JPS59169994A - Growth of diamond crystal - Google Patents

Growth of diamond crystal

Info

Publication number
JPS59169994A
JPS59169994A JP58041647A JP4164783A JPS59169994A JP S59169994 A JPS59169994 A JP S59169994A JP 58041647 A JP58041647 A JP 58041647A JP 4164783 A JP4164783 A JP 4164783A JP S59169994 A JPS59169994 A JP S59169994A
Authority
JP
Japan
Prior art keywords
diamond
diamonds
solvent metal
seeds
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58041647A
Other languages
Japanese (ja)
Other versions
JPH0360797B2 (en
Inventor
Tomoji Santo
山東 知二
Shinji Kashima
加島 愼治
Eiichi Iizuka
栄一 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP58041647A priority Critical patent/JPS59169994A/en
Publication of JPS59169994A publication Critical patent/JPS59169994A/en
Publication of JPH0360797B2 publication Critical patent/JPH0360797B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Abstract

PURPOSE:In synthesizing diamonds by ultra-high pressure and high temperature method using seeds grains of diamonds, a solvent metal and carbon, to synthesize diamonds having uniform particle size, by arranging seed diamonds in the carbon or the solvent metal of laminate of them or in their interfacial boundary regularly. CONSTITUTION:Seed grains of diamonds are arranged in a plate of power of graphite as a carbon raw material or a plate or powder of Fe, Co, Ni, Cr, Ta, etc. as a solvent metal of laminate of them or in their interfacial boundary. When graphite and the solvent metal are plates, holes with bottoms are made in the laminate and the seed diamonds are put in them. When graphite and the solvent metal are powder, the seed diamonds are embedded in it. Or, the seed diamonds are arranged between the layers of graphite and the solvent metal and they are reacted at high temperature under high pressure, to synthesize diamonds. Diamonds having small dispersion of particle diameters can be synthesized without controlling pressure and temperature strictly.

Description

【発明の詳細な説明】 本発明は、高温、高圧下でダイヤモンド?合成する1祭
、柚子となるダイヤモンド粒子を用いて結晶を成長させ
る方法に関する。っ 一般に静水圧法でダイヤモンド分合成する場合、発生す
る核の数を制御し、和平衡網のごく近傍にある温度と圧
力の下で結晶を成長きせることか包有物の少ない、形の
良い桔品を得るポイントである。したがって、種子とな
るダイヤモンドもt子を用いることは、結晶成長の中心
となる核の数を制御する上において有効な手段である。
[Detailed Description of the Invention] The present invention provides diamond processing under high temperature and high pressure. The first step in synthesizing yuzu is a method of growing crystals using diamond particles. In general, when synthesizing diamonds using the hydrostatic method, it is necessary to control the number of nuclei generated and grow crystals at temperatures and pressures that are close to the sum equilibrium network. This is the key to getting prizes. Therefore, using t-tons for diamond as seeds is an effective means for controlling the number of nuclei that form the center of crystal growth.

上記静水圧法によりダイヤモンドを合成する場合の結晶
の成長方法には、温度差成長法と薄膜成長法とがある。
Crystal growth methods for synthesizing diamond using the hydrostatic pressure method include a temperature difference growth method and a thin film growth method.

前者は、種子と非ダイヤモンド炭素(以下原料炭素とい
う)を温度差のある溶媒金属を間にして存在させ、低温
側の種子を成長させる方法である。また、後者は、種子
となるダイヤモンド粒子の周囲に付着した溶媒金属の薄
い膜を介して原料炭素を溶解させ炭素とダイヤモンドの
溶解度差によってダイヤモンド結晶を成長させる方法で
ある。薄膜成長法では、神子を予めおかずに合成中に核
発生を行なわせることも出来るが、和i子な用いれば核
の数の制御が容易となる。しかし、如何に核の数を制御
し得たとしても炭素濃度・の過飽和度の高い領域でダイ
ヤモンド結晶を成長させた具合は、良い結晶は得られず
、結晶の形も悪くなりさらに溶媒金属、炭素、気泡など
不純物の包有も多くなる。過飽和度を下げるには、ダイ
ヤモンド安定領域側の相平衡線のごく近傍にある濡麿、
圧力条件に保持する必要がある。しかし、工業的な超高
圧合成装置において、反応部の温度と圧力を定常的に測
定し、目的とする値にフントロールすることは極めて困
難である。
The former is a method in which seeds and non-diamond carbon (hereinafter referred to as raw material carbon) are present with a solvent metal having a temperature difference between them, and the seeds on the low temperature side are grown. The latter is a method in which raw carbon is dissolved through a thin film of solvent metal attached to the periphery of diamond particles serving as seeds, and diamond crystals are grown due to the solubility difference between carbon and diamond. In the thin film growth method, it is possible to generate nuclei during the synthesis without using Miko in advance, but if Miko is used sparingly, the number of nuclei can be easily controlled. However, no matter how much you control the number of nuclei, if you grow diamond crystals in a region with high carbon concentration/supersaturation, you will not be able to obtain good crystals, and the shape of the crystals will be poor. It also contains more impurities such as carbon and air bubbles. In order to reduce the degree of supersaturation, it is necessary to
Must be maintained under pressure conditions. However, in industrial ultra-high pressure synthesis equipment, it is extremely difficult to constantly measure the temperature and pressure in the reaction zone and control them to desired values.

本発明者らは上記の事情に鑑み、γ品度、圧力を直接1
tilj御しなくても良いダイヤ汚ンド結晶を高収率で
、しかも狙った粒度のものを分布幅狭く得る方法を、視
一点を変えて検討した。その結果、種子となるダイヤモ
ンド粒子を平面的又は立体的に規則「Eしく配置すれば
、種子ごとに生ずる結語成長の条件のバラツキは小さく
なり、また反応空間内の’tJAty、#力のミクロな
バラツキも減少し、近接し過ぎた種子の成長に伴なう干
渉もなくなることがわかった。
In view of the above circumstances, the present inventors directly adjusted the γ quality and pressure to 1.
From a different perspective, we investigated a method for obtaining diamond-tainted crystals with a high yield and a targeted particle size with a narrow distribution width without the need for tilj control. As a result, if the diamond particles that become the seeds are arranged in a regular manner in a planar or three-dimensional manner, the variation in the conditions for growth that occurs from seed to seed will be reduced, and the microscopic force of 'tJAty, It was found that the variation was reduced and that interference caused by seeds growing too close together was eliminated.

しかし薄膜法では、数千から数万個の種子をl!lヒ置
装る必要があり、従・、柚子を規則的に配γtしてダイ
ヤモンド?合成した例はない。
However, with the thin film method, thousands to tens of thousands of seeds can be grown in one layer! Is it necessary to set up a diamond? There are no examples of synthesis.

本発明は、上記の全く新しい知見に基づいて開発された
ものである。
The present invention was developed based on the above completely new findings.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

種子となるダイヤモンド粒子な規則的に配置するには種
々な方法がある。例えば、原料炭素と溶媒金8又はこれ
らに必要により添加される他の金属等(以下溶媒物質等
という)が交互に積み重ねられるいわゆる積層法におい
ては、溶媒物質等に規則的に孔を穿ち、種子を埋め込め
は゛良い。溶媒物質等が粉末または粒状の竣i合には、
これらを混合し適当な厚みの板に成形すれば、上記の方
法が適用できる。その他積層構成板に種子を直接圧入す
ることもできる。積層物質が金属板の場合は、孔をうが
つ方法として機械的方法の外に、フォトエツチングを含
むエツチング法、放電加工による方法、レーザ加工によ
る方法などが適用出来る。
There are various methods for regularly arranging diamond particles that serve as seeds. For example, in the so-called lamination method in which raw carbon and solvent gold 8 or other metals added as necessary to these (hereinafter referred to as solvent materials, etc.) are stacked alternately, holes are regularly punched in the solvent materials, etc., and the seeds are seeded. It's good to embed it. If the solvent substance etc. is in powder or granular form,
If these are mixed and formed into a plate of appropriate thickness, the above method can be applied. In addition, seeds can also be directly press-fitted into the laminated component board. When the laminated material is a metal plate, in addition to mechanical methods, etching methods including photo-etching, electrical discharge machining, laser machining, etc. can be used to fill the holes.

これらの孔は貫通孔でもよいが、柚子を取扱う上からは
貫通孔でない方が便利である。上記孔(こ種子を埋め込
むには、孔をうがたれた積層構成板上に種子をばらまき
、適当な振動を与えればよい。
These holes may be through holes, but from the viewpoint of handling the yuzu, it is more convenient if they are not through holes. In order to embed the seeds in the holes, the seeds may be scattered on the laminated component board with the holes drilled and subjected to appropriate vibrations.

その場合、種子の表面に帯電防止処理が施されているこ
とが望ましい。簡便な帯電防止処理としては、液電性物
質の塗布、または被ざtがある。
In that case, it is desirable that the surface of the seeds be subjected to antistatic treatment. A simple antistatic treatment includes coating or coating with a liquid electrical substance.

上記種子の大きさには特に制限はないが、1i17常3
0μ以上の粒子が用いられる。士た規則的な配置におけ
るVj、fり相うわ1+子の外側の間の間隔は、100
〜1000 itの間の値が選ばねる。
There is no particular restriction on the size of the above seeds, but 1i17 and 3
Particles of 0 μ or larger are used. The spacing between the outer sides of Vj and f in a regular arrangement of 1+ children is 100
A value between 1000 it and 1000 it cannot be selected.

上記種子が高圧下において直接原料炭素と接触する懸念
がある場合には、柚子を金を−4等で神を3しておいた
方がよい。この場合の金4は溶媒金属でなくてもよい。
If there is a concern that the above-mentioned seeds may come into direct contact with the raw material carbon under high pressure, it is better to set the yuzu to -4 or the like to 3. Gold 4 in this case does not have to be a solvent metal.

また溶媒金属板に芽たれた孔に裸の種子を配置する場合
には、通常種子を入れた後、孔の開孔部を金属板等で遮
閉する。
In addition, when placing bare seeds in holes sprouted in a solvent metal plate, the openings of the holes are usually closed off with a metal plate or the like after the seeds are placed.

さらに種子を配IP?すべき積層構成板が、金属板の場
合で孔が穿かれていない場合には、表面に微量の接着性
物質をスポット状に塗布し、その部分に裸または金属被
母された種子を接着させることも出来る。また適当な開
孔部を持つ網を使用したり、軍、子邪品自動配置装闇を
用いて規則的配+?2E行なうことが出来る。
More seeds distributed IP? If the laminated plate to be used is a metal plate without holes, apply a small amount of an adhesive substance to the surface in the form of spots, and adhere bare or metal-covered seeds to the spot. You can also do that. Also, use a net with appropriate openings, or use military or child-prone automatic placement equipment to regularly distribute the items. 2E can be done.

上記溶媒金属物質としては、Fe5cO1N1等の周期
8族の金遣、Cr s T a等通常ダイヤモンド合成
において溶媒金属として使用さり、ているものが用いら
れる。
As the above-mentioned solvent metal substance, those which are usually used as a solvent metal in diamond synthesis, such as periodic group 8 materials such as Fe5cO1N1 and Cr s Ta, are used.

本発明の原料系は主体としてはすし溶媒金属、ダイヤモ
ンド種子から構成されているが、この他に溶媒金属への
炭素の溶解性の1uII列、あるいはダイヤモンドfl
ii子と炭素との接触の抑制、さらには酸素や窒素がダ
イヤモンドに混入するのを防ぐ固定化剤として他の金E
ガ等を溶媒金属に対し50%以下程度の範囲で添加する
ことができる。この金属としてはM g %’Ca s
 T i、Z r % ’V % N b sZn、Y
、Mo、W、Cu、Au、Ag、S i、T3.A+!
!、Ge、In、Sn、Pb及びカーバイド、ポライド
等を単げろことができる。
The raw material system of the present invention is mainly composed of sushi solvent metal and diamond seeds.
Other gold E is used as a fixing agent to suppress the contact between diamond and carbon, and also to prevent oxygen and nitrogen from entering the diamond.
Moths and the like can be added in an amount of about 50% or less based on the solvent metal. As this metal, M g %'Ca s
T i, Z r % 'V % N b sZn, Y
, Mo, W, Cu, Au, Ag, Si, T3. A+!
! , Ge, In, Sn, Pb, carbide, polide, etc. can be used alone.

上記のような反応系において、その反応によって生成が
期待し得るダイヤモンドの線成長1ftに対し、種子1
個当りの平均成長希望量と種子の数の積が一致するよう
に神子の数を決めてやれば、狙った粒度のダイヤモンド
を分布I!S狭く得ることが出来る。上記期待し得る総
成長量な系統的に知るには、最終荷重P種々間えたダイ
ヤモンド合成を行い、成長4ルを求めておけばよい。ダ
イヤモンドのに1を多く取るためには、合成装置の許さ
れる範囲内で最終荷重を高くすれ、ばよいか、但し、か
:(子密度が高くなり過ぎると成長した粒子が干渉し合
うようになる。なお、粒度分布幅を狭くする方法として
、反応部の温度分布、圧力分布を考慮して、水平方向お
よび上下方向の種子配列の間隔、■)1′i子の大きさ
等を変えることも有効である。
In the above reaction system, 1 ft of diamond line growth that can be expected to be produced by the reaction requires 1 seed.
If you decide on the number of miko so that the product of the desired average growth per individual and the number of seeds matches, you can distribute diamonds with the desired particle size! S can be obtained narrowly. In order to systematically know the above expected total growth amount, it is sufficient to perform diamond synthesis with various final loads P and find the growth 4L. In order to obtain a large number of diamond particles, the final load should be increased within the range allowed by the synthesis equipment.However, (if the particle density becomes too high, the grown particles will interfere with each other. In addition, as a method to narrow the particle size distribution width, consider the temperature distribution and pressure distribution of the reaction area, and change the spacing of the seed arrangement in the horizontal and vertical directions, ■) the size of the 1'i seeds, etc. is also valid.

本発明はどの様な原料炭素物質、溶媒物質等の反応物質
においても有効であるが、特に結晶成長速度の遅い反応
系において効果的である。
The present invention is effective for any reactants such as raw carbon materials and solvent materials, but is particularly effective for reaction systems where the crystal growth rate is slow.

次に実施例分遣し本発明に係る方法全具体的に説明する
Next, the entire method according to the present invention will be explained in detail by way of examples.

〔実施例1〕 内径286市、高さ38−のろう5製容器内に反応物質
として直径2 a 6 rye、 gr7さ0.25 
y:*のFe7O−Ni30の合金板と、同じ直径の厚
さ1,6鼎の黒鉛板とを交互にlL′、層醗71シて反
応物τrとした。上記合金板Cゴ、フォトエツチング法
によって合金板に中心間隔06閂にうがった、0.3 
、、、グ×0、25 順1 (7’)孔?設け、この孔
ニ粒度#120/140力ダイヤモンド粒子を配置iT
 L、上記i、’4 +;−7体の両端P黒鉛板で保温
し、さらに鉄製のギャップで蓋をし、ベルト型超高圧合
成装V1に装着して力1■圧するとともに、反応部に通
電し直接IJi+か・シ、た。反応条件は圧カニ 57
Kb、温1σ:1450℃と推定され、反応時間は20
分2した。
[Example 1] A reactant was placed in a wax 5 vessel with an inner diameter of 286 mm and a height of 38 mm, with a diameter of 2 a6 rye and a gr7 height of 0.25.
An alloy plate of Fe7O-Ni30 of y:* and a graphite plate of the same diameter and thickness of 1.6 mm were alternately layered 1L' to obtain a reactant τr. The above alloy plate C was engraved with a center spacing of 06 bolts by photo-etching, 0.3
,,,gu×0,25 order 1 (7') hole? Place diamond particles with particle size #120/140 into this hole.
L, above i, '4 +;-7 Both ends of the body were insulated with P graphite plates, further covered with an iron gap, attached to a belt-type ultra-high pressure synthesis device V1, and a pressure of 1 cm was applied, and the reaction section was heated. I turned on the power and directly connected it to IJi+. Reaction conditions are pressure crab 57
Kb, temperature 1σ: estimated to be 1450°C, reaction time 20
It took 2 minutes.

この結果、約5gのダイヤモンドが得られたが、そのう
ち40%が410150の粒勇に集中し、良結晶のもの
の生成率も、同量のか11子P不弘1則配片マした従来
法に比して2倍に向上した。
As a result, about 5g of diamond was obtained, but 40% of it was concentrated in the grain size of 410150, and the production rate of good crystals was also lower than that of the conventional method using the same amount of diamonds. This is a two-fold improvement.

〔実施例2〕 実施例1の反応において使用した合金板上に微泉の即乾
性接着剤(商品名アラルダイト)を中心間隔0.6 +
n+aにおきに粒度$17(]/200のダイヤモンド
粒子に30μ厚さのN1コートした粒子?接着した外は
、実施例1と全く同じ操作によってダイヤモンドを合成
した。その結果実施例1とほぼ同じ結果が得られた。但
し、接着痴j量が多い場合には、結晶の透明性か失なわ
ハ5た。
[Example 2] Weisen's quick-drying adhesive (trade name: Araldite) was placed on the alloy plate used in the reaction of Example 1 at a center spacing of 0.6 +
Particles coated with N1 to a thickness of 30μ on diamond particles with a particle size of $17(]/200 at every n+a? Diamond was synthesized by the same operation as in Example 1, except for adhesion.The result was almost the same as in Example 1. However, when the amount of adhesion was large, the transparency of the crystal was lost.

〔実施例3〕 実施例1の反応系において黒鉛板の方に孔をうがち池子
を配置した外は、実施例1と同じ1・ν゛ζ作によって
ダイヤモンド結晶を成長させた。その結果、納品の大き
さが若干細めに寄った以外は実を布例1とほぼ同様な結
果が得られた。
[Example 3] Diamond crystals were grown using the same 1·ν゛ζ method as in Example 1, except that in the reaction system of Example 1, holes were placed on the graphite plate. As a result, almost the same results as Fabric Example 1 were obtained, except that the size of the delivered fabric was slightly smaller.

〔実施例4〕 上記例1において、粒度として、440150を狙い、
収瞬が、この糸で想定される8grにマツチするように
かII子の数を決めた。この種子を全て配置するために
、合金板、黒鉛板の厚みをそれぞれ0.25mm、1.
0mmとし、種子を入れる孔の間隔も0.6朋に縮めた
。この系に例1と同様の操作、を行なったところ、収1
+7.6 g r、 $40/ 50収率約50%、良
品→二は従来法の2倍強のダイヤモンドが得られた。
[Example 4] In Example 1 above, the particle size was aimed at 440150,
Shusun decided on the number of kaiiko to match the expected 8gr for this thread. In order to arrange all of these seeds, the thickness of the alloy plate and the graphite plate were set to 0.25 mm and 1.5 mm, respectively.
0 mm, and the spacing between the holes into which seeds are placed was also reduced to 0.6 mm. When this system was subjected to the same operation as in Example 1, the results were as follows:
+7.6 gr, $40/50 Yield: about 50%, good product → 2nd product yielded slightly more than twice as many diamonds as the conventional method.

出j(11人 昭和σを工株式会社。Exit (11 people, Showa Koko Co., Ltd.)

Claims (2)

【特許請求の範囲】[Claims] (1)非ダイヤモンド炭素と溶媒金鷺及びダイヤモンド
神子を主体とする反応物質をダイヤモンド安定領域の圧
力、温度条件下に供するダイヤモンド結晶の成長法にお
いて、種子となるダイヤモンド粒子を平面的或いは立体
的に規則的に配置することを特徴とするダイヤモンド結
晶の成長法。
(1) In a diamond crystal growth method in which non-diamond carbon and a reactant mainly consisting of the solvent Kinsagi and Diamond Miko are provided under pressure and temperature conditions in the diamond stability region, the diamond particles that serve as seeds are grown in a two-dimensional or three-dimensional manner. A method of growing diamond crystals characterized by regular arrangement of diamond crystals.
(2)上記反応物質が交互に積み重ねられた非ダイヤモ
ンド炭素と溶媒金属の積層体よりなり、神子となるダイ
ヤモンド粒子を非ダイヤモンド炭素屑z中、もしくは溶
媒全図中、又はこれらの界面に平面的或いは立体的に規
則正しく配置することを特徴とする特許Bh求の範囲第
1項記載のダイヤモンド結晶の成長法。
(2) The above-mentioned reactants are made of a laminate of non-diamond carbon and solvent metal stacked alternately, and the diamond particles that become the child are placed in non-diamond carbon waste, in the entire solvent, or in a plane at the interface of these. Alternatively, the method for growing diamond crystals according to Item 1 of the Patent Claim, which is characterized in that diamond crystals are regularly arranged three-dimensionally.
JP58041647A 1983-03-14 1983-03-14 Growth of diamond crystal Granted JPS59169994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041647A JPS59169994A (en) 1983-03-14 1983-03-14 Growth of diamond crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041647A JPS59169994A (en) 1983-03-14 1983-03-14 Growth of diamond crystal

Publications (2)

Publication Number Publication Date
JPS59169994A true JPS59169994A (en) 1984-09-26
JPH0360797B2 JPH0360797B2 (en) 1991-09-17

Family

ID=12614134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041647A Granted JPS59169994A (en) 1983-03-14 1983-03-14 Growth of diamond crystal

Country Status (1)

Country Link
JP (1) JPS59169994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328438A (en) * 1986-07-17 1988-02-06 Tatsuro Kuratomi Production of diamond powder
JPH0523574A (en) * 1991-07-22 1993-02-02 Sumitomo Electric Ind Ltd Synthesizing method of diamond abrasive grain

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297407A (en) * 1962-12-10 1967-01-10 Gen Electric Method of growing diamond on a diamond seed crystal
US3423177A (en) * 1966-12-27 1969-01-21 Gen Electric Process for growing diamond on a diamond seed crystal
JPS5288289A (en) * 1976-01-16 1977-07-23 Gen Electric Method and apparatus for making diamonds
JPS5354194A (en) * 1976-10-27 1978-05-17 Ishizuka Kenkyusho Synthesis of diamond and reaction vessels therefor
JPS56100122A (en) * 1980-01-14 1981-08-11 Sumitomo Electric Ind Ltd Diamond synthesizing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297407A (en) * 1962-12-10 1967-01-10 Gen Electric Method of growing diamond on a diamond seed crystal
US3423177A (en) * 1966-12-27 1969-01-21 Gen Electric Process for growing diamond on a diamond seed crystal
JPS5288289A (en) * 1976-01-16 1977-07-23 Gen Electric Method and apparatus for making diamonds
JPS5354194A (en) * 1976-10-27 1978-05-17 Ishizuka Kenkyusho Synthesis of diamond and reaction vessels therefor
JPS56100122A (en) * 1980-01-14 1981-08-11 Sumitomo Electric Ind Ltd Diamond synthesizing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328438A (en) * 1986-07-17 1988-02-06 Tatsuro Kuratomi Production of diamond powder
JPH0523574A (en) * 1991-07-22 1993-02-02 Sumitomo Electric Ind Ltd Synthesizing method of diamond abrasive grain
JP2546558B2 (en) * 1991-07-22 1996-10-23 住友電気工業株式会社 Diamond abrasive grain synthesis method

Also Published As

Publication number Publication date
JPH0360797B2 (en) 1991-09-17

Similar Documents

Publication Publication Date Title
US4547257A (en) Method for growing diamond crystals
EP0157393B1 (en) Method of synthesizing diamond
RU2006134708A (en) SYNTHESIS OF SUPERABRASIVE PARTICLES WITH ADJUSTABLE PLACEMENT OF CRYSTAL GRAINS
US9044726B2 (en) Method of cladding diamond seeds
US20070295267A1 (en) High pressure superabrasive particle synthesis
JP2546558B2 (en) Diamond abrasive grain synthesis method
US7368013B2 (en) Superabrasive particle synthesis with controlled placement of crystalline seeds
US6627168B1 (en) Method for growing diamond and cubic boron nitride crystals
JP2007531681A5 (en)
US20070036896A1 (en) Mosaic diamond substrates
JPS59169994A (en) Growth of diamond crystal
JPS61151095A (en) Synthesis of diamond
JPS6168395A (en) Growing method of diamond crystal
JPS6348579B2 (en)
JPS59169910A (en) Crystal growth of cubic boron nitride
EP1218095A1 (en) Growth of diamond clusters
JPH01228532A (en) Method for synthesizing diamond
US20210235824A1 (en) Patterned diamond and method of making same
JP3597033B2 (en) Crystal growth method of diamond or cubic boron nitride
JPS6357098B2 (en)
JPH052369B2 (en)
JPH04197431A (en) Synthesis of diamond
JPS62153106A (en) Synthesis of cubic boron nitride crystal
JP2003183095A (en) Method for synthesizing diamond
JPH01228531A (en) Method for synthesizing diamond