JPS6081029A - Manufacture of goethite - Google Patents

Manufacture of goethite

Info

Publication number
JPS6081029A
JPS6081029A JP58189278A JP18927883A JPS6081029A JP S6081029 A JPS6081029 A JP S6081029A JP 58189278 A JP58189278 A JP 58189278A JP 18927883 A JP18927883 A JP 18927883A JP S6081029 A JPS6081029 A JP S6081029A
Authority
JP
Japan
Prior art keywords
goethite
alkali
suspension
fine
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58189278A
Other languages
Japanese (ja)
Inventor
Kenichi Okazaki
健一 岡崎
Hidetoshi Nakayama
秀俊 中山
Fumio Meiraku
明楽 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP58189278A priority Critical patent/JPS6081029A/en
Publication of JPS6081029A publication Critical patent/JPS6081029A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture needlelike goethite for a magnetic recording medium such as a magnetic tape in a short time by subjecting an alkaline Fe(OH)2 suspension to oxidation treatment with a gas contg. oxygen in two steps under specified conditions. CONSTITUTION:An aqueous soln. of a ferrous salt such as FeSO4 or FeCl2 is mixed with an aqueous soln. of an alkali such as NaOH to prepare an alkaline Fe(OH)2 suspension, and a gas contg. oxygen such as air is blown into the suspension in 2-3 ratio of alkali:Fe at 10-30 deg.C to produce seed crystals of goethite. An aqueous alkali soln. is added to the suspension and heated, and a gas contg. oxygen is blown again into the suspension in >=3 ratio of alkali:Fe at 40-60 deg.C to grow the seed crystals of goethite by oxidation. Fine and uniform needlelike goethite by oxidation. Fine and uniform needlelike goethite of 0.02- 0.05mum particle size can be manufactured in a short time.

Description

【発明の詳細な説明】 この発明は磁気記録媒体用の磁性材料、さらに詳しくは
針状ゲータイトの製造方法共唖→→−―≠゛ 、こ関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic material for magnetic recording media, and more particularly to a method for producing acicular goethite.

磁気テープまたは磁気ティスフなどの磁気記録媒体とし
てはγ−酸化第二鉄(γ−Fe2O3)が広モーメント
において優れている剣状鉄粒子が期待されている。
Sword-shaped iron particles of γ-ferric oxide (γ-Fe2O3), which are excellent in wide moments, are expected to be used as magnetic recording media such as magnetic tapes or magnetic tapes.

磁気記録媒体の性能向上のためには、微細(長軸:0.
1〜0.4ルm)かつ粒度分布のそろった、枝分かれの
少ない釘状磁性鉄粉を必要とし、その原料となる釘状ゲ
ータイト粒子も微細かつ粒度分IIJのそろったもので
なくてはならない。
In order to improve the performance of magnetic recording media, fine (long axis: 0.
1 to 0.4 lm) and a uniform particle size distribution with little branching is required, and the raw material nail-shaped goethite particles must also be fine and have a uniform particle size IIJ. .

針状ゲータイトを製造する方法として、硫酸第一鉄等の
第一鉄塩溶液にアルカリを加え強アルカリ性とし、ここ
に空気等の酸化性ガスを吹き込み、酸化反応させる方法
が従来より知られている。しかし、この方法では、製造
に長時間を要し、できた釘状ゲータイトもその粒子が大
きくて枝分かれが多く、またその粒度分布も不揃いなも
のとなる欠点がある6 本発明は、上記従来の欠点を除去し微細で枝分かれがな
くかつ粒度分布のそろった剣状ゲータイト粒子を短時間
で得る力沃を提供するものである。
A conventionally known method for producing acicular goethite is to add alkali to a ferrous salt solution such as ferrous sulfate to make it strongly alkaline, and then blow an oxidizing gas such as air into the solution to cause an oxidation reaction. . However, this method requires a long time to produce, and the resulting nail-like goethite particles are large and branched, and the particle size distribution is uneven. This method provides the ability to eliminate defects and obtain fine, unbranched, sword-shaped goethite particles with a uniform particle size distribution in a short time.

本発明によれば種結晶の製造とその種結晶を成長させる
二段階の工程を経てゲータイトを製造することを特徴と
する。この時の種結晶の製造は10〜30°Cの低温度
かつアルカリ・鉄比2〜3以上の条件でおこない、結晶
成長は温度40〜60°Cかつアルカリ・鉄比3以−」
−の条件で反応をおこなうものである。
According to the present invention, goethite is produced through a two-step process of producing a seed crystal and growing the seed crystal. Seed crystal production at this time is performed at a low temperature of 10 to 30°C and an alkali-to-iron ratio of 2 to 3 or more, and crystal growth is performed at a temperature of 40 to 60°C and an alkali-to-iron ratio of 3 or more.
-The reaction is carried out under the following conditions.

γ−酸化第二鉄の原料であるゲータイト(α−オキシ水
酸化鉄 α−Fe”00)1 )の製造方法は硫酸第一
鉄や塩化第一鉄などの第一鉄塩の水溶液に苛性ソータや
炭酸アルカリのような塩基性溶液を添加して中和反応に
よって第一鉄の水酸化物や難溶性塩を核として生成させ
、ついで空気などの酪素含有カスを吹込んで酸化加水分
解反応によってゲータイトとする。
Goethite (α-ferric oxyhydroxide α-Fe”00)1), which is the raw material for γ-ferric oxide, is produced by adding a caustic sorter to an aqueous solution of ferrous salts such as ferrous sulfate and ferrous chloride. A basic solution such as alkali or carbonate is added to generate ferrous hydroxide or a poorly soluble salt as a nucleus through a neutralization reaction, and then a butyric acid-containing residue such as air is blown in to cause an oxidative hydrolysis reaction. Goethite.

酸素含有ガスとは、酸素を窒素やアルゴン等の不活性カ
スで希釈したカスをいい、一般にゲータイト製造には空
気が使われる。
Oxygen-containing gas refers to oxygen diluted with inert gas such as nitrogen or argon, and air is generally used in goethite production.

ゲータイト粒子をつくる際には、液温か低いほど、また
アルカリ・鉄比が低いほど、核生成速度か結晶成長速度
より速くなり、非常に微細な均一分布の種結晶(長軸0
.05ルm以下)を得ることができる。
When creating goethite particles, the lower the liquid temperature and the lower the alkali/iron ratio, the faster the nucleation rate or the crystal growth rate, resulting in extremely fine and uniformly distributed seed crystals (long axis 0).
.. 0.05 lm or less).

逆に水温を高くし、アルカリ・鉄比を高くすることによ
り、この種結晶上に結晶成長のみを行なわせ、微細、均
一分布のゲータイI・(長IIi+ 0.2□”0.4
 gm)を得ることができる。
Conversely, by raising the water temperature and increasing the alkali/iron ratio, only crystal growth occurs on this seed crystal, resulting in fine and uniformly distributed Geitai I (Length IIi + 0.2□”0.4
gm) can be obtained.

アルカリ・鉄比とは、使用する水酸化ナトリウト等のア
ルカリ(01(’−)のモル数と、加えた第一・鉄(F
e2+)のモル数の比をいう。
The alkali/iron ratio is the number of moles of alkali (01('-) such as sodium hydroxide used and the added ferrous iron (F
It refers to the ratio of the number of moles of e2+).

本発明堪らはJZ記ゲータイトの結晶成長条件を種々検
討した結果、液温と鉄に対するアルカリ量を適当に選択
することにより核生成と結晶成長を有効に制御できるこ
とを見出し、本発明に至った。
The inventors of the present invention have investigated various crystal growth conditions for JZ goethite and have found that nucleation and crystal growth can be effectively controlled by appropriately selecting the liquid temperature and the amount of alkali relative to iron, leading to the present invention.

すなわち、本発明においては核生成工程は10〜30°
Cの低温で′かつ2〜3の低いアルカリ・鉄比の水酸化
第一鉄懸濁液に、空気等の酸化性ガスを通気し、種結晶
をつくる。上記条件下で結晶を生成させることにより、
0,02〜0.05 g mの微細で均一な粒度を有す
る核結晶が得られる。
That is, in the present invention, the nucleation step is performed at 10 to 30°.
An oxidizing gas such as air is passed through a ferrous hydroxide suspension at a low temperature of C and a low alkali/iron ratio of 2 to 3 to form seed crystals. By generating crystals under the above conditions,
Nucleus crystals with a fine and uniform grain size of 0.02-0.05 g m are obtained.

また結晶成長工程は30〜eo’c、アルカリ・鉄比3
以上で行なう。この条件の水酸化第一鉄懸濁液に」−記
種結晶を加え、空気等の酸素含有ガスを通気することに
より、短時間でかつ微細な粒度分布のそろった剣状ゲー
タイト粒子を得る。
In addition, the crystal growth process is 30~eo'c, alkali/iron ratio 3
That's all for now. By adding seed crystals to the ferrous hydroxide suspension under these conditions and aerating oxygen-containing gas such as air, sword-shaped goethite particles with a fine particle size distribution are obtained in a short time.

本発明において前工程の温度を10〜30″Cとしたの
は10°C以下では反応が遅く経済的でなく、また30
°C以、Lでは結晶核の生成速度よりも結晶の成長速度
が」二まわるからである。また後工程の温度を40〜6
0°Cとしたのは、核結晶生成速度をLまゎる結晶成長
速度が得られ、がっマグネタイト(Fe304)の副生
を抑えるため−1−眼を1liO’cとした。
In the present invention, the temperature of the previous step is set at 10 to 30"C because below 10"C, the reaction is slow and uneconomical.
This is because the crystal growth rate is twice as high as the crystal nucleus generation rate at temperatures above 10°C and L. In addition, the temperature of the post process was set to 40 to 6
The reason for setting the temperature to 0°C was to obtain a crystal growth rate that exceeded the nucleation crystal formation rate by L, and to suppress the by-production of magnetite (Fe304), the -1-eye was set to 1liO'c.

次に本発明においてアルカリ・鉄比を限定した理由につ
いて説明する。
Next, the reason for limiting the alkali/iron ratio in the present invention will be explained.

前工程では、加えた第一鉄の2倍量よりもやや過剰のア
ルカリを加えることにより、核の発生が多くなり、その
結果、微細で均一粒度を有する種結晶が得られる。アル
カリ・鉄比を2〜3にしたのは、この比が2以下では、
黒色のマグネタイト(Fe304)が生成し、アルカリ
・鉄比が3以上では、結晶成長が進行してしまい、大き
な不均一粒度の種結晶となるためである。この不均一粒
度の種結晶を用いると、後工程の結晶成長工程を経て得
られるゲータイトは、大きな、粒度の不均一なものとな
り、磁性粉の原料として不適当である。
In the previous step, by adding alkali in excess of twice the amount of ferrous iron added, more nuclei are generated, resulting in seed crystals with fine and uniform grain size. The reason why the alkali/iron ratio was set to 2 to 3 is because if this ratio is less than 2,
This is because black magnetite (Fe304) is generated, and if the alkali/iron ratio is 3 or more, crystal growth progresses, resulting in seed crystals with large non-uniform grain sizes. If seed crystals with non-uniform particle size are used, the goethite obtained through the subsequent crystal growth step will be large and non-uniform in particle size, making it unsuitable as a raw material for magnetic powder.

核の発生は、低温であればあるほど多くなり、微細な種
結晶が得られるが、アルカリ・鉄比が2〜3であれば、
さらに微細な、かつ均一粒度の種結晶が容易に得られる
The lower the temperature, the more nuclei are generated, and fine seed crystals can be obtained, but if the alkali/iron ratio is 2 to 3,
Furthermore, seed crystals with finer and uniform particle size can be easily obtained.

アルカリ・鉄比2〜3で種結晶を得るには加えた第一鉄
塩と、そのモル数の2〜3倍のアルカリ(OH’−)を
含む一定温度の液に酸素含有カスを通気すればよい。
To obtain seed crystals with an alkali/iron ratio of 2 to 3, the oxygen-containing scum must be aerated into a solution at a constant temperature containing the added ferrous salt and 2 to 3 times the number of moles of alkali (OH'-). Bye.

後工程では、アルカリ・鉄比を3以上とすることにより
、核の発生を抑え、かつ、前工程で得た微細な均一粒度
の種結晶に結晶成長をさせ、均一粒度の長軸長0.2〜
0.4kmのゲータイトを得ることができる。アルカリ
・鉄比が3以下では、核の発生がより多くなり、不均一
粒度のケータイトとなる。
In the post-process, by setting the alkali/iron ratio to 3 or more, the generation of nuclei is suppressed, and the fine seed crystals with a uniform grain size obtained in the previous process are allowed to grow, and the long axis length of the uniform grains is 0. 2~
0.4 km of goethite can be obtained. When the alkali/iron ratio is less than 3, more nuclei are generated, resulting in ketite with non-uniform grain size.

液温が40℃以上であれば、結晶成長が核の発生を」二
まわるが、アルカリ・鉄比を3以上とすれば、さらに結
晶成長が促進され、種結晶上に均一に結晶成長が行なわ
れ、粒度の均一な枝分かれのない微細な結晶が得られる
If the liquid temperature is 40°C or higher, crystal growth will slow down the generation of nuclei, but if the alkali/iron ratio is 3 or higher, crystal growth will be further promoted and the crystal will grow uniformly on the seed crystal. As a result, fine crystals with uniform particle size and no branching are obtained.

アルカリ・鉄比を3以上として、結晶成長させるには、
種結晶を含む懸濁液に新たに第一鉄塩溶液と、この第一
鉄のモル数の3倍以1−のアルカリ(OH−)を含む液
を加え、一定温度で、酸素含有ガスを通気すればよい。
To grow crystals with an alkali/iron ratio of 3 or more,
A new ferrous salt solution and a solution containing an alkali (OH-) with an amount of 1- or more than three times the number of moles of ferrous iron are added to the suspension containing the seed crystals, and an oxygen-containing gas is heated at a constant temperature. Just ventilate it.

実施例1 FeSO4濃度0.4モル/文の水溶液0.5文とNa
OH濃度1,0モル/文の水溶液0.5文をp配合し、
水酸化第一鉄懸濁液を冑た。液温を20°Cに保ち、撹
拌ノNa0)1水溶液4文を、 1.0モル/文のFe
SO4水溶液5文に加え、撹拌しながら、10文/分の
空気を\袷ン 吹込み45℃で空気酸化した。2段≠目の反応は15時
間以内にFe(11)が認められなくなった。
Example 1 0.5 mole of aqueous solution with FeSO4 concentration of 0.4 mole/liter and Na
0.5 ml of an aqueous solution with an OH concentration of 1.0 mol/ml is mixed,
The ferrous hydroxide suspension was removed. Keeping the liquid temperature at 20°C, stir 4 volumes of Na0)1 aqueous solution and add 1.0 mol/mm of Fe.
In addition to 5 ml of SO4 aqueous solution, air was blown at 10 ml/min while stirring to perform air oxidation at 45°C. In the second reaction, Fe(11) was no longer observed within 15 hours.

得られたゲータイトの長袖の長さと長軸と短軸との軸比
の平均はそれぞれ0.37 g mと13であり、粒度
分布のそろったものであった。
The obtained goethite had a long sleeve length and an average axis ratio between the long axis and the short axis of 0.37 g m and 13, respectively, and had a uniform particle size distribution.

実施例2 実施例1の第一段階の反応(種晶生成反応)の反応温度
を10°Cとした他は実施例1と同様に行なった。
Example 2 The same procedure as in Example 1 was conducted except that the reaction temperature of the first stage reaction (seed crystal generation reaction) was changed to 10°C.

広温度を30°Cとした他は実施例1と同様に行なった
The same procedure as in Example 1 was conducted except that the wide temperature was 30°C.

比較例1 実施例1の第一段階の反応(種晶生成反応)のNaOH
溶液濃度を2.5モル/交とした他は実施例1と同様に
行なった。
Comparative Example 1 NaOH in the first stage reaction (seed crystal generation reaction) of Example 1
The same procedure as in Example 1 was carried out except that the solution concentration was 2.5 mol/cross.

比較例2 実施例の第一段階の反応(種晶生成反応)を45°Cで
行なった以外は実施例1と同様に行なった。
Comparative Example 2 The same procedure as in Example 1 was carried out except that the first stage reaction (seed crystal generation reaction) was carried out at 45°C.

以上の実施例の反応条件と、得られたゲータイトの形状
を測定した結果を表1に示す。また実施例1と比較例1
、比較例2で得られたゲータイト粒子につき、長軸長さ
を測定した結果を第1図に示す。図において曲線lは実
施例1、曲線2は比較例1、曲線3は比較例2の場合を
示している。
Table 1 shows the reaction conditions of the above examples and the results of measuring the shape of the obtained goethite. Also, Example 1 and Comparative Example 1
FIG. 1 shows the results of measuring the major axis length of the goethite particles obtained in Comparative Example 2. In the figure, curve 1 represents Example 1, curve 2 represents Comparative Example 1, and curve 3 represents Comparative Example 2.

(以下余白) 表1から明らかなように、本発明によって得られたゲー
タイトは微細でしかも軸比が大きく、針状性に優れたも
のである。これは種結晶が微細で均一粒度であることに
起因している。また第1図から本発明によるものは粒度
分布がシャープであることがわかる。また比較例におい
ては同一収率を得るのに長時間の反応を要していること
がわかる。
(The following is a blank space) As is clear from Table 1, the goethite obtained by the present invention is fine, has a large axial ratio, and has excellent acicularity. This is due to the fact that the seed crystals are fine and have a uniform particle size. Furthermore, it can be seen from FIG. 1 that the particle size distribution of the particles according to the present invention is sharp. Furthermore, it can be seen that in the comparative example, a long reaction time was required to obtain the same yield.

実施例1と比較例2において得られた粒子の構造を示す
WJ微鏡写真を図2および図3に示す。図から明らかな
ように、本発明によるゲータイトは従来品と比較すると
微細で針状性にすくれ、粒度分布もそろったものとなっ
ている。
WJ micrographs showing the structure of the particles obtained in Example 1 and Comparative Example 2 are shown in FIGS. 2 and 3. As is clear from the figure, the goethite according to the present invention is finer, has an acicular shape, and has a uniform particle size distribution compared to the conventional product.

以上説明したとおり、本発明によれば、アルカリ・鉄比
を調節することにより、非常に微細な種結晶を得、これ
に結晶成長のみを行なわせ、容易に微細な均一粒度の枝
分かれのない剣状ゲータイトを得ることができる。
As explained above, according to the present invention, by adjusting the alkali/iron ratio, extremely fine seed crystals can be obtained, and the seed crystals can be caused to grow only, thereby easily producing fine, uniformly sized, unbranched seeds. goethite can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゲータイト粒子の長袖の長さを示す図。第2図
は本発明によるゲータイトの形状を示す顕微鏡写真。第
3図は従来のゲータイトの形状を示す顕微鏡写真。 特許出願人 昭和電工株式会社 代 理 人 弁理士 菊地精− 長 中白 cμ′m、) 篤う図 Xψ2oo。 手 続 補 正 書(方式) 昭和58年−月ユ2日 特許庁長官若杉和夫殿 1 、4S件の表示 昭和58年特許Iり第189278号 2、発明の名称 ゲータイトの製造方法 3、補正をする者 事件との関係 特許出順人 住所 東京都港区芝大門−丁目13番9号名称 (20
0) 昭和゛砒工株式会社代表者 岸 本 泰 延 4 代理人 (郵便番号1o5) 居所 東京都港区芝大門−丁目13番9号昭和電工株式
会社内 昭和59年 1月31日(発送日) 「明細書の図面の簡単な説明の欄」 7、補正の内容 別紙のとおり 明細書の「発明の詳細な説明」の欄 (1) 明細書第1ページ第20行目 「保持力」とあるのを「保磁力」と補正する。 (2) 明細書第9ページ第1行目 「形状」とあるのを「形状につき長袖と軸比と」と補正
する。 2 明細書の「図面の簡単な説明」の欄(1) 明細書
第12ページ第1行目 「形状」とあるのを「粒子構造」と補 正する。 (2) 明細書第12ページ第2行目 「形状」とあるのを「粒子構造」と補 正する。
FIG. 1 is a diagram showing the length of long sleeves of goethite particles. FIG. 2 is a micrograph showing the shape of goethite according to the present invention. Figure 3 is a micrograph showing the shape of conventional goethite. Patent applicant: Showa Denko Co., Ltd. Representative: Patent attorney: Sei Kikuchi, Nakajiro, cμ′m,) Procedural amendment (method) Kazuo Wakasugi, Commissioner of the Japan Patent Office, dated July 2, 1982, 1, Indication of 4S Patent I No. 189278, 1989, 2, Title of invention: Process for manufacturing goethite 3, Amendment. Relationship with the case of the person who issued the patent Address: Shiba Daimon-13-9, Minato-ku, Tokyo Name (20
0) Showa Denko Co., Ltd. Representative Yasunori Kishimoto 4 Agent (zip code 1o5) Address 13-9 Shiba Daimon-chome, Minato-ku, Tokyo Inside Showa Denko Co., Ltd. January 31, 1980 (shipment date) "Column for brief explanation of drawings in the specification" 7. Contents of the amendment As shown in the attached sheet, "Detailed explanation of the invention" column in the specification (1) Page 1 of the specification, line 20, "Holding power" is corrected as "coercive force". (2) In the first line of page 9 of the specification, the phrase "shape" is amended to read "shape: long sleeves and axial ratio." 2. “Brief explanation of drawings” column (1) of the specification, “shape” in the first line of page 12 of the specification is corrected to “particle structure”. (2) In the second line of page 12 of the specification, "shape" is corrected to "particle structure."

Claims (1)

【特許請求の範囲】[Claims] 第一・鉄水溶液とアルカリ水溶液を混合して得られるア
ルカリ性のFe(OH)2懸濁液に酸素含有ガスを通気
して、酸化反応を行なうことにより釘状α−FeOO)
1結晶を得る方法において、該懸濁液の温度を10〜3
0°C1かつアルカリ・鉄比を2〜3として反応させた
のち、温度を40〜60°Cかつアルカリ・鉄比を 3
以上として反応を行なうことを特徴とする。ゲータイト
の製造方法。
By aerating oxygen-containing gas to an alkaline Fe(OH)2 suspension obtained by mixing a ferrous iron aqueous solution and an alkaline aqueous solution to perform an oxidation reaction, a nail-shaped α-FeOO)
In the method of obtaining 1 crystal, the temperature of the suspension is 10 to 3
After reacting at 0°C1 and an alkali/iron ratio of 2 to 3, the temperature was set to 40 to 60°C and an alkali/iron ratio of 3.
The method is characterized in that the reaction is carried out as described above. Goethite manufacturing method.
JP58189278A 1983-10-12 1983-10-12 Manufacture of goethite Pending JPS6081029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58189278A JPS6081029A (en) 1983-10-12 1983-10-12 Manufacture of goethite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58189278A JPS6081029A (en) 1983-10-12 1983-10-12 Manufacture of goethite

Publications (1)

Publication Number Publication Date
JPS6081029A true JPS6081029A (en) 1985-05-09

Family

ID=16238636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58189278A Pending JPS6081029A (en) 1983-10-12 1983-10-12 Manufacture of goethite

Country Status (1)

Country Link
JP (1) JPS6081029A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842901A1 (en) * 1996-03-21 1998-05-20 Dowa Mining Co., Ltd. Powder for lower layer of coating type magnetic recording medium
JP2007223833A (en) * 2006-02-22 2007-09-06 Tdk Corp Method of manufacturing iron oxyhydroxide particle
JP2008169082A (en) * 2007-01-12 2008-07-24 Tdk Corp Method for manufacturing iron oxyhydroxide particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842901A1 (en) * 1996-03-21 1998-05-20 Dowa Mining Co., Ltd. Powder for lower layer of coating type magnetic recording medium
EP0842901A4 (en) * 1996-03-21 2008-05-28 Dowa Electronics Materials Co Powder for lower layer of coating type magnetic recording medium
JP2007223833A (en) * 2006-02-22 2007-09-06 Tdk Corp Method of manufacturing iron oxyhydroxide particle
JP2008169082A (en) * 2007-01-12 2008-07-24 Tdk Corp Method for manufacturing iron oxyhydroxide particle

Similar Documents

Publication Publication Date Title
US4729846A (en) Method for manufacturing lepidocrocite
US3720618A (en) Method of producing a powder of cobalt-containing needle-like shaped gamma-ferric oxide particles as magnetic recording material
US4597958A (en) Method of producing hydrated iron oxide
JPS6081029A (en) Manufacture of goethite
KR100270077B1 (en) A method of preparing repidocrocite
JPS6251895B2 (en)
US4201761A (en) Process for making iron oxide of controlled particle size
JP2640817B2 (en) Spindle-shaped goethite particles and method for producing the same
JP2569580B2 (en) Method for producing acicular goethite
JP2704525B2 (en) Method for producing spindle-shaped goethite particles
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP3087777B2 (en) Method for producing acicular goethite particle powder
JPS60127245A (en) Production of alpha-ferric hydroxide oxide fine particle
JP2704537B2 (en) Method for producing spindle-shaped goethite particles
JPS6090830A (en) Manufacture of needlelike iron oxyhydroxide
KR910009210B1 (en) Method for manufacturing lepidocrocite
JP2743000B2 (en) Spindle-shaped goethite particles and method for producing the same
JPS6021818A (en) Preparation of acicular crystal of alphaoxy iron hydroxide
JP2704539B2 (en) Method for producing spindle-shaped goethite particles
JPH0255382B2 (en)
JPS62167222A (en) Production of lepidocrocite
JP3087780B2 (en) Method for producing acicular goethite particle powder
JPS60118630A (en) Production of alpha-ferric hydroxide oxide
JPS61168536A (en) Production of acicular iron oxyhydroxide
JPS62119117A (en) Production of lepidocrocite