JPS59170251A - Manufacture of lead alloy material for lead storage battery - Google Patents

Manufacture of lead alloy material for lead storage battery

Info

Publication number
JPS59170251A
JPS59170251A JP4202283A JP4202283A JPS59170251A JP S59170251 A JPS59170251 A JP S59170251A JP 4202283 A JP4202283 A JP 4202283A JP 4202283 A JP4202283 A JP 4202283A JP S59170251 A JPS59170251 A JP S59170251A
Authority
JP
Japan
Prior art keywords
lead
alloy
alloy material
dissolved
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4202283A
Other languages
Japanese (ja)
Inventor
Sadao Fukuda
貞夫 福田
Hidemi Fukunaga
福永 秀実
Katsuhiro Takahashi
勝弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4202283A priority Critical patent/JPS59170251A/en
Priority to IL7123284A priority patent/IL71232A/en
Publication of JPS59170251A publication Critical patent/JPS59170251A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lead alloy material for a lead storage battery inhibiting the intergranular corrosion and general corrosion of its plate grid by dissolving the surface of a Pb-Ca alloy material, sticking Sn, Ag, Mo, W or Cr to the dissolved surface, and subjecting the material to heat treatment and rolling. CONSTITUTION:The surface of a Pb-Ca alloy material is dissolved with a suitable etching soln., and one or more among Sn, Ag, Mo, W and Cr are stuck to the dissolved surface. The material is then subjected to heat treatment and rolling or other working. A corrosion resistant alloy is formed only at the surface part at high concn., and by the synergistic effect of the alloy and the preferential dissolution of metallic grain boundaries, an alloy material with improved corrosion resistance is obtd. When this alloy material is used as the material of the plate grid of a lead storage battery, the life of the battery can be prolonged.

Description

【発明の詳細な説明】 〔従来技術と問題点〕本発明は鉛蓄電池用鉛合金素材の
製造法に閃するものである。°鉛蓄電池の極板格子、極
柱等には従来王として鉛アンチモン系合金が使用されて
いるが、近年、メンテナンスフリー鉛蓄電池用として鉛
カルシウム系合金が使用されている。゛鉛カルシウム系
合金は鉛アンチモン系合金よりも水素過電圧が高いので
光電中電解液中の水の電気分解、放置中の自己放電が少
い長所を有する。しかしその反面、鋳造性が鉛アンチモ
ン合金よりも劣るので合金素材をシート状に圧延した後
、エキスバンド加工、打抜き加工等によって極板格子を
製造している。
DETAILED DESCRIPTION OF THE INVENTION [Prior Art and Problems] The present invention is directed to a method for producing lead alloy materials for lead-acid batteries. Although lead-antimony alloys have traditionally been used for the grids, poles, etc. of lead-acid batteries, lead-calcium alloys have recently been used for maintenance-free lead-acid batteries. Since the lead-calcium alloy has a higher hydrogen overvoltage than the lead-antimony alloy, it has the advantage of less electrolysis of water in the electrolyte during photovoltaic use and less self-discharge during storage. However, on the other hand, the castability is inferior to that of lead-antimony alloy, so after rolling the alloy material into a sheet shape, electrode plate grids are manufactured by expanding processing, punching processing, etc.

鉛合金は時効硬化性を有し、熱処理を加えると過飽和の
固溶体から溶質金属を析出し、あるいは溶質金属と鉛、
又は他の添加金属との間に金属間化合物を生成する。こ
の溶質金属の析出シよび金属間化合物の生成は主として
金属結晶粒界でおこり、これが鉛合金素材の腐食の原因
(・′Cなっている。このように結晶粒界に溶質金属が
析出し、あるいは金属間化合物が生成するとその部分は
他の部分よシも腐食され易くなシ、腐食すると密度の小
さい酸化物を生成して結晶合金を圧延すると結晶粒界は
分散し、粒界腐食は緩和されるが、粒界が分散するため
、全体の暦1食(全面腐食)が激しくなる。
Lead alloys have age hardening properties, and when heat treated, the solute metal precipitates from a supersaturated solid solution, or the solute metal and lead,
Or it forms an intermetallic compound with other added metals. This precipitation of solute metals and the formation of intermetallic compounds mainly occur at metal grain boundaries, and this is the cause of corrosion of lead alloy materials. Alternatively, when intermetallic compounds are formed, that part becomes more susceptible to corrosion than other parts. When a crystalline alloy is rolled, grain boundaries are dispersed, and intergranular corrosion is alleviated. However, because the grain boundaries are dispersed, the entire calendar eclipse (general corrosion) becomes severe.

〔昂゛、明の目的〕鉛S%′池の極板格子、特に陽極格
子は粒界IA’を食、および全面腐食を抑制する必戟か
ある。その理由は、粒界腐食は格子の伸びと切断を生じ
、全面腐食は集電効果と活物質保持力を低下させるから
であ乙。本発明はこの点にかんがみ、これら両腐食を抑
制する鉛合金素材の製造法を提供することを目的とする
ものである。
[Excellent Purpose] It is necessary for the electrode plate lattice of the lead S%' cell, especially the anode lattice, to eat away at the grain boundaries IA' and to suppress general corrosion. The reason for this is that intergranular corrosion causes elongation and cutting of the lattice, while general corrosion reduces the current collection effect and active material retention. In view of this point, it is an object of the present invention to provide a method for manufacturing a lead alloy material that suppresses both of these types of corrosion.

〔詫明の構成〕本発明は鉛カルシウム系合金累月の表面
を、これらを溶解する溶液によシ表口1」部のみを溶解
し、溶解された該表面部に、スス、銀、モリブデン、タ
ングステンおよびクロムのうちの一独又はそれ以上の今
庄を付着させグこ後、該素材を熱処理して圧延その他の
加工を施すことを特徴とする鉛蓄電池用鉛合金素材の製
造法である。
[Construction of Apology] The present invention involves dissolving only the surface opening 1'' of the surface of a lead-calcium alloy in a solution that dissolves them, and adding soot, silver, and molybdenum to the dissolved surface. This is a method for producing a lead alloy material for a lead-acid battery, which is characterized in that after adhering one or more of tungsten and chromium, the material is heat-treated and subjected to rolling or other processing.

鉛カルシウム系合金の鋳造品の断面の金属組織を観察す
ると、第1図に示すように、合金部利の中心コ13の金
属結晶の粒子形状Fi縦と横の比率かはヌ等しい円形に
近い形状をしているが、鉱造時に鋳型と接する表面部は
縦方向が長く、この長い方向は中心方向に並んでいるこ
とがわかる。このために鉛カルシウム系合金はその表面
部における粒界腐食の深さが深くなり、伸びあるいは切
断が生じ易いものと考えられる。
When observing the metallographic structure of a cross section of a cast product of a lead-calcium alloy, as shown in Figure 1, the particle shape of the metal crystal at the center of the alloy part 13 is close to a circular shape with an equal ratio of length and width. Although it has a shape, it can be seen that the surface part that comes into contact with the mold during mining is long in the vertical direction, and this long direction is aligned toward the center. For this reason, it is thought that lead-calcium alloys have deeper intergranular corrosion at their surface, making them more likely to elongate or break.

したがって鉛カルシウム系合金の耐食性を改善するため
KI′i、結晶粒界が生じないようにすることが理想で
あるが、と牡は事実上不可能であるから結晶粒界を減少
さぜることか必要である。本発明はこの点にかんがみ、
溶融状態から冷却固化した鉛カルシウム系合金の表面部
の金属結晶粒界を優先的に溶解してその表面を活性にし
て、そこに耐食性を細布する金属、スズ、殊、モリブデ
ン、タングステンおよびクロムのうちの1棟又はそれ以
上の金属を付着させるものである。鉛合金の耐食性を向
上するのに有効ガ金属として、スズ、銀等は公知である
がその添加量はコストおよび機械的強度の関係からスズ
は1チ、銀/I′i0.3係が限度である。そこで本発
明においては最初に腐蝕される表面部のみに、これらの
金属によって高濃度の耐食性合金を形成し、金属結晶粒
界を優先的に溶解した効果と相まって耐食性を向上する
のである。また、耐食性には効果があるが鉛合金中には
含肩されないモリブデン、タングステン、クロムはいず
れもイオン化傾向が鉛よシも小さいめで他換反応によシ
鉛合金の表1mに付着する。なお、これらの金属を付着
させる智1合、その鉛合金の表面を溶解して表7RJ部
を活性化すること嬶付着を良好にし、優先的に溶解され
た金属結晶粒界が優先的にこれらの金属によって被覆さ
れる。そして、これらの付着金属と鉛合金との結合性を
良好にするために熱処理を行ない、さらに圧延を施すも
のであって、かくして粒界腐食および全面腐食の改善さ
れた鉛カルシウム系合金素材をうろことができる。
Therefore, in order to improve the corrosion resistance of lead-calcium alloys, it is ideal to prevent the formation of grain boundaries, but since this is virtually impossible, it is necessary to reduce the grain boundaries. or is necessary. In view of this point, the present invention
Metals such as tin, especially molybdenum, tungsten, and chromium, which preferentially melt the metal grain boundaries on the surface of lead-calcium alloys cooled and solidified from the molten state, activate the surface, and spread corrosion resistance there. This is to attach metal to one or more of our buildings. Tin, silver, etc. are known as metals that are effective in improving the corrosion resistance of lead alloys, but due to cost and mechanical strength considerations, the amount of addition is limited to 1 tin for tin and 0.3 coefficient for silver/I'i. It is. Accordingly, in the present invention, a highly concentrated corrosion-resistant alloy is formed using these metals only on the surface area that is corroded first, and combined with the effect of preferentially dissolving the metal grain boundaries, the corrosion resistance is improved. In addition, molybdenum, tungsten, and chromium, which are effective in corrosion resistance but are not included in lead alloys, all have a smaller tendency to ionize than lead, and they adhere to the lead alloy surface 1m by the other reaction. In addition, when these metals are attached, the surface of the lead alloy is melted to activate the RJ part in Table 7, which improves the adhesion, and the dissolved metal grain boundaries preferentially adhere to these. coated with metal. Then, in order to improve the bonding properties between these deposited metals and the lead alloy, heat treatment is performed and further rolling is performed, and thus the lead-calcium alloy material with improved intergranular corrosion and general corrosion is made into scales. I can do it.

〔実施例■〕鉛カルシウム系合金の1例としてCa O
,08重量%(以下すべて重量係)Sル0.5%残部鉛
よりなる合金を約450℃で加熱f6解し、約150℃
に加熱した鋳型で巾5需、長60て、厚さ2智と4wl
1のiAQ物を作製した。
[Example ■] CaO as an example of lead-calcium alloy
,08% by weight (hereinafter all by weight) An alloy consisting of S, 0.5% and balance lead was heated to about 450°C and dissolved at f6 to about 150°C.
In a mold heated to
An iAQ product of No. 1 was prepared.

この鋳物を容積比で、硝酸20部、過酸化水素10部、
水100部のエツチング液中に約1分間浸漬してその表
面を溶解した。
This casting was mixed with 20 parts of nitric acid, 10 parts of hydrogen peroxide,
The surface was dissolved by immersing it in an etching solution containing 100 parts of water for about 1 minute.

次にその溶解した表面に耐食性を付与するために銀を付
着する。銀は鉛よシもイオン化傾向が小さいので鉛合金
の表面を溶解した前記エツチング液中に銀イオンを添加
すると溶解された鉛合金の表面に銀が析出付着する。こ
の銀の付着量は銀イオンの濃度および1置換反応時間に
よって制御される。この実施例においては前記エツチン
グ液100 ccに対し銀イオンを0.5 fの割合で
添加した。置換反応時間は30秒で前記1分間のエツチ
ング液による表面溶解が行なわれた後、該エツチング液
に銀イオンが投入される。かくしてえた試料をAとする
Silver is then deposited on the molten surface to provide corrosion resistance. Silver has a smaller tendency to ionize than lead, so when silver ions are added to the etching solution that has dissolved the surface of the lead alloy, silver precipitates and adheres to the surface of the dissolved lead alloy. The amount of silver deposited is controlled by the concentration of silver ions and the one-substitution reaction time. In this example, silver ions were added at a rate of 0.5 f to 100 cc of the etching solution. The substitution reaction time was 30 seconds, and after the surface was dissolved by the etching solution for 1 minute, silver ions were introduced into the etching solution. The sample thus obtained is designated as A.

次に鉛合金とその表面に付着した金属との結合を良好に
するために熱処理を行なうのであるが50℃以下では効
果がなく、200℃以上にすると鉛合金それ自体の強度
が低下するので50℃〜200℃の間で行なわれる。と
の実施例では前記試料Aを125℃で20時間行なった
。これを試料Bとする。
Next, heat treatment is performed to improve the bond between the lead alloy and the metal attached to its surface, but it is not effective at temperatures below 50°C, and when the temperature exceeds 200°C, the strength of the lead alloy itself decreases. The temperature is between 200°C and 200°C. In Example 1, Sample A was heated at 125° C. for 20 hours. This is designated as sample B.

次に前記試料Bを圧延することは鉛合金と付着金属との
結合をさらに強固にし、かつ溶解によって生じた凸凹を
平滑にする。圧延は元の厚さの1/2以下にすることが
好ましい。この実施例は厚さ4咽の試料Bを2輔圧延し
/こ。これを試料Cとする。
Next, rolling the sample B further strengthens the bond between the lead alloy and the deposited metal, and smooths out the unevenness caused by melting. It is preferable that the rolling thickness be reduced to 1/2 or less of the original thickness. In this example, two pieces of sample B each having a thickness of 4 mm were rolled. This is designated as sample C.

参考資料としてPb−aα−E3n合金の表面を溶j’
l’F Lないもの(付着金属のない従来のもの)を試
料りとし、これをそのま\元の厚さの1/2に圧延した
ものを試料Eとした。また、Pb−Cα−8rL合金の
表面を前記エツチング液で溶解したものを試料Fとし、
これを元の厚さの1/2まで圧延したものを試料Gとし
た。
As a reference material, the surface of Pb-aα-E3n alloy was melted.
A sample without l'F L (conventional sample with no deposited metal) was used as a sample, and sample E was obtained by rolling this as it was to 1/2 of the original thickness. In addition, a sample F in which the surface of the Pb-Cα-8rL alloy was dissolved in the etching solution,
Sample G was obtained by rolling this to 1/2 of the original thickness.

上記試料AないしGにつき、耐食性を評価した。評価方
法は対極に純鉛板、電解液に比重1゜28の硫酸を使用
し、室温で、20 Q々の定′亀流を連続20日間流し
て陽極酸化を行ない、生成した酸化物をアルカリーマニ
トール浴に浸漬して除去した後、秤量して元の重量との
差を求めこれを酸化減量とした。また伸び率も測定した
。結果は第2図に示すとおシである。同図から本発明の
方法で作製した鉛合金素材ABCは従来法によるり、E
、F、Gに比し重量減および伸び率においてすぐれてい
ることが明らかである。
Corrosion resistance was evaluated for the above samples A to G. The evaluation method was to use a pure lead plate as the counter electrode and sulfuric acid with a specific gravity of 1.28 as the electrolyte, and conduct anodic oxidation by flowing a constant current of 20 Q for 20 consecutive days at room temperature. After removing it by immersing it in a curry mannitol bath, it was weighed and the difference from the original weight was determined, which was taken as the oxidation weight loss. The elongation rate was also measured. The results are shown in Figure 2. From the same figure, the lead alloy material ABC produced by the method of the present invention is different from the conventional method.
, F, and G are clearly superior in terms of weight reduction and elongation.

〔実施例■〕この実施例は本発明の実施例Iの鉛合金素
材によって1μ造した極板格子の効果を確認するための
もので、鉛合金素側には実施例Iと同じPb−0α(0
,08%)−Bn(0,5%)を使用してl] 28 
mm、長さ80問、厚さ2.8 mmおよび56瓢の通
常の形状の極板格子を鋳造し、これを実施例Iの試料A
と同じ方法によって処理し、うちj!tさ28−の格子
をHとした。次に5.6 mynの厚格子を約1/2の
2.8mに圧延してAと同じ形状大きさとし、これを工
とした。また、参考のために、νJ造の1\の格子およ
びこれを圧延した格子をそれぞれJおよびKとした。
[Example ■] This example is for confirming the effect of the electrode plate grid made of 1 μm of the lead alloy material of Example I of the present invention. (0
,08%) using Bn(0,5%)] 28
A plate grid of the usual shape of 56mm, 80mm long, 2.8mm thick, and 56mm thick was cast, and this was used as Sample A of Example I.
Processed by the same method as, Uchij! The lattice with a length of 28- is designated as H. Next, the 5.6 myn thick grid was rolled to about 1/2, 2.8 m, to have the same shape and size as A, and this was used as a workpiece. For reference, the 1\ lattice made of νJ construction and the lattice obtained by rolling this were designated as J and K, respectively.

これらの格子H1工、J、Kに通包の方法によって活物
5rを充填し、化成して正極板となし、負極板、9セパ
レータ(ガラスマット)およo−電解液(比重128の
kj tii )に同一のものを使用して10時間率放
電で容量約3.3 AHの蓄′市池を組立てた。これら
の蓄電池を充電は0.10で336時間、放電は0.3
0で1セル尚シ1.75■までのサイクルを繰返し、初
期容量の1/2になるまでのサイクル数を求め、これを
寿命とした。結果は第3図に示すとおシである。同図か
ら本発明の格子H,Jを使用する蓄電池は従来の格子J
、Kを使用する蓄電池に比しサイクル寿命が改善されて
いることが明らかである。′−1だ、別の試料蓄電池に
よって15ザイクルの時点で分)]イして正極格子の腐
食の程度を調べたところ、■(、■、J、にの順で酸化
減量の大きいことが確認さj、た。
These grids H1, J, and K were filled with live substances 5r by the packaging method and chemically formed to form a positive electrode plate, a negative electrode plate, a separator 9 (glass mat), and an o-electrolyte (kj with a specific gravity of 128). A storage pond with a capacity of about 3.3 AH was assembled using the same material as in tii) with a 10-hour rate discharge. These batteries can be charged at 0.10 for 336 hours and discharged at 0.3
The cycle was repeated until 1 cell was 0 and 1.75 cm, and the number of cycles until the capacity became 1/2 of the initial capacity was determined, and this was taken as the life span. The results are shown in Figure 3. From the figure, it can be seen that the storage battery using the grids H and J of the present invention is different from the conventional grid J.
, it is clear that the cycle life is improved compared to storage batteries using K. When the degree of corrosion of the positive electrode grid was investigated using another sample storage battery, it was confirmed that the oxidation loss was large in the order of ■(, ■, J, Saj, ta.

〔発明の効果〕実施例IおよQ・■のテークが示すよう
に、本発明の方法による鉛合金素材は十F来の鉛合金素
祠に比し耐食性が著しく敗戦さたており、これを極板格
子に使用する蓄電池は従来の蓄′屯池に比し寿命を長く
することができるすぐれた効果を有する。
[Effects of the Invention] As shown in Examples I and Q.■, the lead alloy material produced by the method of the present invention is significantly inferior in corrosion resistance to the lead alloy material produced in the past. A storage battery that uses this as the electrode grid has an excellent effect of extending the lifespan compared to a conventional storage battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1し1:鉛カルシウム系合金の鋳造品の金属結晶組織
を示す模式図 第2し]:実施例■の実験データを示すグラフ第6シ)
:実施例■の実験データを示すグラフ代理人升理士  
芝 崎 政 信、・パ−1′−1“ 7ンう÷督 錠°S^を(べ琥) 萩巳   フ   い   4゜ らミ  蒐  コ  ko +   嘴) 豪¥ヤ\輛゛仄(似讐)
Part 1 (1): Schematic diagram showing the metal crystal structure of a cast product of lead-calcium alloy (2): Graph showing experimental data of Example (6)
: Graph showing the experimental data of Example ■
Masanobu Shibasaki, Par-1'-1 "7n u ÷ director lock °S^ wo (be 琥) Hagimi fu ii 4゜rami 蒐 ko + beak) enemy)

Claims (1)

【特許請求の範囲】[Claims] 鉛カルシウム系合金素材の表面を、これらを溶解する溶
液によシ表面部のみを溶解し、溶解された該表面部に、
スズ、銀、モリブデン、タングステンおよびクロムのう
ちの一棟又はそれ以−ヒの金属を付着させた後、該素材
を熱処理して圧延その他の加工を施すことを特徴とする
鉛蓄電池用鉛合金素材の製造法
The surface of the lead-calcium alloy material is dissolved in a solution that dissolves only the surface part, and the dissolved surface part is
A lead alloy material for lead-acid batteries, characterized in that after one or more of tin, silver, molybdenum, tungsten and chromium is attached, the material is heat treated, rolled or otherwise processed. manufacturing method
JP4202283A 1983-03-14 1983-03-14 Manufacture of lead alloy material for lead storage battery Pending JPS59170251A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4202283A JPS59170251A (en) 1983-03-14 1983-03-14 Manufacture of lead alloy material for lead storage battery
IL7123284A IL71232A (en) 1983-03-14 1984-03-14 Recombinant plasmid encoding a human interferon-gamma polypeptide process for the production thereof and microorganisms containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4202283A JPS59170251A (en) 1983-03-14 1983-03-14 Manufacture of lead alloy material for lead storage battery

Publications (1)

Publication Number Publication Date
JPS59170251A true JPS59170251A (en) 1984-09-26

Family

ID=12624538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4202283A Pending JPS59170251A (en) 1983-03-14 1983-03-14 Manufacture of lead alloy material for lead storage battery

Country Status (2)

Country Link
JP (1) JPS59170251A (en)
IL (1) IL71232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153879A (en) * 1989-11-13 1991-07-01 Okuno Seiyaku Kogyo Kk Substitution type electroless tin or solder plating method
CN113029922A (en) * 2021-02-26 2021-06-25 湖北双登润阳新能源有限公司 Colloidal storage battery positive grid alloy and corrosion test method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153879A (en) * 1989-11-13 1991-07-01 Okuno Seiyaku Kogyo Kk Substitution type electroless tin or solder plating method
CN113029922A (en) * 2021-02-26 2021-06-25 湖北双登润阳新能源有限公司 Colloidal storage battery positive grid alloy and corrosion test method thereof

Also Published As

Publication number Publication date
IL71232A (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US4159908A (en) Alkali metal containing battery grid lead alloy
JP3555877B2 (en) Alloy for battery grid
Zhong et al. Evaluation of lead—calcium—tin—aluminium grid alloys for valve-regulated lead/acid batteries
AU8620498A (en) Metallurgical process for manufacturing electrowinning lead and lead alloy electrodes
US3993480A (en) Lead-antimony alloy
US4364807A (en) Method of electrolytically recovering zinc
US5024908A (en) Lead storage battery
JP4646572B2 (en) Positive electrode plate for sealed lead-acid battery and sealed lead-acid battery using the positive electrode plate
AU552965B2 (en) Process for electrowinning of metals
US2860969A (en) Lead-acid accumulator alloy
JP2000077076A (en) Lead base alloy for storage battery
JPS59170251A (en) Manufacture of lead alloy material for lead storage battery
JP2009117102A (en) Method for producing lead-base alloy grid for lead-acid battery
CA1094359A (en) Low antimonial lead alloy for making grids for use in maintenance free batteries
JP2000315519A (en) Lead acid storage battery
US2040078A (en) Lead alloy
JPH0762463A (en) Continuous electrochemical refining of lead
JP2011046976A (en) Lead alloy for lead storage battery and lead storage battery
JPS6127066A (en) Grid for lead-acid battery and its manufacture
CN107641733A (en) A kind of PbCaSnAlCeAg grid alloys
RU2444093C1 (en) Anode for chemical source of current, method to manufacture anode, chemical source of current
JP7271917B2 (en) Copper electrolytic refining method
JPS63141263A (en) Lead-base alloy for storage battery
JPS58185739A (en) Lead alloy for lead storage battery
JPH09330700A (en) Lead-acid battery