JPS5917190B2 - Formation method of boron film - Google Patents
Formation method of boron filmInfo
- Publication number
- JPS5917190B2 JPS5917190B2 JP10131277A JP10131277A JPS5917190B2 JP S5917190 B2 JPS5917190 B2 JP S5917190B2 JP 10131277 A JP10131277 A JP 10131277A JP 10131277 A JP10131277 A JP 10131277A JP S5917190 B2 JPS5917190 B2 JP S5917190B2
- Authority
- JP
- Japan
- Prior art keywords
- boron
- vapor deposition
- chemical vapor
- pressure chemical
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/28—Deposition of only one other non-metal element
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
本発明は、加熱された基体表面に、ちみつで均一な膜質
の弾性係数の大きい等機械的性質の優れたホウ素被膜の
形成方法を提供しようとするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention aims to provide a method for forming a honey-uniform boron film having excellent mechanical properties such as a large elastic modulus on the surface of a heated substrate.
加熱表面で三塩化ホウ素もしくは三臭化ホウ素等、ホウ
素化合物を含むガス混合物から、ホウ素を沈積させる化
学蒸着法は公知であり、この数年この方法は重要性を増
している。Chemical vapor deposition methods, in which boron is deposited on heated surfaces from gas mixtures containing boron compounds, such as boron trichloride or boron tribromide, are known and have gained in importance in recent years.
このようにしてガス相から、分離された純ホウ素は半導
体工業に重要であり、また耐摩耗性被覆、音響材料、等
に必要であり、かつタングステン上でホウ素を分離する
ことにより製造された糸は、重い負荷を受ける工材の補
強材料として有用である。従来の化学蒸着法によるホウ
素被膜形成はすべて下記の反応で行われる。Pure boron separated from the gas phase in this way is important in the semiconductor industry and is also needed for wear-resistant coatings, acoustic materials, etc., and is used in threads produced by separating boron on tungsten. is useful as a reinforcing material for construction materials that are subject to heavy loads. All conventional chemical vapor deposition methods for forming boron films are performed using the following reaction.
2BX3+3H2→2B+6HX
〔式中、Xは塩素、臭素または沃素である〕化学蒸着法
には、上記反応を常圧下で行う常圧化学蒸着法と最近発
達した減圧下(ほゞO、1Torr以上)で行う、減圧
化学蒸着法があり、ホウ素の沈積速度の点で常圧化学蒸
着法がまさり、生成膜の膜厚分布や、膜の質の点では減
圧化学蒸着法がまさる。2BX3+3H2→2B+6HX [In the formula, There is a low-pressure chemical vapor deposition method, which is superior to the normal-pressure chemical vapor deposition method in terms of the boron deposition rate, and in terms of the film thickness distribution and film quality of the produced film.
すなわち、弾性係数等機械的性質を含む膜の質に注目し
た場合、減圧化学蒸着法のみで所望の膜厚まで被膜を生
成させることによつても勿論、良質な被膜を得ることが
出来るけれども、減圧化学蒸着法による場合は常圧化学
蒸着法に比較して、かなり被膜生長速度がおちるため、
生産性に乏しい欠点があつた。従来のもう一つの方法は
、電子ビーム加熱蒸着あるいはスパッター蒸着等物理蒸
着法である。That is, when focusing on the quality of the film, including mechanical properties such as elastic modulus, it is possible to obtain a high-quality film by producing the film to the desired thickness using only the low-pressure chemical vapor deposition method. When using low pressure chemical vapor deposition, the film growth rate is considerably slower than when using normal pressure chemical vapor deposition.
The drawback was poor productivity. Another conventional method is physical vapor deposition, such as electron beam heated evaporation or sputter evaporation.
上記方法においては、基体への付着力が弱かつたり、被
膜を構成する結晶粒子の結合が弱かつたり、またホウ素
の基体への沈積速度が化学蒸着法に比べておそかつたり
する。従つて生成されたホウ素被膜は、ちみつ性に欠け
、弾性係数等機械的性質等も十分でなかつた。以上、従
来法は、被膜の生産性にかけたり、または生成された被
膜の質が十分でなく、耐摩耗性が十分でなかつたり、音
響部品材料としても、比弾性率が十分でなかつた。In the above method, the adhesion force to the substrate is weak, the bond between the crystal particles constituting the coating is weak, and the rate of deposition of boron onto the substrate is slower than in the chemical vapor deposition method. Therefore, the produced boron coating lacked honey properties and did not have sufficient mechanical properties such as elastic modulus. As described above, in the conventional method, the productivity of the coating is insufficient, the quality of the produced coating is insufficient, the abrasion resistance is insufficient, and the specific modulus of elasticity is not sufficient as a material for an acoustic component.
本発明の目的は、上述した従来法の欠点を除去し、しか
も生産性あるホウ素被膜形成法を提供するものである。An object of the present invention is to provide a method for forming a boron film that eliminates the drawbacks of the above-mentioned conventional methods and is more productive.
以下杢発明の実施例について説明する。まず常圧化学蒸
着法および減圧化学蒸着法について、説明する。Examples of the heather invention will be described below. First, the atmospheric pressure chemical vapor deposition method and the reduced pressure chemical vapor deposition method will be explained.
利用されるホウ素の析出反応は前述の反応式によつてお
り、常圧化学蒸着は常圧雰囲気で、減圧化学蒸着は常圧
以下の真空度を有する雰囲気でなされる。本発明による
方法は、基体にホウ素を生成する過程が減圧化学蒸着法
を用いて、ホウ素を生成する第1過程と、常圧化学革着
法を用いてホウ素を生成する第2過程からなり、第1過
程によつて基体にホウ素を生成し、つぎに第2過程によ
つて、前記第1過程で生成されたホウ素層の上に、ホウ
素を生成することを特徴とするホウ素被膜の製法である
。The precipitation reaction of boron to be used is based on the above-mentioned reaction formula, and normal pressure chemical vapor deposition is carried out in a normal pressure atmosphere, and reduced pressure chemical vapor deposition is carried out in an atmosphere having a degree of vacuum below normal pressure. In the method according to the present invention, the process of producing boron on a substrate consists of a first process of producing boron using a reduced pressure chemical vapor deposition method, and a second process of producing boron using an atmospheric pressure chemical vapor deposition method, A method for producing a boron film, characterized in that boron is produced on the substrate in a first step, and then, in a second step, boron is produced on the boron layer produced in the first step. be.
杢発明においては、原料ガスとしては、少なくとも−ガ
ス状化合物はホウ素を含む、ガス状化合物の混合物であ
る。In the present invention, the raw material gas is a mixture of gaseous compounds, at least the gaseous compound containing boron.
つぎに杢発明を具体的に説明する。Next, the heather invention will be specifically explained.
図は、本発明を実施するための化学蒸着装置の概略構成
図の一例である。図において、1は反応容器、2は基体
、3は基体加熱用ヒーター、4は原料ガス導人口、5は
排気口、6は真空計、7は流量調整器、8はボンベ等、
原料ガスを構成する各成分ガスの貯蔵部あるいは発生部
、9は必要とあれば設ける冷却トラップ、10,11,
12は減圧および常圧化学蒸着切換えのためのバルブ、
13は真空ポンプである。図を用いて、杢発明を具体的
に説明する。The figure is an example of a schematic configuration diagram of a chemical vapor deposition apparatus for carrying out the present invention. In the figure, 1 is a reaction vessel, 2 is a substrate, 3 is a heater for heating the substrate, 4 is a raw material gas introduction port, 5 is an exhaust port, 6 is a vacuum gauge, 7 is a flow rate regulator, 8 is a cylinder, etc.
A storage section or generation section for each component gas constituting the raw material gas, 9 a cooling trap provided if necessary, 10, 11,
12 is a valve for switching between reduced pressure and normal pressure chemical vapor deposition;
13 is a vacuum pump. The heather invention will be specifically explained using figures.
まずバルブ11を閉じ、バルブ12を開き、真空ポンプ
13を始動させ、バルブ10及び、流量調整器等のバル
ブを調整し、反応器1への原料ガスの流量、反応器1内
の真空度及び原料ガスを構成する各成分ガスの混合比を
調整し、更に基本2を定まつた温度プロフイルになるよ
うに加熱して、減圧化学蒸着法を行う。かくして反応器
に流人した原料ガスは高温により分解し基体2にホウ素
が析出ノする。First, close the valve 11, open the valve 12, start the vacuum pump 13, adjust the valve 10 and other valves such as a flow rate regulator, and adjust the flow rate of the raw material gas to the reactor 1, the degree of vacuum inside the reactor 1, etc. The mixture ratio of each component gas constituting the raw material gas is adjusted, and the material is further heated to a temperature profile determined based on Basic 2, and a reduced pressure chemical vapor deposition method is performed. The raw material gas flowing into the reactor is decomposed by the high temperature, and boron is deposited on the substrate 2.
必要とあれば、基体2表面の酸化物等の除去のために、
減圧化学蒸着を行う前に、基体2を加熱し、H2を反応
器に導人する。前記減圧化学蒸着法によつて、基体に適
当な厚さのホウ素層を形成してのち、バルブ10,12
を閉じ、バルブ11をあけ、反応器1への原料ガスの流
量、原料ガスを構成する各成分ガスの混合比を調整し、
更に基体2を定まつた温度プロフイルになるように加熱
して、常圧化学蒸着を行う。If necessary, to remove oxides etc. on the surface of the base 2,
Prior to performing vacuum chemical vapor deposition, the substrate 2 is heated and H2 is introduced into the reactor. After forming a boron layer of an appropriate thickness on the substrate by the reduced pressure chemical vapor deposition method, the valves 10 and 12 are formed.
, open the valve 11, adjust the flow rate of the raw material gas to the reactor 1, and the mixing ratio of each component gas constituting the raw material gas,
Furthermore, the substrate 2 is heated to a defined temperature profile to perform atmospheric pressure chemical vapor deposition.
かくして、減圧化学蒸着法で形成されたホウ素層の上に
新たにホウ素を析出する。かくすることにより、前述し
たように、減圧化学蒸着法では、ホウ素膜の沈積速度が
おそく、常圧化学蒸着法では、生成膜の質が十分でない
ことを克服し、ホウ素被膜の全体として生成速度が、十
分大きく、しかも、生成された膜の質がよいホウ素被膜
を得ることが可能になつた。In this way, boron is newly deposited on the boron layer formed by the reduced pressure chemical vapor deposition method. By doing this, as mentioned above, the deposition rate of the boron film is slow in the low pressure chemical vapor deposition method, and the quality of the produced film is insufficient in the atmospheric pressure chemical vapor deposition method, and the overall production rate of the boron film is improved. However, it has now become possible to obtain a boron film that is sufficiently large and of good quality.
また、本発明による方法においては、減圧化学蒸着法と
、常圧化学蒸着法との切換えは、同一雰囲気中で連続し
て行うことが、より好ましい。Moreover, in the method according to the present invention, it is more preferable that switching between the reduced pressure chemical vapor deposition method and the normal pressure chemical vapor deposition method is performed continuously in the same atmosphere.
すなわち、減圧化学蒸着法で被膜を形成させてのち、一
旦空気中に取り出して、改めて常圧化学蒸着を行つた場
合、杢発明の効果は、小さかつた、また切り換え時に、
基体温度を下げることも好ましくなく、急激にガス量を
増加させることも好ましくなかつた。上記減圧化学蒸着
法によるホウ素層の厚さとしては、約1000Å以上で
あれば、本発明の効果が認められた。That is, when a film is formed by low-pressure chemical vapor deposition, then taken out into the air and then subjected to normal-pressure chemical vapor deposition again, the effect of the heather invention is small, and at the time of switching,
It is not preferable to lower the substrate temperature, nor is it preferable to rapidly increase the gas amount. The effect of the present invention was observed when the thickness of the boron layer formed by the above-mentioned reduced pressure chemical vapor deposition method was about 1000 Å or more.
また、本発明によるホウ素層の形成速度の観点からは、
減圧化学蒸着によるホウ素の基体への析出時間は短かい
方がよく、したがつて減圧化学蒸着法によるホウ素層の
妥当な厚さは約0,01〜1μmであつた。(上限を1
μmとしたのは、減圧化学蒸着法では膜の沈積速度がお
そいために、これ以上は無意味だからである。)本発明
により、従来よりちみつで均一な膜質の弾性係数等が同
等かそれ以上であるような機械的性質の優れた、基体へ
の付着力がさらに大きいホウ素被膜が得られた。しかも
ホウ素被膜の形成速度は、従来法とほゾ同等であつた。
上記のことはつぎのように考えられる。In addition, from the viewpoint of the formation rate of the boron layer according to the present invention,
The deposition time of boron on the substrate by vacuum chemical vapor deposition should be short, and therefore a reasonable thickness of the boron layer by vacuum chemical vapor deposition was about 0.01 to 1 μm. (Upper limit is 1
The reason why the value is μm is because the deposition rate of the film is slow in the reduced pressure chemical vapor deposition method, so it is meaningless to use more than this value. ) According to the present invention, a boron coating having excellent mechanical properties such as a homogeneous film with honey and an elastic modulus equal to or higher than that of the conventional film and an even greater adhesion to a substrate has been obtained. Moreover, the rate of formation of the boron film was almost the same as that of the conventional method.
The above can be considered as follows.
すなわち、減圧化学蒸着法により、基体に適当な厚さの
基体への付着力の大きい、ちみつで一様な、しかも弾性
係数等機械的性質のすぐれたホウ素被膜が形成される。
減圧化学蒸着法のみにより、ホウ素を析出させた場合、
この効果は明らかであつた。しかる後、常圧化学蒸着法
で、かなりの析出速度でホウ素被膜が形成される。すな
わち、全体としてのホウ素被膜の形成速度は従来法とほ
マ同等になり、しかも、ちみつで均一な膜の上での常圧
化学蒸着法により形成されたホウ素層は、他の種の基体
の上に析出されたホウ素層に比べて、ちみつで均一であ
り、弾性係数等も優れていると思われる。原料ガスとし
ては、少なくとも−ガス状化合物はホウ素を含む、ガス
状化合物の混合物が使用可能であるが、好ましくは三塩
化ホウ素BCl3と水素H2の混合ガス、三臭化ホウ素
BBr3蒸気とH2の混合ガス、BBr3蒸気とキヤリ
アガスとしてのアルゴンAr等との混合ガス、BCl3
単一ガス、あるいはジボラン等の水素化物とキヤリアガ
スとしてのArとの混合ガス等が使用される。That is, by low-pressure chemical vapor deposition, a honey-uniform boron coating with a suitable thickness, strong adhesion to the substrate, and excellent mechanical properties such as elastic modulus is formed on the substrate.
When boron is deposited only by reduced pressure chemical vapor deposition,
This effect was obvious. Thereafter, a boron coating is formed by atmospheric pressure chemical vapor deposition at a considerable deposition rate. In other words, the overall rate of formation of the boron film is almost the same as that of the conventional method, and the boron layer formed by atmospheric pressure chemical vapor deposition on a uniform honey film is faster than that of other types of substrates. Compared to the boron layer deposited on top, it appears to be more uniform in honey and have superior elastic modulus. As the raw material gas, a mixture of gaseous compounds can be used, at least the gaseous compound containing boron, but preferably a mixed gas of boron trichloride BCl3 and hydrogen H2, a mixture of boron tribromide BBr3 vapor and H2 Gas, mixed gas of BBr3 vapor and argon Ar etc. as carrier gas, BCl3
A single gas or a mixed gas of a hydride such as diborane and Ar as a carrier gas is used.
取り扱いやすさや、得られるホウ素膜の性質の点から混
合ガスをBCl3とH2から構成した場合、好ましい流
量比は1対20〜1対1であつた。When the mixed gas was composed of BCl3 and H2 from the viewpoint of ease of handling and the properties of the obtained boron film, the preferred flow ratio was 1:20 to 1:1.
(膜の性質と形成速度の点で)本発明の場合反応器内の
真空度は、減圧化学蒸着の場合、500T0rr〜0.
1T0rrであつた。In the case of the present invention (in terms of film properties and formation rate), the degree of vacuum in the reactor is between 500T0rr and 0.5T0rr in the case of reduced pressure chemical vapor deposition.
It was 1T0rr.
この範囲の真空度は通常の装置で短時間に得られるため
生産性が高く、かつ化学蒸着膜の形成にも適した範囲で
ある。得られたホウ素被膜の膜質や付着力、弾性係数等
からより好ましくは、20T0rr〜0.1T0rrで
あつた。常圧化学蒸着の場合、もちろん反応器的は常圧
であつた。基材加熱の方式としては、ヒーターのジユー
ル熱による加熱、赤外線ランプによる加熱、高周波誘導
加熱、あるいは基体が金属の場合、電流を基体に通じ自
己のジユール熱による加熱方式があり、基体の形状、あ
るいは材質により適当な方式が使われた。A degree of vacuum in this range can be obtained in a short time using ordinary equipment, resulting in high productivity, and is also suitable for forming chemical vapor deposition films. In view of the film quality, adhesion force, elastic modulus, etc. of the obtained boron coating, it was more preferably 20T0rr to 0.1T0rr. In the case of atmospheric pressure chemical vapor deposition, the reactor was, of course, at atmospheric pressure. Methods for heating the base material include heating using the Joule heat of a heater, heating using an infrared lamp, high-frequency induction heating, or, if the base is metal, heating using the own Joule heat by passing an electric current through the base. Alternatively, an appropriate method was used depending on the material.
基体温度としては800℃〜1100℃が適当であつた
。A suitable substrate temperature was 800°C to 1100°C.
本発明では、減圧化学蒸着の過程では、800℃〜90
0℃、常圧化学蒸着の過程では、900℃C〜1100
℃が膜の性質、析出速度の点でより好ましかつた。ここ
で、減圧化学蒸着の過程で800℃〜900℃としたの
は、800℃より温度が低いと蒸着速度が小さくなり生
産性が悪くなるとともに蒸着膜の強度が小さくなり、一
方900℃より温度が高いと基板との反応が大きくなり
蒸着膜の平滑性、強度が悪くなるためである。また、常
圧化学蒸着の過程で900℃〜1100℃としたのは9
00℃より温度が低くても、1100℃より温度が高く
ても蒸着レートが低く生産性が悪くなるためである。本
発明に用いらる基材としては、炭素繊維、チタン、タン
グステン、モリブデン、タンタル、石英ニツケル、銅、
白金等であつた。In the present invention, in the process of low pressure chemical vapor deposition, 800°C to 90°C
In the process of 0℃, normal pressure chemical vapor deposition, the temperature is 900℃~1100℃.
℃ was more preferable in terms of film properties and deposition rate. Here, the temperature was set at 800°C to 900°C in the process of low-pressure chemical vapor deposition because if the temperature is lower than 800°C, the deposition rate will be low, productivity will be poor, and the strength of the deposited film will be reduced. This is because if the temperature is high, the reaction with the substrate will be large and the smoothness and strength of the deposited film will deteriorate. In addition, the temperature of 900°C to 1100°C in the atmospheric pressure chemical vapor deposition process was 9
This is because even if the temperature is lower than 00°C or higher than 1100°C, the deposition rate will be low and productivity will be poor. The base materials used in the present invention include carbon fiber, titanium, tungsten, molybdenum, tantalum, quartz nickel, copper,
It was platinum etc.
このようにして、本発明により得られたホウ素膜は、従
来法のそれに比べて、ちみつで、空孔、われがなかつた
。In this way, the boron membrane obtained by the present invention was honey-free, void-free, and void-free compared to that of the conventional method.
また、機械的性質に関しても、杢発明によるものは同等
かまたは優れている。たとえば弾性係数については、従
来の化学蒸着法によるものに比べて、約10(Ff)以
上大きかつた。スパツタ一等物理的蒸着法によるものに
比較して、約15%以上大きかつた。また、ホウ素膜の
生成速度も、従来の化学蒸着法とほマ同等であり、物理
的蒸着法に比べて、格段に大きい。Furthermore, in terms of mechanical properties, those according to the heather invention are equivalent or superior. For example, the elastic modulus was approximately 10 (Ff) or more greater than that obtained by conventional chemical vapor deposition. It was about 15% larger than that by sputter first physical vapor deposition. Furthermore, the boron film formation rate is almost the same as that of conventional chemical vapor deposition, and is much faster than that of physical vapor deposition.
基体への析出ホウ素の付着力は、本発明による場合は、
従来の化学蒸着法による場合と比較して同等が優れてい
た。In the case of the present invention, the adhesion force of the precipitated boron to the substrate is as follows:
The results were comparable and superior to those obtained by conventional chemical vapor deposition.
物理的蒸着法によるものは、付着力においても本発明に
よるものにかなり劣る。以上、いま\で主に図に従つて
説明してきたが本発明はこれに限定されるものでない。
以上のように杢発明は、基体への付着力が大きく、弾性
係数等機械的性質が優れた。The adhesion force of the physical vapor deposition method is considerably inferior to that of the present invention. The present invention has been described above mainly with reference to the drawings, but the present invention is not limited thereto.
As described above, the heather invention had a large adhesion force to the substrate and excellent mechanical properties such as elastic modulus.
空孔のない均一な膜質のホウ素被膜を得ることが出来、
かつ生産性あるホウ素被膜形成法を提供することができ
るものであり、耐摩耗性被膜や音響部品等の分野で、杢
発明は大なる貢献をなすものである。A uniform boron coating with no pores can be obtained,
Moreover, it is possible to provide a method for forming a boron coating that is productive, and the present invention will make a great contribution in the fields of wear-resistant coatings, acoustic components, etc.
図は本発明のホウ素被膜の成形方法を実施した装置の概
略構成図である。
1・・・・・・反応容器、2・・・・・・基体、3・・
・・・・ヒーター4・・・・・・原料ガス導入口、5・
・・・・・排気口、6・・・・・・真空計、7・・・・
・・流量調整器、8・・・・・・ボンベ、9・・・・・
・冷却トラツプ、10,11,12・・・・・・切換え
バルブ、13・・・・・・真空ポンプ。The figure is a schematic diagram of an apparatus for carrying out the boron film forming method of the present invention. 1...Reaction container, 2...Substrate, 3...
... Heater 4 ... Raw material gas inlet, 5.
...Exhaust port, 6...Vacuum gauge, 7...
...Flow rate regulator, 8...Cylinder, 9...
- Cooling trap, 10, 11, 12... switching valve, 13... vacuum pump.
Claims (1)
rr〜0.1Torr、下地温度800℃〜900℃の
減圧化学蒸着法を用いてホウ素を生成する第1過程と、
下地温度が900℃〜1100℃の常圧化学蒸着法を用
いてホウ素を生成する第2過程からなり、第1過程によ
つて基体上にホウ素を生成し、つぎに第2過程によつて
、前記第1過程で生成されたホウ素層の上に、さらにホ
ウ素を生成することを特徴とするホウ素被膜の形成方法
。 2 第1過程で生成されたホウ素層の厚さが、1μm以
下であることを特徴とする特許請求の範囲第1項記載の
ホウ素被膜の形成方法。[Claims] 1. The process of producing boron on a substrate is carried out at a vacuum degree of 500 To
A first step of generating boron using a reduced pressure chemical vapor deposition method at rr ~ 0.1 Torr and a base temperature of 800 ° C. ~ 900 ° C.;
It consists of a second process of producing boron using an atmospheric pressure chemical vapor deposition method with a substrate temperature of 900°C to 1100°C, in which boron is produced on the substrate in the first process, and then in the second process, A method for forming a boron film, characterized in that boron is further produced on the boron layer produced in the first step. 2. The method for forming a boron coating according to claim 1, wherein the thickness of the boron layer formed in the first step is 1 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10131277A JPS5917190B2 (en) | 1977-08-23 | 1977-08-23 | Formation method of boron film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10131277A JPS5917190B2 (en) | 1977-08-23 | 1977-08-23 | Formation method of boron film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5435179A JPS5435179A (en) | 1979-03-15 |
JPS5917190B2 true JPS5917190B2 (en) | 1984-04-19 |
Family
ID=14297285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10131277A Expired JPS5917190B2 (en) | 1977-08-23 | 1977-08-23 | Formation method of boron film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5917190B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH057675Y2 (en) * | 1986-11-18 | 1993-02-25 | ||
US9648883B2 (en) | 2006-10-30 | 2017-05-16 | Jacquet Panification | Method of producing bakery products, such as batch breads, and baked products thus obtained |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5794564A (en) * | 1980-12-03 | 1982-06-12 | Matsushita Electric Ind Co Ltd | Manufacture of pipe with high specific elastic modulus |
-
1977
- 1977-08-23 JP JP10131277A patent/JPS5917190B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH057675Y2 (en) * | 1986-11-18 | 1993-02-25 | ||
US9648883B2 (en) | 2006-10-30 | 2017-05-16 | Jacquet Panification | Method of producing bakery products, such as batch breads, and baked products thus obtained |
Also Published As
Publication number | Publication date |
---|---|
JPS5435179A (en) | 1979-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4572841A (en) | Low temperature method of deposition silicon dioxide | |
JP2001262343A (en) | Method for producing product | |
JPS61106494A (en) | Member coated with diamond and its production | |
JPH0424284B2 (en) | ||
US4626448A (en) | Plasma deposition of amorphous metal alloys | |
JPH04958B2 (en) | ||
JPS62138395A (en) | Preparation of diamond film | |
JPS5917190B2 (en) | Formation method of boron film | |
JPH0266399A (en) | Gas charging vessel and manufacture thereof | |
JPH03243770A (en) | Composite member and its production | |
JP2002523331A (en) | Method for producing an improved boron coating on graphite and articles obtained therefrom | |
JPS6358798B2 (en) | ||
JPS5915983B2 (en) | Formation method of boron film | |
JPH0194613A (en) | Vapor growth method | |
JPS58133368A (en) | Formation of boron coating film | |
JPS62256795A (en) | Production of diamond film | |
JPS5928629B2 (en) | Hard coating manufacturing method | |
JPH03267361A (en) | Hard film and its production | |
US3556834A (en) | Low temperature method for producing amorphous boron-carbon deposits | |
Jang et al. | The effect of substrate steel on the chemical vapour deposition of TiC onto tool steels | |
JPS5817257B2 (en) | Boron film formation method | |
JPS60121271A (en) | Formation of super hard coating layer | |
JPS58174568A (en) | Formation of film of metal compound | |
JPS6383271A (en) | Production of diamond-like carbon film | |
JPS63129099A (en) | Production of diamond thin film or diamondlike thin film |