JPH02180760A - Cubic boron nitride sintered body and production thereof - Google Patents

Cubic boron nitride sintered body and production thereof

Info

Publication number
JPH02180760A
JPH02180760A JP63334019A JP33401988A JPH02180760A JP H02180760 A JPH02180760 A JP H02180760A JP 63334019 A JP63334019 A JP 63334019A JP 33401988 A JP33401988 A JP 33401988A JP H02180760 A JPH02180760 A JP H02180760A
Authority
JP
Japan
Prior art keywords
boron nitride
sintered body
cubic boron
cubic
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63334019A
Other languages
Japanese (ja)
Other versions
JPH0811712B2 (en
Inventor
Haruo Yoshida
吉田 晴男
Masaichi Kume
正市 粂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63334019A priority Critical patent/JPH0811712B2/en
Publication of JPH02180760A publication Critical patent/JPH02180760A/en
Publication of JPH0811712B2 publication Critical patent/JPH0811712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a high hardness sintered body hardly undergoing deterioration in the mechanical characteristics at high temp. within industrially and easily attainable pressure and temp. ranges while preventing phase transition to hexagonal BN by sintering cubic BN powder uniformly coated with a specified sintering aid as starting material under the conditions of ultrahigh pressure and high temp. CONSTITUTION:The surface of cubic BN granule as starting material is coated with 15-0.1vol.% sintering aid such as transition metal belonging to the group IVA, VA or VIA, B, Si, Al, carbide or nitride thereof by ion sputtering, ion plating or other method. The coated granule is sintered in the solid phase under the conditions of ultrahigh pressure and high temp., e.g. 4.0-6.0GPa pressure and 1,300-1,600 deg.C temp. to obtain a cubic BN sintered body consisting of 85-99.9vol.% cubic BN and the balance coating material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、立方晶窒化硼素(cBN)を含有する高密度
な焼結体およびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a high-density sintered body containing cubic boron nitride (cBN) and a method for producing the same.

(従来の技術) 立方晶窒化硼素(cIIN)は、共有結合性が強いため
、fi焼結性であり、しかも高圧安定相である。
(Prior Art) Cubic boron nitride (cIIN) has strong covalent bonding properties, is fi-sinterable, and is a stable phase under high pressure.

立方晶窒化硼素は、熱力学的に非安定な低圧力・高温度
下では低圧安定相である六方晶窒化硼素(hBN)に相
転移する。そこで、当該六方晶窒化硼素への相転移を防
止しつつ、高硬度な焼結体を得るために立方晶窒化硼素
が熱力学的に安定な圧力・温度領域で、コバルト(Co
)等の金属を結合材とする液相焼結が行われてきた。
Cubic boron nitride undergoes a phase transition to hexagonal boron nitride (hBN), which is a low-pressure stable phase under thermodynamically unstable low pressure and high temperature conditions. Therefore, in order to obtain a highly hard sintered body while preventing the phase transition to the hexagonal boron nitride, cubic boron nitride is made of cobalt (Co) in a thermodynamically stable pressure and temperature range.
) and other metals as binders have been used for liquid phase sintering.

こうして得られた焼結体は、立方晶窒化硼素粒子間が主
に融点の低い金属相で満たされて結合しているため、高
温では当該金属の軟化に起因して硬度等の機械的特性の
劣化が著しい、また、結合1金属′は、焼結体中で集ま
ってツールを形成し、焼結体の強度をも低下させる原因
にもなり易い。
In the sintered body obtained in this way, the cubic boron nitride particles are mainly filled with a metal phase with a low melting point and bonded together, so the mechanical properties such as hardness deteriorate due to the softening of the metal at high temperatures. The deterioration is significant, and the bond 1 metal' gathers together in the sintered body to form a tool, which tends to reduce the strength of the sintered body.

一方、周期律表第4a、5a、6a族遷移金属を初め、
高融点物質を焼結助剤として固相で焼結を行う場合は、
上記欠点を除くことは出来るが、添加された当該焼結助
剤が焼結過程で大きな移動がないため、特に均一な添加
が問題となる。
On the other hand, including transition metals of groups 4a, 5a, and 6a of the periodic table,
When performing solid phase sintering using a high melting point substance as a sintering aid,
Although the above-mentioned drawbacks can be eliminated, since the added sintering aid does not move significantly during the sintering process, uniform addition becomes a problem.

(発明が解決しようとする問題点) 焼結助剤として前記高融点物質を粉体状で添加した場合
、理想的に均一な添加、即ち均一な分散が実現されたと
しても添加量が少ないと焼結体中に添加粉体粒子が存在
し得ない部分が出来る。しかも現実には、当該焼結助剤
の粉体が凝集して焼結体中に塊状に存在したり、或は焼
結体中で偏在することが多いため、焼結の促進に大きな
効果は望めない。
(Problems to be Solved by the Invention) When the high melting point substance is added in powder form as a sintering aid, even if ideally uniform addition, that is, uniform dispersion, is achieved, the amount of addition is small. There are areas in the sintered body where the added powder particles cannot exist. Moreover, in reality, the powder of the sintering aid often aggregates and exists in lumps in the sintered body, or is unevenly distributed in the sintered body, so it is not very effective in promoting sintering. I can't hope.

従って、前記焼結助剤の効率的な新しい添加法が望まれ
ていた。
Therefore, a new and efficient method for adding the sintering aid has been desired.

(問題点を解決するための手段) 鋭意研究を行った結果、以下の特徴的な焼結体層びその
製造法を得た。
(Means for solving the problem) As a result of intensive research, we have obtained the following characteristic sintered body layer and its manufacturing method.

即ち、本発明の立方晶窒化硼素焼結体は、体積で15〜
0.1%の周期律表第4a、5aまたは6a族の遷移金
属、硼素、シリコン若しくは7にミニラム或はこれらの
炭化物および/またはこれらの窒化物のうち少なくとも
1種類以上が均一にコーティングされた立方晶窒化硼素
原料粉体粒子を超高圧高温下で固相で焼結せしめてなる
焼結体により構成され、立方晶窒化硼素を体積で85〜
99.9%含有し、残部が上記コーティング物質からな
ることを特徴とするものである。
That is, the cubic boron nitride sintered body of the present invention has a volume of 15 to
0.1% of a transition metal of group 4a, 5a or 6a of the periodic table, boron, silicon or 7, uniformly coated with miniram or at least one of these carbides and/or nitrides thereof It is composed of a sintered body made by sintering cubic boron nitride raw material powder particles in a solid phase under ultra-high pressure and high temperature.
It is characterized by containing 99.9% of the coating material, with the remainder consisting of the above-mentioned coating material.

また2本発明の立方晶窒化硼素焼結体の製造法は、立方
晶窒化硼素原料粉体粒子表面に、物理的蒸気凝縮法(P
’hysical Vapor Deposition
法:以下、PVD法と略記する。)により周期律表第4
a 、 5aまたは6a族の遷移金属、硼素、シリコン
若しくはアルミニウム或はこれらの炭化物および/また
はこれらの窒化物のうち少なくとも1種類以上を均一に
コーティングし、これを粉末状で、若しくは型押し成形
後、熱力学的に立方晶窒化硼素の安定領域の超高圧高温
下で固相で焼結せしめることを特徴とするものである。
In addition, in the method for producing cubic boron nitride sintered bodies of the present invention, physical vapor condensation method (P
'hysical Vapor Deposition
Method: Hereinafter, abbreviated as PVD method. ) according to the 4th periodic table
a, 5a or 6a group transition metals, boron, silicon, aluminum, or their carbides and/or these nitrides are uniformly coated, and this is applied in powder form or after molding by molding. , which is characterized by sintering in a solid phase at ultra-high pressure and high temperature in the thermodynamically stable region of cubic boron nitride.

本発明について更に詳細に説明すると、本発明に係る立
方晶窒化硼素焼結体およびその製造法においては、先ず
、前述した従来の立方晶窒化硼素焼結体において用いら
れている粉体状の焼結助剤に代えて、周期律表第4a、
5aまたは6a族の遷移金属、硼素、シリコン若しくは
7にミニラム或はこれらの炭化物および/またはこれら
の窒化物のうち少なくとも1種類以上を用い、それをP
VD法、好適にはイオンスパッタリング法またはイオン
フレーテインク法で体積で15〜0.1xを立方晶窒化
硼素原料粉体粒子表面に均一にコーティングした上で、
粉末状若しくは型押し成形した状態において、熱力学的
に立方晶窒化硼素の安定領域の超高圧高温下で固相で焼
結せしめてなる焼結体により構成され、立方晶窒化硼素
を体積で85〜99.9′X含有し、残部が上記コーテ
ィング物質からなるものである。即ち、上記遷移金属、
硼素、シリコン若しくはアルミニウム或はこれらの炭化
物および/またはこれらの窒化物のうち少なくとも1種
類以上からなる添加物質は、それらが固相で反応を伴わ
ずに拡散して焼結するか、或は固相で反応を伴って拡散
して焼結することにより、六方晶窒化硼素への相転移の
抑制と焼結促進の効果を併せ持ち、高温でも硬度等の機
械的特性の低下の少ない、高硬度な立方晶窒化硼素焼結
体が得られる。
To explain the present invention in more detail, in the cubic boron nitride sintered body and the manufacturing method thereof according to the present invention, first, the powder-like sintered body used in the conventional cubic boron nitride sintered body described above is used. In place of the binding agent, periodic table 4a,
5a or 6a group transition metals, boron, silicon, or 7, using at least one kind of minilum or their carbides and/or these nitrides, and P.
After uniformly coating the surface of cubic boron nitride raw material powder particles with a volume of 15 to 0.1x by VD method, preferably ion sputtering method or ion flate ink method,
It is composed of a sintered body that is sintered in a solid phase under ultra-high pressure and high temperature in the thermodynamically stable region of cubic boron nitride in a powdered or extruded state. ~99.9'X, with the remainder consisting of the above coating material. That is, the above transition metal,
The additive substance consisting of at least one of boron, silicon, aluminum, or their carbides and/or nitrides is either diffused and sintered in a solid phase without reaction, or solidified. By diffusing and sintering with a reaction in the phase, it has the effect of suppressing the phase transition to hexagonal boron nitride and promoting sintering, and has the effect of suppressing the phase transition to hexagonal boron nitride and promoting sintering. A cubic boron nitride sintered body is obtained.

この立方晶窒化硼素焼結体は、立方晶窒化硼素を体積で
、85〜99.9%含有し、残部が上記遷移金属、硼素
、シリコン若しくはアルミニウム或はこれらの炭化物お
よび/または窒化物のうち少なくとも1種類以上からな
るものである。
This cubic boron nitride sintered body contains 85 to 99.9% cubic boron nitride by volume, with the remainder being one of the above transition metals, boron, silicon, aluminum, or their carbides and/or nitrides. It consists of at least one type or more.

ここで特記すべきことは、PVD法で立方晶窒化硼素粉
体粒子表面に均一にコーティングするため、従来の粉体
を用いた固相焼結の場合に問題となっていた助剤の均一
な添加が可能となり、高効率に焼結助剤がその役割を果
たしていることである。そのため、固相焼結でありなが
ら、従来の液相焼結と同程度の工業的に容易に実現容易
な焼結条件で、しかも当該助剤の添加量を少量としても
効率よく、緻密でしかも高硬度に焼結出来る。
What should be noted here is that the PVD method uniformly coats the surface of the cubic boron nitride powder particles, which eliminates the uniformity of the auxiliary agent, which has been a problem in solid-phase sintering using conventional powders. It is now possible to add sintering aids, and the sintering aid plays its role with high efficiency. Therefore, although it is a solid-phase sintering method, it is possible to achieve efficient and dense sintering under industrially easy-to-achieve sintering conditions comparable to those of conventional liquid-phase sintering, and even with a small amount of the auxiliary agent added. Can be sintered to high hardness.

このような、本発明によれば1例えば立方晶窒る添加量
が体積で5xで且つ5.2GPa、1500 ’Cとい
う工業的に実現容易な焼結条件でもHv(0,5/10
)が約7000と高硬度な立方晶窒化硼素焼結体が得ら
れる、また、体積で、0.1Xの極微量添加においても
添加効果が顕著に認められる。
According to the present invention, Hv (0.5/10
) is about 7000, and a cubic boron nitride sintered body with high hardness can be obtained, and the addition effect is noticeable even when added in an extremely small amount of 0.1X in terms of volume.

しかし、必要に応じて体積で15%まで上記焼結助剤を
被覆添加しても差し支えない。
However, if necessary, up to 15% by volume of the above-mentioned sintering aid may be added as a coating.

このような特徴的な立方晶窒化硼素焼結体を製造するに
は、例えば、立方晶窒化硼素原料粉体の適量を皿にとり
、これに周期律表第4a、5aまたは6a族の遷移金属
、硼素、シリコン若しくはフルミニラム或はこれらの炭
化物および/またはこれらの窒化物のうち少なくとも1
種類以上をPVD法(好適には立方晶窒化硼素原料粉体
粒子表面に強固に被覆添加出来るイオンスパッタリンク
法、イオンッレーティンク 法) にょ リ*jl(好
適には体積で15〜0.1%)を前記立方晶窒化硼素粉
体粒子表面に均一に被覆添加する。その被覆添加が行わ
れた立方晶窒化硼素粉体は、粉末状で、若しくは常温に
おいて金型などで成形し、超高圧装置を用いて、立方晶
窒化硼素が4切4的に安定な超高圧・高温下で固相で焼
結する。超高圧装置は、 キュービック型、 テトラ 
型、 乃−ドル型、 ベルト 型等何れでも差し支えな
い。
To produce such a characteristic cubic boron nitride sintered body, for example, an appropriate amount of cubic boron nitride raw material powder is placed in a dish, and a transition metal of group 4a, 5a or 6a of the periodic table, At least one of boron, silicon, fluminiram, their carbides and/or their nitrides
PVD method (preferably ion sputter link method or ion latching method that can be added to the surface of the cubic boron nitride raw material powder particles to form a strong coating) %) is added to the surface of the cubic boron nitride powder particles to uniformly coat the surface of the cubic boron nitride powder particles. The cubic boron nitride powder to which the coating has been added is either in powder form or molded in a mold at room temperature, and then processed under ultra-high pressure using an ultra-high pressure device to ensure that the cubic boron nitride is・Sintering in solid phase at high temperature. Ultra-high pressure equipment is cubic type, tetra
It can be any type, such as a no-dol type, a belt type, etc.

一例として、キュービック型超高圧装置による製造につ
いて説明すると、先ず、前記焼結助剤を被覆添加された
立方晶窒化硼素原料粉体をペレット状に型押し成形し、
これをジル冗つム(Zr)箔で包み、更に六方晶窒化硼
素(hBN)成形体で囲って、その外側に黒鉛管ヒータ
を設置する。このし−タの外側には、700’Cで加熱
処理することにより、結晶水を除いたパイロフィライト
が固体圧力媒体として配置される。焼結のための圧力お
よび温度は、熱力学的に立方晶窒化硼素が安定な領域が
望ましいが、立方晶窒化硼素に対して触媒作用のない物
質を焼結助剤として用いているので、前記立方晶窒化硼
素の安定領域から若干外れた条件でも差し支えない、し
がしながら、圧力4.0GPa 〜6.0GPa、温度
1300〜1600’C程度の前記液相焼結と同程度の
工業的に実現容易な条件が好適である。
As an example, manufacturing using a cubic type ultra-high pressure device will be explained. First, the cubic boron nitride raw material powder coated with the sintering aid is pressed into a pellet shape.
This is wrapped in Zr foil, further surrounded by a hexagonal boron nitride (hBN) molded body, and a graphite tube heater is installed outside of it. On the outside of this shield, pyrophyllite from which water of crystallization has been removed by heat treatment at 700'C is placed as a solid pressure medium. The pressure and temperature for sintering are preferably in the range where cubic boron nitride is thermodynamically stable, but since a substance that does not have a catalytic effect on cubic boron nitride is used as a sintering aid, Conditions slightly outside the stability region of cubic boron nitride may be used; however, the pressure is 4.0 GPa to 6.0 GPa and the temperature is about 1300 to 1600'C, which is equivalent to the above-mentioned liquid phase sintering. Conditions that are easy to achieve are preferred.

(実施例) 以下に、本発明の実施例を示す。(Example) Examples of the present invention are shown below.

(第1実施例) 粒径0〜2μmの立方晶窒化硼素原料粉体約0゜5gに
対し、チタン(T+)をイオンスパッタ替ング法によ 
り体積で帆9x被覆添加した。この粉体を外径6層贈、
高さ2m〜に型押し成形し、これをジルコニウム(Zr
)箔で包み、更にその外側に六方晶窒化硼素(hBN)
成形体を配置した圧力媒体に埋め込み、200℃、1θ
−’torrで一昼夜真空乾燥して、低沸点不純物を除
去した。これをキュービック型超高圧装置にセットし、
先ず、室温で5.26Paまで昇圧し、その後1500
℃に昇温し、30分保持後に降温し、圧力を下げた。得
られた焼結体の表面をダイヤモンドペーストで研磨し、
ビッカース微小硬度を測定したところ)Iv(0,5/
10)が約7000と高硬度であった。
(First Example) Titanium (T+) was added to approximately 0.5 g of cubic boron nitride raw material powder with a particle size of 0 to 2 μm using an ion sputtering method.
A volume of 9x coated sails was added. This powder is presented in 6 layers of outer diameter.
Embossed to a height of 2 m or more, this is made of zirconium (Zr).
) Wrapped in foil, and further covered with hexagonal boron nitride (hBN) on the outside.
Embed the molded body in a pressure medium, 200℃, 1θ
-'torr was vacuum-dried all day and night to remove low-boiling impurities. This is set in a cubic type ultra-high pressure device,
First, the pressure was increased to 5.26 Pa at room temperature, and then the pressure was increased to 1500 Pa.
The temperature was raised to 0.degree. C., held for 30 minutes, and then the temperature was lowered and the pressure was lowered. The surface of the obtained sintered body is polished with diamond paste,
When Vickers microhardness was measured) Iv (0,5/
10) had a high hardness of about 7000.

この焼結体の結晶相を粉末X線回折により調べたところ
、六方晶窒化硼素は認められず、立方晶窒化硼素、窒化
チタン(TiN)、硼化チタン(TiB、 )が認めら
れた。この焼結体は、液相焼結に用いるような低融点物
質を含まないので、高温でも硬度等の機械的特性の劣化
が少ない。
When the crystal phase of this sintered body was examined by powder X-ray diffraction, hexagonal boron nitride was not observed, but cubic boron nitride, titanium nitride (TiN), and titanium boride (TiB) were observed. Since this sintered body does not contain a low melting point substance used in liquid phase sintering, there is little deterioration in mechanical properties such as hardness even at high temperatures.

(第2実施例) 粒径O〜2μ鳳の立方晶窒化硼素原料粉体約0゜5gに
対し、 窒化ジルコニウム(ZrN)  をイオンスパ
ッタリング法により体積で4.5x被覆添加した。この
粉体を外径6II11高さ2■に型押し成形し、第1実
施例と同様に、キュービック型超高圧装置にセットし、
先ず、室温で5.0GPaまで昇圧し、そのf&148
0’cに昇温し、30分保持後に降温し、圧力を下げた
。得られた焼結体の表面をダイヤモンドペーストで研磨
し、ビッカース微小硬度を測定 したところHv(0,
5/10)が約7600と高硬度であった、この焼結体
の結晶相を粉末X線回折により調べなところ、大方晶窒
化硼素は認められず、立方晶窒化硼素、窒化ジルコニウ
ム(ZrN)が認められた。第2実施例の焼結体も第1
実施例と同様に、低融点物質を含まないので、高温でも
機械的特性の低下が少ない。
(Second Example) Zirconium nitride (ZrN) was added to approximately 0.5 g of cubic boron nitride raw material powder having a particle size of 0 to 2 μm in a volume of 4.5× by ion sputtering. This powder was pressed and molded to an outer diameter of 6II, 11 and a height of 2mm, and set in a cubic type ultra-high pressure device as in the first embodiment.
First, the pressure was increased to 5.0 GPa at room temperature, and the f&148
The temperature was raised to 0'C, and after being held for 30 minutes, the temperature was lowered and the pressure was lowered. The surface of the obtained sintered body was polished with diamond paste, and the Vickers microhardness was measured.
When examining the crystalline phase of this sintered body using powder X-ray diffraction, no cubic boron nitride was observed, and cubic boron nitride and zirconium nitride (ZrN) were found. was recognized. The sintered body of the second embodiment also
Similar to the examples, since it does not contain a low melting point substance, there is little deterioration in mechanical properties even at high temperatures.

(第3実施PA> 粒径O〜2μ麿の立方晶窒化硼素原料粉体約05gに対
し、 炭化チタン(TiC)をイオンスパッタリンク法
によ り体、 キュービック型超高圧装置にセット し
、 5.0GPa、  1600℃、30分の条件で固
相で焼結した。得られた焼結体の表面をダイヤモンドペ
ーストで研磨し、ビッカース微小硬度を測定したところ
Hv(0,5/10)が約6800と高硬度であった。
(Third implementation PA> Approximately 05 g of cubic boron nitride raw material powder with a particle size of 0 to 2 μm was coated with titanium carbide (TiC) using the ion sputter link method, and set in a cubic type ultra-high pressure device. It was sintered in the solid phase under the conditions of .0GPa, 1600℃, and 30 minutes.The surface of the obtained sintered body was polished with diamond paste, and the Vickers microhardness was measured, and Hv (0.5/10) was approximately It had a high hardness of 6800.

この焼結体の結晶相を粉末X線回折により調べたところ
、六方晶窒化硼素は認められず、立方晶窒化硼素、炭化
チタン(Tie)が認め・6れた。
When the crystal phase of this sintered body was examined by powder X-ray diffraction, hexagonal boron nitride was not observed, but cubic boron nitride and titanium carbide (Tie) were observed.

(第4実施例) 粒径0〜2μ重の立方晶窒化硼素原料粉体的0゜5gに
対し、 窒化アルミニウム(AIN)  をイオンスパ
ッタリング法により体積で10.2%被覆添加した。こ
の粉体をキュービック型超高圧装置にセットし、5.0
GPa、1600℃、30分の条件で固相で焼結した。
(Fourth Example) Aluminum nitride (AIN) was added to cover 10.2% by volume of 0.5 g of cubic boron nitride raw material powder having a particle size of 0 to 2 μm by ion sputtering. This powder was set in a cubic type ultra-high pressure device, and
It was sintered in the solid phase under the conditions of GPa, 1600° C., and 30 minutes.

得られた焼結体のビッカース微小硬度を測定したところ
Hv(0,5/10)が約5800と高硬度であった。
When the Vickers microhardness of the obtained sintered body was measured, it was found to have a high hardness of about 5800 Hv (0.5/10).

この焼結体の結晶相を粉末X線回折により調べたところ
、六方晶窒化硼素は認められず、立方晶窒化硼素、窒化
アルミニウム(AIN)が認められた。
When the crystal phase of this sintered body was examined by powder X-ray diffraction, hexagonal boron nitride was not observed, but cubic boron nitride and aluminum nitride (AIN) were observed.

(第5実施例) 粒径0〜2μ脂の立方晶窒化硼素原料粉体的0゜5gに
対し、 窒化チタン(TiN)をイオンスパッタリンク
法によ り体積で3.6%被覆添加した。この粉体をキ
ュービック型超高圧装置にセットし、 5.0GPa、
 1600℃、30分の条件で固相で焼結した。得られ
た焼結体のビッカース微小硬度を測定したところHv(
0,5/10)が約7400と高硬度であった。この焼
結体の結晶相を粉末X線回折により調べたところ、六方
晶窒化硼素は認められず、立方晶窒化硼素、窒化チタン
(TiN)が認められた(発明の効果) 以上に、詳述した本発明の立方晶窒化硼素焼結体および
その製造法によれば、適切な焼結助剤の利用により、工
業的に比較的容易に実現可能な圧力・温度領域内で、六
方晶窒化硼素への相転移を防止しつつ、高硬度な焼結体
を形成出来るばかりでなく、高硬度で、且つ高温での機
械的特性の劣化の少ない立方晶窒化硼素焼結体の製造法
を得ることが出来る。
(Fifth Example) 3.6% by volume of titanium nitride (TiN) was added to cover 0.5 g of cubic boron nitride raw material powder with a particle size of 0 to 2 μm by an ion sputter link method. This powder was set in a cubic type ultra-high pressure device, and the pressure was 5.0 GPa.
Solid phase sintering was performed at 1600°C for 30 minutes. When the Vickers microhardness of the obtained sintered body was measured, it was Hv (
0.5/10) was approximately 7400, which was a high hardness. When the crystal phase of this sintered body was examined by powder X-ray diffraction, hexagonal boron nitride was not observed, but cubic boron nitride and titanium nitride (TiN) were observed (effects of the invention). According to the cubic boron nitride sintered body of the present invention and its manufacturing method, by using an appropriate sintering aid, hexagonal boron nitride can be produced within a pressure/temperature range that is relatively easily realized industrially. To obtain a method for manufacturing a cubic boron nitride sintered body that not only can form a highly hard sintered body while preventing phase transition to the sintered body, but also has high hardness and less deterioration of mechanical properties at high temperatures. I can do it.

Claims (2)

【特許請求の範囲】[Claims] 1.体積で、15〜0.1%の,周期律表第4a,5a
または6a族の遷移金属、硼素、シリコン若しくはアル
ミニウム或はこれらの炭化物および/またはこれらの窒
化物のうち少なくとも1種類以上が均一にコーティング
された立方晶窒化硼素原料粉体粒子を超高圧高温下で固
相で焼結せしめてなる焼結体により構成され、立方晶窒
化硼素を体積で85〜99.9%含有し、残部が上記コ
ーティング物質からなる立方晶窒化硼素焼結体。
1. 15 to 0.1% by volume of Periodic Table 4a and 5a
Or, cubic boron nitride raw material powder particles uniformly coated with at least one of group 6a transition metals, boron, silicon, aluminum, their carbides and/or their nitrides are processed under ultra-high pressure and high temperature. A cubic boron nitride sintered body, which is composed of a sintered body sintered in a solid phase, and contains 85 to 99.9% by volume of cubic boron nitride, with the remainder consisting of the above-mentioned coating material.
2.立方晶窒化硼素原料粉体粒子表面に、物理的蒸気凝
縮法により周期律表第4a,5aまたは6a族の遷移金
属、硼素、シリコン若しくはアルミニウム或はこれらの
炭化物および/またはこれらの窒化物のうち少なくとも
1種類以上を均一にコーティングし、これを粉末状で、
若しくは型押し成形後、立方晶窒化硼素の熱力学的安定
領域の超高圧高温下で固相で焼結せしめることを特徴と
する立方晶窒化硼素焼結体の製造法。
2. A transition metal of group 4a, 5a or 6a of the periodic table, boron, silicon or aluminum, or their carbide and/or nitride, is added to the surface of the cubic boron nitride raw material powder particle by a physical vapor condensation method. Uniformly coated with at least one or more types, powdered,
Alternatively, a method for producing a cubic boron nitride sintered body, which is characterized by sintering the sintered body in a solid phase under ultra-high pressure and high temperature in the thermodynamically stable region of cubic boron nitride after molding.
JP63334019A 1988-12-28 1988-12-28 Cubic boron nitride sintered body and manufacturing method thereof Expired - Lifetime JPH0811712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63334019A JPH0811712B2 (en) 1988-12-28 1988-12-28 Cubic boron nitride sintered body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63334019A JPH0811712B2 (en) 1988-12-28 1988-12-28 Cubic boron nitride sintered body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02180760A true JPH02180760A (en) 1990-07-13
JPH0811712B2 JPH0811712B2 (en) 1996-02-07

Family

ID=18272593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63334019A Expired - Lifetime JPH0811712B2 (en) 1988-12-28 1988-12-28 Cubic boron nitride sintered body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0811712B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008153A (en) * 1996-12-03 1999-12-28 Sumitomo Electric Industries, Ltd. High-pressure phase boron nitride base sinter
JP2018052781A (en) * 2016-09-30 2018-04-05 三菱マテリアル株式会社 Cubic boron nitride-based sintered body and cutting tool made of cubic boron nitride-based sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860678A (en) * 1981-10-02 1983-04-11 三菱マテリアル株式会社 High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JPS5861255A (en) * 1981-10-06 1983-04-12 Mitsubishi Metal Corp High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860678A (en) * 1981-10-02 1983-04-11 三菱マテリアル株式会社 High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JPS5861255A (en) * 1981-10-06 1983-04-12 Mitsubishi Metal Corp High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008153A (en) * 1996-12-03 1999-12-28 Sumitomo Electric Industries, Ltd. High-pressure phase boron nitride base sinter
JP2018052781A (en) * 2016-09-30 2018-04-05 三菱マテリアル株式会社 Cubic boron nitride-based sintered body and cutting tool made of cubic boron nitride-based sintered body

Also Published As

Publication number Publication date
JPH0811712B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
US5326380A (en) Synthesis of polycrystalline cubic boron nitride
US5942455A (en) Synthesis of 312 phases and composites thereof
JPH08169762A (en) Whisker or fiber-reinforced polycrystalline cubic system boron nitride and diamond
US5030596A (en) Sintered article of diamond and method for production thereof
US4632910A (en) Sintered material of silicon nitride for cutting tools and process therefor
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPH02180760A (en) Cubic boron nitride sintered body and production thereof
JPH06263516A (en) Molded article for polishing
JP2852407B2 (en) High-strength diamond-metal composite sintered body and its manufacturing method
JP2852406B2 (en) High strength high pressure type boron nitride / metal composite sintered body and method for producing the same
JP2860394B2 (en) High hardness high density composite sintered body containing coated diamond and method for producing the same
JPH0632655A (en) Diamond sintered compact and its production
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPH0524922A (en) Diamond-containing combined sintered compact with high hardness and high density and production of the same
JPH07121835B2 (en) Cubic boron nitride coating
JPS60255366A (en) Preparation of diamond grinding paper
JP2860393B2 (en) High-hardness high-density composite sintered body containing coated high-pressure boron nitride and method for producing the same
JPS6355165A (en) Tib2 base sintering material and manufacture
JPH0269354A (en) Sintered diamond body and production thereof
JPS5930672B2 (en) Silicon carbide powder composition for sintered bodies
JP2614870B2 (en) Manufacturing method of polycrystalline diamond sintered body
IE940108A1 (en) Synthesis of polycrystalline cubic boron nitride
JPS59131578A (en) Silicon carbide powder composition
JPS62207763A (en) Manufacture of silicon carbide sintering raw material
JPH0455993B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term