JPH04197431A - Synthesis of diamond - Google Patents

Synthesis of diamond

Info

Publication number
JPH04197431A
JPH04197431A JP32561090A JP32561090A JPH04197431A JP H04197431 A JPH04197431 A JP H04197431A JP 32561090 A JP32561090 A JP 32561090A JP 32561090 A JP32561090 A JP 32561090A JP H04197431 A JPH04197431 A JP H04197431A
Authority
JP
Japan
Prior art keywords
solvent
diamond
powder
graphite
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32561090A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshida
克仁 吉田
Sumikazu Sawai
澤井 澄一
Hitoshi Sumiya
均 角谷
Kazuo Tsuji
辻 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32561090A priority Critical patent/JPH04197431A/en
Publication of JPH04197431A publication Critical patent/JPH04197431A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0605Composition of the material to be processed
    • B01J2203/061Graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To selectively obtain single crystal diamond of high quality having an objective particle size by providing a mixture consisting of one of a graphite powder and a solvent metal powder, a diamond seed crystal and a volatile org. solvent between a graphite plate and a solvent metal plate in a laminar state. CONSTITUTION:A mixture 2 of at least one of a solvent metal powder and a graphite powder and a diamond seed crystal is arranged between a solvent metal plate l and a graphite plate 3. This mixture 2 is prepared by adding a volatile org. solvent to the solvent metal powder and/or the graphite powder to uniformly mix all of them and the obtained pasty mixture is thinly applied to the solvent metal plate 1 or the graphite plate 2 and, subsequently, the org. solvent used in mixing is dried and evaporated in vacuum or an inert atmosphere at predetermined temp. As the solvent metal plate or powder, a metal of the Group VIII of the Periodic Table such as Fe, Co or Ni can be designated. As the org. solvent for obtaining the paste, for example, ethanol, glycerine or ethylene glycol can be designated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は黒鉛とFe、 Co、 Ni等既知の溶媒金属
を用いて高温・高圧下でダイヤモンドを合成する方法に
関するものであり、さらに詳しくは結晶形の整った非常
に高品質のダイヤモンド粒子を高収率で、しかも目的と
する粒径を集中的に合成する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for synthesizing diamond under high temperature and high pressure using graphite and known solvent metals such as Fe, Co, and Ni. The present invention relates to a method for intensively synthesizing very high-quality diamond particles with a well-defined crystal shape in a high yield and having a desired particle size.

〔従来の技術〕[Conventional technology]

従来、黒鉛と溶媒金属を用いて高温・高圧下でダイヤモ
ンドを合成する際、原料黒鉛と溶媒金属の代表的配置法
として次の方法が知られている。
Conventionally, when synthesizing diamond under high temperature and high pressure using graphite and a solvent metal, the following method is known as a typical method for arranging the raw material graphite and the solvent metal.

即ち、■粉末混合法と呼ばれる粉末状の黒鉛と溶媒金属
を混合する方法、及び■積層法と呼ばれる黒鉛板と溶媒
金属板を交互に積層する方法、の2通りの方法である。
That is, there are two methods: (1) a method in which powdered graphite and a solvent metal are mixed, which is called a powder mixing method, and (2) a method in which graphite plates and solvent metal plates are alternately laminated, which is called a lamination method.

以上の■、■の方法とも成長する結晶を目的とする粒径
に集中させ生産性を向上させるためには、初期の核発生
数、成長速度を制御する必要があるが、これらは合成時
の温度、圧力条件に大きく依存しており、この条件を十
分正確に制御することは現在の技術レベルからみて非常
に困難である。
In order to concentrate the growing crystals to the desired particle size and improve productivity with the above methods ① and ②, it is necessary to control the initial number of nuclei generated and the growth rate. It is highly dependent on temperature and pressure conditions, and it is extremely difficult to control these conditions with sufficient accuracy given the current technological level.

このため、初期の核発生数だけでも制御するために種子
結晶を用いる方法は一般的に知られている。
For this reason, a method of using seed crystals to control even the initial number of nuclei generated is generally known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上記■の粉末混合法では結晶形の整った良質
の結晶を得るのが困難な上、成長結晶を目的とする粒径
に集中させるための初期核発生制御用種子結晶を均一に
混合することも困難である。
However, with the above powder mixing method (■), it is difficult to obtain high-quality crystals with a well-formed crystal shape, and it is necessary to uniformly mix seed crystals for controlling initial nucleation to concentrate the growing crystals to the desired particle size. It is also difficult.

このことから、■の方法では目的とする粒径の良質の結
晶を多量に得ることは極めて困難である。
For this reason, it is extremely difficult to obtain a large amount of high-quality crystals with the desired particle size using method (2).

一方、■の積層法は結晶形の整った良質のダイヤモンド
を合成するのに適した方法であるが、成長結晶を目的と
する粒径に集中させるための初期核発生制御用種子結晶
を均一に配置するのが困難である。例えば、特公昭63
−57099号公報に示されるように、溶媒金属板及び
黒鉛板の一方の板の面上に多数の穴を等間隔かつ規則的
に開け、各人にダイヤモンド種子を1個ずつ入れる方法
がある。しかしながら、該公報記載の方法では、−度に
多量の結晶を得ようとすれば多数の穴を開け−る必要が
あるうえ、各々の穴に1個ずつ数μm〜数十μmの種子
結晶を入れることは極めて困難である。
On the other hand, the stacking method described in Difficult to place. For example, Tokuko Sho 63
As shown in Japanese Patent Application No. 57099, there is a method in which a large number of holes are made regularly and at equal intervals on the surface of one of the solvent metal plate and the graphite plate, and one diamond seed is inserted into each person. However, in the method described in this publication, in order to obtain a large amount of crystals at one time, it is necessary to drill many holes, and in addition, one seed crystal with a size of several μm to several tens of μm is placed in each hole. It is extremely difficult to enter.

本発明は、このような従来技術の欠点を解決するために
なされたものであり、簡便な手段で非常に高い生産性を
もって結晶形の整った高品質の単結晶ダイヤモンドを目
的とする粒径に集中的に得るダイヤモンドの合成方法を
提供するものである。
The present invention has been made to solve these drawbacks of the conventional technology, and it is possible to produce high-quality single crystal diamond with a uniform crystal shape and a desired grain size using simple means and with extremely high productivity. It provides a method for intensively obtaining diamond synthesis.

〔課題を解決するための手段〕[Means to solve the problem]

従来の積層法によるダイヤモンド成長方法では、成長結
晶を目的とする粒径に集中させるための初期各発生用種
子結晶を均一に配置するのが困難であった。
In the conventional diamond growth method using the layered layer method, it is difficult to uniformly arrange the seed crystals for initial generation in order to concentrate the growing crystals to the desired grain size.

そこで、本発明者等は積層法において効率よく且つ効果
的に種子結晶を配置し、結晶形の整った非常に高品質の
ダイヤモンド粒子を高収率で、しかも目的とする粒径に
集中的に合成する方法を種々検討した結果、本発明の方
法を見出すに至った。
Therefore, the inventors of the present invention efficiently and effectively arrange seed crystals using the lamination method, and produce very high quality diamond particles with a well-organized crystal shape in a high yield, and moreover, in a concentrated manner in the desired particle size. As a result of various studies on synthesis methods, the method of the present invention was discovered.

すなわち、上記課題を解決する本発明によるダイヤモン
ドの合成方法は、ダイヤモンド種子結晶の存在下で黒鉛
板と溶媒金属板とを積層した原料系をダイヤモンド安定
領域の温度・圧力条件で反応させることによりダイヤモ
ンドを合成する方法において、黒鉛粉と溶媒金属粉の少
なくとも一方からなる粉末、ダイヤモンド種子結晶及び
揮発性有機溶剤からなる混合物を前記黒鉛板と前記溶媒
金属板との間に層状に配置してなる積層物を原料系とす
ることを特徴とする。
That is, the method for synthesizing diamond according to the present invention which solves the above-mentioned problems is to react a raw material system in which a graphite plate and a solvent metal plate are laminated in the presence of diamond seed crystals under temperature and pressure conditions in the diamond stability region. In the method for synthesizing, a laminated layer comprising a mixture of a powder consisting of at least one of graphite powder and solvent metal powder, diamond seed crystals, and a volatile organic solvent is arranged in a layer between the graphite plate and the solvent metal plate. It is characterized by using a substance as a raw material.

〔作用〕[Effect]

本発明においては、黒鉛粉と溶媒金属の少なくとも一方
からなる粉末にダイヤモンド種子結晶を揮発性有機溶剤
を用いて湿式で混合することにより、ダイヤモンド種子
結晶は金属粉および黒鉛粉の混合粉もしくはそのどちら
か一方の粉末中に、目的とする密度で均一に混合される
。混合方法については、ペーストの粘性に応じて、超音
波混合法または捏和混合法が挙げられる。該混合物中に
は、初期核発生制御用種子結晶が均一に混合されており
、該混合物を金属溶”煤層と黒鉛層との間に配置するこ
とによって、初期核発生制御用種子結晶が、金属溶媒層
と黒鉛層との間に絢−に配置されたのと同一の作用を生
じる。この作用から非常に高い生産性をもって、結晶形
の整った、非常に高品質の単結晶ダイヤモンドを目的と
する粒径に集中的に得ることができる。
In the present invention, by wet mixing diamond seed crystals with powder consisting of at least one of graphite powder and solvent metal using a volatile organic solvent, diamond seed crystals can be made into a mixed powder of metal powder and graphite powder, or both. It is uniformly mixed into one of the powders at the desired density. As for the mixing method, an ultrasonic mixing method or a kneading mixing method may be used depending on the viscosity of the paste. Seed crystals for controlling initial nucleation are uniformly mixed in the mixture, and by placing the mixture between the molten metal soot layer and the graphite layer, the seed crystals for controlling initial nucleation are The same effect as that between the solvent layer and the graphite layer is produced.This effect allows for the production of very high quality single-crystal diamond with a well-defined crystal shape with very high productivity. It is possible to concentrate on particle size.

以下第1図に従って具体的方法を説明する。A specific method will be explained below with reference to FIG.

第1図において、溶媒金属板lと黒鉛板2との間に、溶
媒金属粉及び黒鉛粉の少なくとも一方とダイヤモンド種
子結晶からなる混合物3を配置している。この混合物3
は溶媒金属粉及び/または黒鉛粉に揮発性の有機溶剤を
加え均一に混合されたものであり、ペースト状のものを
溶媒金属板lもしくは黒鉛板2に薄く塗布した後、30
℃〜600℃の真空中もしくは不活性雰囲気中にて混合
に用いた有機溶剤を乾燥蒸発させることにより得られる
In FIG. 1, a mixture 3 consisting of at least one of solvent metal powder and graphite powder and diamond seed crystals is placed between a solvent metal plate 1 and a graphite plate 2. This mixture 3
is made by adding a volatile organic solvent to solvent metal powder and/or graphite powder and mixing it uniformly. After applying a thin paste to solvent metal plate 1 or graphite plate 2,
It is obtained by drying and evaporating the organic solvent used for mixing in a vacuum or an inert atmosphere at a temperature of .degree. C. to 600.degree.

本発明の溶媒金属板及び溶媒金属粉としては、通常のダ
イヤモンド合成において溶媒金属として使用されるもの
でよく、例えばFe、 Co、 81等周期律表第■族
の金属等を挙げることができる。金属板、粉末ともにで
きるだけ高純度であることが好ましい。
The solvent metal plate and solvent metal powder of the present invention may be those used as solvent metals in ordinary diamond synthesis, and examples thereof include metals of group 1 of the periodic table such as Fe, Co, and 81. It is preferable that both the metal plate and the powder have as high a purity as possible.

黒鉛は天然のもの、人造のもののいずれでもよいが、や
はり高純度のものが好ましい。
Graphite may be either natural or artificial, but highly pure graphite is preferable.

ペーストを得るための有機溶剤としては、例えばエタノ
ール、グリセリン、エチレングリコール等を挙げること
ができる。
Examples of the organic solvent for obtaining the paste include ethanol, glycerin, and ethylene glycol.

このようにして得られた、第1図の構成の層状物質を複
数積層した積層物を原料系として、ダイヤモンドの安定
領域の圧力・温度条件下において反応させることにより
、ダイヤモンド結晶を成長させる。
Diamond crystals are grown by using the thus obtained laminate, which is a stack of a plurality of layered materials having the structure shown in FIG. 1, as a raw material system and reacting under pressure and temperature conditions in the stable region of diamond.

〔実施例〕〔Example〕

以下、実施例によって本発明を具体的に説明するが、本
発明はこれに限定されるところはない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

以下の各実施例では、内径30g、高さ25■のセラミ
ックカプセル内に、反応物質として、直径30m、厚さ
0.4mのFe−42Ni板と、その両面に以下、各々
の実施例で述べるペースト状混合物を塗布した同じ直径
の厚さ1.0閣の高純度人造黒鉛板とを交互に17段積
層配置した。上記積層体の上下両端をセラミックスで蓋
をし、黒鉛ヒーターの中に装填した後、ベルト型超高圧
発生装置で52kb、1350℃の温度・圧力条件で3
5分間の加熱・加圧を行った。
In each of the following examples, a Fe-42Ni plate with a diameter of 30 m and a thickness of 0.4 m was placed as a reactant in a ceramic capsule with an inner diameter of 30 g and a height of 25 cm, and on both sides of the plate were placed a ceramic capsule with an inner diameter of 30 g and a height of 25 cm. Seventeen high-purity artificial graphite plates having the same diameter and a thickness of 1.0 mm coated with a paste-like mixture were alternately stacked in 17 layers. After capping the upper and lower ends of the above laminate with ceramics and loading it into a graphite heater, a belt-type ultra-high pressure generator was used to generate 52 kb and 300 ml under the temperature and pressure conditions of 1350°C.
Heating and pressurization were performed for 5 minutes.

実施例1 粒度が30μm〜45μmの黒鉛粉末300gと、粒度
20μm〜30μmのダイヤモンド粉末3gとを、エタ
ノール30〇−中で超音波混合を行いペースト状にした
。このペースト状混合物を刷毛を用いて前記の厚さ1.
ONの高純度黒鉛板に薄く塗布した。エタノールは大気
炉中100℃で乾燥させた。このペースト塗布された黒
鉛板を前記の試料構成および圧力・温度条件にて反応さ
せダイヤモンドの合成を行った。この結果、18gのダ
イヤモンドが得られたが、そのうちの53先にあたる9
.5gが目標とする300μm〜420μmの粒度に集
中していた。またこの粒度のもののうち、60〜70%
のものがメタルボンド用として使用可能である結晶形の
整った非常に高品質なダイヤモンド粒であった。
Example 1 300 g of graphite powder with a particle size of 30 μm to 45 μm and 3 g of diamond powder with a particle size of 20 μm to 30 μm were ultrasonically mixed in 300 μm of ethanol to form a paste. Using a brush, apply this pasty mixture to the above-mentioned thickness of 1.
A thin layer was applied to an ON high-purity graphite plate. Ethanol was dried at 100°C in an air oven. The graphite plate coated with this paste was reacted under the sample configuration and pressure/temperature conditions described above to synthesize diamond. As a result, 18g of diamonds were obtained, of which 9
.. 5 g was concentrated in the target particle size of 300 μm to 420 μm. Also, of this particle size, 60 to 70%
These were very high quality diamond grains with well-shaped crystals that could be used for metal bonding.

実施例2 粒度力<1.0 am 〜2.0 μmの黒鉛粉末30
0gと0.5μm −1,0μmのダイヤモンド粉末0
.01gとを、エタノール150−に対しグリセリン2
00−を混合した溶剤中で超音波混合を行いペースト状
にした。このペースト状物質を刷毛を用いて前記の厚さ
1.0 m/の高純度黒鉛板に薄く塗布し、大気中30
0℃で溶剤を除去した。これを前記の試料構成および圧
力・温度条件にて反応させダイヤモンドの合成を行った
。この結果、20gのダイヤモンドが得られたが、その
うちの58%にあたる11.6 gが目標とする300
μm〜420μmの粒度に集中していた。またこの粒度
のもののうち、60〜70%のものがメタルボンド用と
して使用可能である結晶形の整った非常に高品質なダイ
ヤモンド粒であった。
Example 2 Graphite powder 30 with particle size force <1.0 am to 2.0 μm
0g and 0.5μm -1,0μm diamond powder 0
.. 01g and 150g of ethanol to 2g of glycerin.
Ultrasonic mixing was performed in a solvent mixed with 00- to form a paste. This paste-like substance was applied thinly to the above-mentioned 1.0 m thick high-purity graphite plate using a brush, and then exposed to air for 30 min.
The solvent was removed at 0°C. This was reacted under the sample configuration and pressure/temperature conditions described above to synthesize diamond. As a result, 20g of diamonds were obtained, of which 11.6g, or 58%, reached the target of 300g.
The particle size was concentrated between μm and 420 μm. Moreover, 60 to 70% of the particles having this size were very high quality diamond particles with a well-organized crystal shape that could be used for metal bonding.

実施例3 粒度が1.0μm〜2.0μmのコバルト粉末1200
gと10μm〜20μmのダイヤモンド粉末0.1gと
をエチレングリコール600−とを、不活性ガス中で捏
和混合を行った。混合後の物質を刷毛を用いて、前記の
厚さ1.omの高純度黒鉛板に薄く塗布し、10−” 
Torrの真空中300℃の温度でエチレングリコール
を除去した。前記の試料構成および圧力・温度条件にて
反応させダイヤモンドの合成を行った。この結果、17
gのダイヤモンドが得られたが、そのうちの55%にあ
たる9.4gが目標とする300μm〜420μmの粒
度に集中していた。またこの粒度のもののうち、70〜
80%のものがメタルボンド用として使用可能である結
晶形の整った非常に高品質なダイヤモンド粒であった。
Example 3 Cobalt powder 1200 with a particle size of 1.0 μm to 2.0 μm
and 0.1 g of diamond powder of 10 μm to 20 μm were kneaded and mixed with ethylene glycol 600 in an inert gas. After mixing, use a brush to spread the mixed substance to the above-mentioned thickness of 1. 10-”
Ethylene glycol was removed at a temperature of 300° C. in a vacuum of Torr. Diamond was synthesized by reaction under the sample configuration and pressure/temperature conditions described above. As a result, 17
g of diamond was obtained, of which 9.4 g, which is 55%, was concentrated in the target particle size of 300 μm to 420 μm. Also, of this particle size, 70~
80% of the diamond grains were very high quality diamond grains with a well-defined crystal shape that could be used for metal bonding.

比較例 前記実施例と同様の内径30m、高さ25mのセラミッ
クカプセル内に反応物質として直径30閤、厚さ0.4
WのFe−Ni板と、同じ直径の厚さ1゜01の高純度
人造黒鉛板とを交互に17段積層配置した。上記積層体
の上下両端をセラミックで蓋をし、黒鉛ヒーターの中に
充填した後、ベルト型高圧発生装置で54kb、135
0℃の温度・圧力条件で35分間の加熱・加圧によって
ダイヤモンドの合成を行った。この結果、15g  k
ダイヤモンドが得られたが、そのうち目標とする300
〜420 amの粒度には43%にしか過ぎない6゜5
gしか得られなかったうえ、この粒度のものの中では、
メタルボンド用の高品質なダイヤモンド粒の割合は10
%に満たなかった。
Comparative Example A ceramic capsule with an inner diameter of 30 m and a height of 25 m, similar to that of the above-mentioned example, was used as a reactant, with a diameter of 30 m and a thickness of 0.4 m.
W Fe--Ni plates and high-purity artificial graphite plates having the same diameter and a thickness of 1°01 were alternately stacked in 17 stages. After capping the upper and lower ends of the above laminate with ceramic and filling it into a graphite heater, a belt type high pressure generator was used to generate 54 kb and 135 kb.
Diamond was synthesized by heating and pressurizing for 35 minutes at a temperature and pressure of 0°C. As a result, 15g k
I got diamonds, but my goal is 300.
~420 am particle size has only 43% 6°5
In addition, among the particles of this particle size,
The proportion of high quality diamond grains for metal bond is 10
It was less than %.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば結晶形の整った非
常に高品質のダイヤモンド砥粒を高収率で、しかも目的
とする粒径に集中的に合成できるという効果を有する。
As explained above, according to the present invention, it is possible to intensively synthesize diamond abrasive grains of very high quality with a well-defined crystal shape at a high yield and in a desired particle size.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に用いる原料系の構成の−を示し
た概略断面図である。
FIG. 1 is a schematic sectional view showing the configuration of a raw material system used in the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)ダイヤモンド種子結晶の存在下で黒鉛板と溶媒金
属板とを積層した原料系をダイヤモンド安定領域の温度
・圧力条件で反応させることによりダイヤモンドを合成
する方法において、黒鉛粉と溶媒金属粉の少なくとも一
方からなる粉末、ダイヤモンド種子結晶及び揮発性有機
溶剤からなる混合物を前記黒鉛板と前記溶媒金属板との
間に層状に配置してなる積層物を原料系とすることを特
徴とするダイヤモンドの合成方法。
(1) In a method of synthesizing diamond by reacting a raw material system in which a graphite plate and a solvent metal plate are laminated in the presence of diamond seed crystals under temperature and pressure conditions in the diamond stability region, a combination of graphite powder and solvent metal powder is used. The raw material system for diamond is a laminate obtained by arranging a mixture of at least one of powder, diamond seed crystals and a volatile organic solvent in a layer between the graphite plate and the solvent metal plate. Synthesis method.
JP32561090A 1990-11-29 1990-11-29 Synthesis of diamond Pending JPH04197431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32561090A JPH04197431A (en) 1990-11-29 1990-11-29 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32561090A JPH04197431A (en) 1990-11-29 1990-11-29 Synthesis of diamond

Publications (1)

Publication Number Publication Date
JPH04197431A true JPH04197431A (en) 1992-07-17

Family

ID=18178790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32561090A Pending JPH04197431A (en) 1990-11-29 1990-11-29 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPH04197431A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007613A2 (en) * 1992-10-02 1994-04-14 The Penn State Research Foundation Method for synthesizing solids such as diamond and products produced thereby
US5525537A (en) * 1994-05-04 1996-06-11 Daimler-Benz Ag Process of producing diamond composite structure for electronic components
US6342195B1 (en) 1993-10-01 2002-01-29 The Penn State Research Foundation Method for synthesizing solids such as diamond and products produced thereby
US8446443B2 (en) 2009-07-16 2013-05-21 Ricoh Company, Limited Image forming apparatus and method for controlling image forming method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994007613A2 (en) * 1992-10-02 1994-04-14 The Penn State Research Foundation Method for synthesizing solids such as diamond and products produced thereby
WO1994007613A3 (en) * 1992-10-02 1994-06-23 Penn State Res Found Method for synthesizing solids such as diamond and products produced thereby
US6342195B1 (en) 1993-10-01 2002-01-29 The Penn State Research Foundation Method for synthesizing solids such as diamond and products produced thereby
US5525537A (en) * 1994-05-04 1996-06-11 Daimler-Benz Ag Process of producing diamond composite structure for electronic components
US8446443B2 (en) 2009-07-16 2013-05-21 Ricoh Company, Limited Image forming apparatus and method for controlling image forming method

Similar Documents

Publication Publication Date Title
EP3271123B1 (en) Reactive additive manufacturing
JPH08337498A (en) Diamond granule, granule for diamond synthesis, compact and their production
US8088436B2 (en) Method of coating graphite particles with metallic catalyst layer
JPH02167668A (en) Making of abrasive products
FI91271C (en) Process for producing abrasives and ceramic abrasives produced by the process
JPS6190735A (en) Method and apparatus for manufacturing green compact
JPH04197431A (en) Synthesis of diamond
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPS5835949B2 (en) Method for manufacturing silicon carbide body
JPH0348252B2 (en)
JPH0433489B2 (en)
JP2585335B2 (en) Method for producing cubic boron nitride
JP7467191B2 (en) Joining Method
JPH0685865B2 (en) Diamond synthesis
JP2852407B2 (en) High-strength diamond-metal composite sintered body and its manufacturing method
JPS60128231A (en) Production of sintered diamond body
JPS61117106A (en) Synthesis of cubic boron nitride
JP2625840B2 (en) Method for producing coarse artificial diamond crystals
JPS62123100A (en) Rhenium oxide whisker and production thereof
JP3569743B2 (en) Skutterudite single crystal and method for producing the same
JPH0524922A (en) Diamond-containing combined sintered compact with high hardness and high density and production of the same
JP3004672B2 (en) Whisker-coated composite powder and method for producing the same
JPH01228532A (en) Method for synthesizing diamond
JP2003183095A (en) Method for synthesizing diamond
JPH02180760A (en) Cubic boron nitride sintered body and production thereof