnetization moment σs required for a high-density magnetic recording medium, and the squareness ratio σr / σs is also good as a measured value in a magnetic powder state. On the other hand, the needle-like magnetic fine particles of Fe metal of Comparative Example 1 and the needle-like magnetic fine particles of FeCo alloy of Comparative Example 2
In any case, the coercive force is smaller than that of the embodiment, and there is a problem in the application of the high-density magnetic recording medium.

【0071】以上、本発明を実施例により詳細に説明し
たが、本発明はこれら実施例に何ら限定されるものでは
ない。
Although the present invention has been described in detail with reference to the embodiments, the present invention is not limited to these embodiments.

【0072】例えば、第二鉄塩の種類、Co塩の種類あ
るいは強アルカリおよび炭酸アルカリの種類は実施例の
塩化第二鉄や塩化コバルト、あるいは水酸化ナトリウム
や炭酸ナトリウム以外の各種化合物を選択することがで
き、その組み合わせも任意である。その他、Co塩を含
む第二鉄塩溶液と強アルカリの混合方法も各種態様が可
能である。
For example, as the type of the ferric salt, the type of the Co salt, or the type of the strong alkali and the alkali carbonate, various compounds other than the ferric chloride and the cobalt chloride of the embodiment or the sodium hydroxide and the sodium carbonate are selected. And the combination is arbitrary. In addition, various modes are also possible for a method of mixing a ferric salt solution containing a Co salt with a strong alkali.

【0073】またCo含有針状磁性微粒子としてFeC
o合金針状微粒子を例示したが、Co含有針状γ−Fe
2 3 、Co含有針状Fe3 4 あるいはこれらの中間
体(ベルトライド化合物)さらにはCo含有針状窒化鉄
等、高密度磁気記録媒体に適する各種材料に適用でき
る。
As the Co-containing acicular magnetic fine particles, FeC
Although o-alloy acicular fine particles are exemplified, a Co-containing acicular γ-Fe
The present invention can be applied to various materials suitable for high-density magnetic recording media, such as 2 O 3 , Co-containing acicular Fe 3 O 4 or an intermediate thereof (beltride compound), and Co-containing acicular iron nitride.

【0074】[0074]

【発明の効果】以上の説明から明らかなように、本発明
のCo含有針状ゲーサイト微粒子の製造方法によれば、
粒子径が微細で針状性に優れ、双晶がないCo含有針状
ゲーサイト微粒子を提供することが可能である。また本
発明のCo含有針状磁性微粒子によれば、粒子径が微細
で針状性に優れ、磁気特性に優れたCo含有針状磁性微
粒子を提供することができる。したがって、抗磁力や残
留磁束密度等あるいは角型比等の磁気特性や配向性、あ
るいは表面性に優れた高密度の塗布型磁気記録媒体を提
供することができる。
As is apparent from the above description, according to the method for producing Co-containing acicular goethite fine particles of the present invention,
It is possible to provide Co-containing needle-like goethite fine particles having a fine particle diameter, excellent needle-like properties, and no twinning. Further, according to the Co-containing acicular magnetic fine particles of the present invention, it is possible to provide Co-containing acicular magnetic fine particles having a fine particle diameter, excellent acicularity, and excellent magnetic properties. Therefore, it is possible to provide a high-density coating type magnetic recording medium having excellent magnetic properties such as coercive force, residual magnetic flux density, squareness ratio, and the like, or excellent surface properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のCo含有針状ゲーサイト微粒子の製造
方法の工程を示すプロセスフロー図である。
FIG. 1 is a process flow chart showing steps of a method for producing Co-containing acicular goethite fine particles of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Co塩を含む第二鉄塩溶液と、強アルカ
リ溶液とを混合撹拌して懸濁液を調製する工程、 前記懸濁液を熟成する工程を具備するCo含有針状ゲー
サイト微粒子の製造方法であって、 前記Co含有針状ゲーサイト微粒子中のCo/Fe比が
15at%以下であるとともに、 前記懸濁液中に、第二鉄イオンに対する炭酸イオンのモ
ル比が6.0以上10.0以下となるように炭酸アルカ
リを添加して熟成することを特徴とするCo含有針状ゲ
ーサイト微粒子の製造方法。
1. A step of preparing a suspension by mixing and stirring a ferric salt solution containing a Co salt and a strongly alkaline solution, and a step of aging the suspension. 5. A method for producing fine particles, wherein the Co / Fe ratio in the Co-containing acicular goethite fine particles is 15 at% or less, and the molar ratio of carbonate ions to ferric ions in the suspension is 6. A method for producing Co-containing acicular goethite fine particles, characterized by adding an alkali carbonate so as to be 0 or more and 10.0 or less and aging.
【請求項2】 前記懸濁液中の第二鉄濃度を、0.01
mol/l以上0.10mol/l以下の範囲として熟
成することを特徴とする請求項1記載のCo含有針状ゲ
ーサイト微粒子の製造方法。
2. The ferric iron concentration in the suspension is 0.01
2. The method for producing Co-containing needle-like goethite fine particles according to claim 1, wherein the ripening is performed in the range of from 0.1 mol / l to 0.10 mol / l.
【請求項3】 前記懸濁液のpHは、11.0以上1
3.5以下であることを特徴とする請求項1記載のCo
含有針状ゲーサイト微粒子の製造方法。
3. The pH of the suspension is 11.0 or more and 1 or more.
2. The Co according to claim 1, wherein said Co is not more than 3.5.
Method for producing fine needle-containing goethite particles.
【請求項4】 前記熟成は、45℃以上80℃以下の温
度範囲で施すことを特徴とする請求項1記載のCo含有
針状ゲーサイト微粒子の製造方法。
4. The method according to claim 1, wherein the aging is performed in a temperature range of 45 ° C. or more and 80 ° C. or less.
【請求項5】 請求項1記載のCo含有針状ゲーサイト
微粒子の製造方法により製造されたCo含有針状ゲーサ
イト微粒子を、所定雰囲気中で加熱処理して得ることを
特徴とするCo含有針状磁性微粒子。
5. A Co-containing needle obtained by subjecting Co-containing acicular goethite fine particles produced by the method for producing Co-containing acicular goethite fine particles according to claim 1 to heat treatment in a predetermined atmosphere. Magnetic fine particles.
JP10133835A 1998-05-15 1998-05-15 Manufacture of co containing needle like goethite fine particles and co containing needle like magnetic fine particles Pending JPH11329816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10133835A JPH11329816A (en) 1998-05-15 1998-05-15 Manufacture of co containing needle like goethite fine particles and co containing needle like magnetic fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10133835A JPH11329816A (en) 1998-05-15 1998-05-15 Manufacture of co containing needle like goethite fine particles and co containing needle like magnetic fine particles

Publications (1)

Publication Number Publication Date
JPH11329816A true JPH11329816A (en) 1999-11-30

Family

ID=15114163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10133835A Pending JPH11329816A (en) 1998-05-15 1998-05-15 Manufacture of co containing needle like goethite fine particles and co containing needle like magnetic fine particles

Country Status (1)

Country Link
JP (1) JPH11329816A (en)

Similar Documents

Publication Publication Date Title
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
JP3268830B2 (en) Metal magnetic powder and method for producing the same
JP3750414B2 (en) Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof
JPH11329816A (en) Manufacture of co containing needle like goethite fine particles and co containing needle like magnetic fine particles
JPH10259026A (en) Production of fine particle of acicular goethite
JP3264374B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH11329815A (en) Manufacture of needle-shaped goethite particulate including co and needle-shaped magnetic particulate including co
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP4378763B2 (en) Method for producing compound particle powder containing iron as its main component
US5989516A (en) Spindle-shaped geothite particles
JP2640817B2 (en) Spindle-shaped goethite particles and method for producing the same
JP2965606B2 (en) Method for producing metal magnetic powder
JPH0461302A (en) Metal magnetic particle powder mainly made of spindle type iron
JPS62158801A (en) Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JP2735885B2 (en) Method for producing metal magnetic powder for magnetic recording
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JPH0130884B2 (en)
JP3095042B2 (en) Method for producing acicular metal magnetic particle powder containing iron as a main component
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JP3095041B2 (en) Method for producing acicular metal magnetic particle powder containing iron as a main component
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JP3087808B2 (en) Manufacturing method of magnetic particle powder for magnetic recording
JP2852459B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder