JPS59169978A - Porous plag - Google Patents

Porous plag

Info

Publication number
JPS59169978A
JPS59169978A JP58041335A JP4133583A JPS59169978A JP S59169978 A JPS59169978 A JP S59169978A JP 58041335 A JP58041335 A JP 58041335A JP 4133583 A JP4133583 A JP 4133583A JP S59169978 A JPS59169978 A JP S59169978A
Authority
JP
Japan
Prior art keywords
corrosion resistance
particle size
porous
spherical particles
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58041335A
Other languages
Japanese (ja)
Other versions
JPH025709B2 (en
Inventor
昭弘 土成
西坂 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Original Assignee
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd filed Critical Harima Refractories Co Ltd
Priority to JP58041335A priority Critical patent/JPS59169978A/en
Publication of JPS59169978A publication Critical patent/JPS59169978A/en
Publication of JPH025709B2 publication Critical patent/JPH025709B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、M鋼の攪拌又は溶鋼中の介在物の浮上除脱を
し]回として、取鍋、タンディツシュ等の溶融金属容器
に装着されるガス吹込用ボーシスプラグに係るものであ
る。
[Detailed Description of the Invention] The present invention relates to a bosis plug for blowing gas that is attached to a molten metal container such as a ladle or tundish for stirring M steel or floating and removing inclusions in molten steel. It is something.

現在、製鋼プロセスVCおいては、鋼の表面品質、耐食
性、熱間加工性等の品質向上並びに合金鋼の高級化を目
的として耐火物を通してガスを吹込む工程が汎用されて
いる。この手段は、ガス吹込によつ°C溶鋼全攪拌させ
、溶鋼温度を均一化するとか、或いは微細気泡のバブリ
ング番でよりCr Q O11、Ae208、チタン酸
化物、マンカンシリケート1勿等の介在物を浮上除脱さ
せろことにより上記目的を達成せんとするもので、ここ
に吹込捷れるガスは主にAr又はN2ガス等の不活性ガ
スであるが、取鍋製錬炉においてはArと02との混合
ガスを吹込み、脱ガス、脱炭処理が行なわれている。
Currently, in the steel manufacturing process VC, a process of blowing gas through a refractory is commonly used for the purpose of improving surface quality, corrosion resistance, hot workability, etc. of steel, and upgrading alloy steel. This method involves completely stirring the molten steel at °C by gas injection to make the molten steel temperature uniform, or by bubbling fine bubbles to eliminate inclusions such as CrQO11, Ae208, titanium oxide, mankan silicate, etc. The purpose is to achieve the above objective by floating and releasing the gas, and the gas injected here is mainly inert gas such as Ar or N2 gas, but in the ladle smelting furnace, Ar and 02 gas are Degassing and decarburization are performed by blowing a mixed gas of

捷だ、ガス吹込みに使用後のポーラスプラグは付着した
地金全除去するために、シャープランスを通じて酸素ガ
スを吹付け、いわゆる酸素洗浄される。このような場合
、溶融地金温度又はポーラスプラグが非常に高温になる
ため、多孔質耐火物たるポーラスプラグの損傷が名しく
なる。従ってポーラスプラグには特に酸素ガスに対する
耐食性が優れた耐火材料を使用しなければならない。
After being used for gas injection, the porous plug is cleaned with oxygen by spraying it with oxygen gas through a sharp lance in order to remove all the attached metal. In such a case, the temperature of the molten metal or the porous plug becomes very high, and the porous plug, which is a porous refractory, is likely to be damaged. Therefore, the porous plug must be made of a refractory material that has particularly excellent corrosion resistance against oxygen gas.

従来、この種のポーラスプラグには主としてアルミナ質
材料が使用されているが、骨材粒子が非球状であるため
に、その製造時又はポーラスプラグ自体について、 (1)混合、混練及び成形時に粒子のエツジ部が磨砕又
は破壊し、粒度分布が変化する、 (2ン  混練灯土間の内部摩擦及び坏土と成形金型間
の界層摩擦により、不均一な充填構造となる。
Conventionally, alumina materials have been mainly used for this type of porous plug, but because the aggregate particles are non-spherical, there are a number of problems during the manufacturing process or the porous plug itself: (1) During mixing, kneading, and molding, the particles The edges of the mold are crushed or destroyed, and the particle size distribution changes (2) Due to internal friction between the kneading lamps and interfacial friction between the clay and the mold, a non-uniform filling structure results.

(3)細孔形状が不整である、 (4)通気性が低い、 (5)所望する物性、たとえば通気率、到孔住、気孔率
を最適の状態に得難い、 (6)成形によ′る】ffl気配向性を生ずる、等の問
題点を有しているため、製造工程の′a理と品質の維持
が困難となっている。
(3) The shape of the pores is irregular; (4) the air permeability is low; (5) it is difficult to obtain the desired physical properties, such as air permeability, pore density, and porosity; Because of problems such as the occurrence of ffl orientation, it is difficult to maintain the process integrity and quality of the manufacturing process.

このような欠点を解消せんとして、肯伺に、球形粒子を
用いる方法が報告されている。たとえば、実開昭51−
157570号に開示される技術事項tよ、ムライト質
球形粒子を用いたものであるが、ムライト球は5102
含有量が多いため、溶鋼に対する耐食性が劣るばかりか
、酸素洗浄等の収索ガスに対する抵抗性が極めて低いも
のになってお9、上記の諸点は解消されたかにみえても
別の問題点が生じている。
In order to overcome these drawbacks, a method using spherical particles has been reported. For example, Utsukai 51-
The technical matter disclosed in No. 157570 uses mullite spherical particles, but the mullite spheres are 5102
Because of its high content, it not only has poor corrosion resistance against molten steel, but also has extremely low resistance to convergent gases such as oxygen cleaning. It is occurring.

また、ポーラスプラグの具備すべき特性である通気率は
およそ0.5〜3 CCC−tyn/cpA−sea・
avH20)と広範囲にわたっており、1.0以上の通
気率を得ようとする場合には成形圧が低い状態で成形さ
れるのが一般的製造方法である。従って、おのずと成形
体の強度が低く、焼成までの取扱い処理がきわめて困難
なばかりが耐食性が劣る状態にある。
In addition, the air permeability, which is a characteristic that a porous plug should have, is approximately 0.5 to 3 CCC-tyn/cpA-sea.
avH20), and when trying to obtain an air permeability of 1.0 or more, the general manufacturing method is to mold at a low molding pressure. Therefore, the strength of the compact is naturally low, and handling up to firing is extremely difficult, and the corrosion resistance is also poor.

本発明は斯かる現況に鑑がみ、所望の通気性と組織の均
一化を得ると共にit i性、熱衝撃抵抗性に優またガ
ス吹込用ポーラスプラグを提案せんとしてなされたもの
で、具体的には、耐食性に優れ徨 且つ粒子強度の大なるアルミナ球状粒子を用いた△ ポーラスプラグの提供を目的としている。
In view of the current situation, the present invention was made with the aim of proposing a porous plug for gas injection that achieves the desired air permeability and uniform structure, has excellent IT resistance and thermal shock resistance, and provides specific details. The purpose of the present invention is to provide a △ porous plug using alumina spherical particles that have excellent corrosion resistance, flexibility, and particle strength.

以下、本発明のポーラスプラグにつき説明する。The porous plug of the present invention will be explained below.

先づ、球状粒子の耐食性の向上につき検討し7た結果、
粒子個体の化学組成についてはAl2O8が89wt%
以上、S i O2が11wt%以丁であることがポー
ラス質耐火物を形成する耐火材料としての耐食性を満足
する条件であることを確認した。ついで、酸素ガスに対
する抵抗性について検討したところ、酸素洗浄時の温度
は約2000°Cに達し、その結果上記のSi O2の
組成含量では溶損が著しく、約11係以下としなければ
耐食性を所期フ1hり保全できないことがわかった。
First, as a result of studying how to improve the corrosion resistance of spherical particles,
Regarding the chemical composition of the individual particles, Al2O8 is 89wt%.
As described above, it has been confirmed that S i O2 of 11 wt% or more is a condition that satisfies corrosion resistance as a refractory material forming a porous refractory. Next, we examined the resistance to oxygen gas and found that the temperature during oxygen cleaning reached approximately 2000°C, and as a result, the above composition content of SiO2 caused significant erosion, and corrosion resistance was not achieved unless the SiO2 content was kept below approximately 11%. It turned out that maintenance could not be maintained for 1 hour after the initial period.

次に、このような知見に基づき種種の実施例を挙げる。Next, various examples will be given based on this knowledge.

販の焼結アルミナ、ジルコン又は酸化クロムを第八 1表に示すごとき各比率で配合し、フェノール樹脂を添
加してフレットミルで光分混練した後オイルプレスで成
形し、乾燥後焼成した。
Commercially available sintered alumina, zircon, or chromium oxide were blended in the ratios shown in Table 81, a phenol resin was added, and the mixture was optically kneaded in a fret mill, then molded in an oil press, dried, and fired.

7糸1は骨材粒子として非球状粒子を用いた在来品で、
所定量の通気性を保持させるため5 (10kg 7c
dの成形圧で成形したものである。
7 Yarn 1 is a conventional product that uses non-spherical particles as aggregate particles.
5 (10kg 7c) to maintain a specified amount of breathability
It was molded at a molding pressure of d.

&2〜14は本発明品で、アルミナ質球状粒子を骨材と
して用いたもので、成形圧1000に9/dで成形し、
乾燥後1700°Cで6時間の条件で焼成した。
&2 to 14 are products of the present invention, using alumina spherical particles as aggregate, molded at a molding pressure of 1000 and 9/d,
After drying, it was fired at 1700°C for 6 hours.

得られるポーラス質耐火物の特性を第1表に併せ示した
The properties of the porous refractories obtained are also shown in Table 1.

木表における組成又は配合比率はwt%であり、各テス
ト方法は下記のように行なった。
The composition or blending ratio on the wood surface is wt%, and each test method was performed as follows.

溶損比率@)は各焼成体について、シャープランスによ
り酸素ガスを吹込んで、2000°Cで10分間の酸素
洗浄試験を行なっでその溶損量を4’N dllし、4
6、1のものの(l+jを100(係)とした場合の溶
損割合で示した。
The melting loss ratio @) was calculated by blowing oxygen gas into each fired body using a sharp lance, performing an oxygen cleaning test at 2000°C for 10 minutes, and measuring the melting loss by 4'N dll.
6. It is shown as the melting loss rate when (l+j is 100 (correspondence)) of 1.

亀裂発生の7ff無についてば、40 X 40 X 
401N+の供試体を、電気・2中で1500’CにC
急イ)し、20分間保持した後取出して仝冷する操作と
反復した。その操作の回数と亀裂の状態により、 2回後、亀裂なし  ・・・・・・・・◎1回後、亀裂
なし  ・・・−・・・・・01回後、微亀裂発生 ・
・・・・・・61回後、大亀裂発生 ・・・・パ・・・
×として熱衝撃抵抗性を検認した。
For 7ff without cracking, 40 x 40 x
A 401N+ specimen was heated to 1500'C in an electric
The procedure was repeated as follows: 1), hold it for 20 minutes, then take it out and let it cool. Depending on the number of operations and the condition of the cracks, after 2 times, there will be no cracks. ◎ After 1 time, there will be no cracks. After 01 times, slight cracks will occur.
...After 61 times, a large crack appeared...Pa...
Thermal shock resistance was verified as ×.

應1〜10及び盃12〜14の骨材粒子は粒子径が0.
84〜0.59刷の占有量が2よそ3Q wtチ、五1
1は粒子径084〜0.5!1lffの占有量がおよそ
4rlyt係で0.591〜o、smtの占有量がおよ
そ35 ivt %である。
The aggregate particles of Nos. 1 to 10 and Nos. 12 to 14 have a particle size of 0.
84~0.59 printing occupancy is 2 to 3Q wt, 51
1 has a particle diameter of 084 to 0.5!lff, which accounts for about 4rlyt, and an occupancy of 0.591 to o, and smt, which accounts for about 35 ivt%.

第1表に示す結果からみれば、微粉アルミナの添加量を
増jjl:するにつn1気孔率、細孔匝及び通気率が減
少し、逆ケこ1賀性は向上する。−1:た、熱衝撃抵抗
性は微粉アルミナ量の増はと共に劣化する傾向にある。
From the results shown in Table 1, as the amount of finely powdered alumina added increases, the n1 porosity, pore size and air permeability decrease, and the reverse porosity improves. -1: Thermal shock resistance tends to deteriorate as the amount of fine alumina increases.

このことから推察して、5in2含有量の啄めて少ない
高耐食性のポーラスプラグとしては、添加1−べき微粉
アルミナ滑の好適匝としてはおよそ15wt%であり、
この範囲の構成であれば悪1の在来品に比較して、通気
性及び熱衝撃抵抗性が同等若しくけ同等以上であシ、耐
食性6てついては極めて優lしてのることがわかる。
Inferring from this, for a highly corrosion-resistant porous plug with a small content of 5 in2, the suitable amount of fine powder alumina powder to be added is approximately 15 wt%.
It can be seen that if the configuration is within this range, the air permeability and thermal shock resistance will be the same or better than the conventional product with a rating of 1, and the corrosion resistance of 6 will be extremely superior. .

このように在来品に較べて本発明品が尚耐食性を有して
いるのは、成形圧による粒子間車1皐及び焼結度合いに
よる・ものと思われる。すなわち、在来品のごとく非球
形粒子を用いながら、!゛h通気性をfj)ようとすれ
ば、成形圧盆低くするか父は粗大径の粒子を用いなけれ
ばならない。粒子径を大きくすると、前記のごとく混合
、混線、成形時に粒子の稜線部が磨砕され、粒度分布が
変動し易いから一般には成形圧を低くする方が物性管理
上の対応が容易であるが、成形圧金低くした場合には粒
子配位は疎となり間隙が著大となって焼結し難くなる。
The reason why the product of the present invention has higher corrosion resistance than the conventional product is thought to be due to the degree of sintering and the interparticle spacing caused by the molding pressure. In other words, while using non-spherical particles like conventional products! If air permeability is to be improved, the molding pressure must be lowered or coarse particles must be used. When the particle size is increased, the ridges of the particles are ground during mixing, cross-wiring, and molding as described above, and the particle size distribution tends to fluctuate, so it is generally easier to manage physical properties by lowering the molding pressure. When the molding pressure is lowered, the particle coordination becomes sparse and the gaps become extremely large, making it difficult to sinter.

すなわち、A1の強度は主に晶形錯雑による単なる機械
的から甘9により発現しているもので、粒子間の焼結又
はボンドの結合が不充分なため容易に溶鯖jの浸透が姐
むものと解M丁される。
In other words, the strength of A1 is mainly due to the mere mechanical strength due to crystal shape complexity, and the penetration of molten mackerel is easily reduced due to insufficient sintering or bonding between particles. It will be solved.

ノfEh 7〜10は微粉アルミナの代f)VCジルコ
ン粉末を添加したもので、志2〜6と比較した場合、強
度及び、熱衝撃抵抗性が同士する反面、耐食性の改善は
期待し難い。これはジルコン甲に含まれるsio□量に
起因すると思われる。この各側にあっては、在来品に比
較した場合に&7からノ傾91でのジルコン粉釆約10
.0Wtq6までの含有にとどめれば光分な耐食性が得
られる。
No fEh 7 to 10 are those in which f) VC zircon powder is added instead of fine powder alumina, and when compared with Nos. 2 to 6, the strength and thermal shock resistance are similar, but it is difficult to expect an improvement in corrosion resistance. This is thought to be due to the amount of sio□ contained in the zircon shell. On each side, the zircon powder pot with an inclination of &7 to 91 is about 10
.. If the content is limited to 0 Wtq6, excellent corrosion resistance can be obtained.

1i 11はアルミナ質球状粒子の粒度分布を粒子径が
大きい方へ拡大し、且つ粒子間結合をアルミナ及びジル
コン微粉で行なわせたものであるが、在来品に較べ通気
性が良好で、耐食性と熱衝撃抵抗性も優れた結果となっ
ている。
1i 11 is a product in which the particle size distribution of alumina spherical particles is expanded to the larger particle size, and the interparticle bonding is performed using alumina and zircon fine powder, but it has better air permeability and corrosion resistance than conventional products. The results also showed excellent thermal shock resistance.

黒12〜14はさらに耐食性同上を目的として、酸化ク
ロムの含有量について検討したものである。酸化クロム
含有量が増すにつれ、耐食性が向上し、逆に強度、熱衝
撃抵抗性が劣化し7ている。従って好ましい含有量はお
よそ2wt%以下である。
Black 12 to 14 are those in which the content of chromium oxide was further studied for the purpose of corrosion resistance. As the chromium oxide content increases, corrosion resistance improves, while strength and thermal shock resistance deteriorate7. Therefore, the preferred content is approximately 2 wt% or less.

以上の結果を集約すると、非球形粒子全骨材とした在来
品に対し、単一粒子の化学組成を規制したアルミナ球状
粒子を骨材とした:+発明品は遮気性、耐食性及び熱衝
撃性に優れ、且つ成形圧を高くした状態であっても、添
加微粉の質量を選択変化させることによシ所望する通気
性が得られることが確認されたのである。
Summarizing the above results, in contrast to the conventional product that uses all non-spherical particles as aggregate, alumina spherical particles with a controlled chemical composition of single particles are used as aggregate: + The invented product has excellent air barrier properties, corrosion resistance, and thermal shock properties. It was confirmed that the desired air permeability can be obtained by selectively changing the mass of the added fine powder even when the molding pressure is high.

以上の説明にみるごとく本発明のホーラスプラグは、取
鍋、夕/ディツシュ等の溶融金属容器に装着して優れた
効果を発揮するものであり、本発明の要旨に従うもので
あれば、その技術的思想は上記の語例に限定されるもの
ではなく、それらから導かれる応用、転用又は変形も本
発明の技術的範囲に包含されることはいう徒でもない。
As can be seen from the above description, the horus plug of the present invention exhibits an excellent effect when attached to a molten metal container such as a ladle or dish/dish. The idea is not limited to the above examples, and any applications, diversions, or modifications derived therefrom are not necessarily included in the technical scope of the present invention.

Claims (1)

【特許請求の範囲】 ■9粒子閏体の化学組成がAl2O8を891%t%以
上、5102を11wtチ以下で、球形又は薄形に近い
アルミナ質球状粒子を骨材とせる1耐火@料よりなるこ
とを特徴・とするポーラスゲラグ。 2、特許請求の範囲第1項記載の耐火材料において、粒
子径2.0〜OJaのアルミナ質球状粒子を80io、
owts又は粒子径20μ以下の酸化クロム0〜2wt
%とからなる粒度分布と成分組成とよシなる配合体とし
たことを特徴とするポーラスズラグ。
[Claims] ■From 1 refractory @ material in which the chemical composition of the 9-particle funnel is 891% t% or more of Al2O8, 11wt% or less of 5102, and the aggregate is spherical or thin alumina spherical particles. Porus Gelag is characterized by: 2. In the refractory material according to claim 1, the alumina spherical particles with a particle size of 2.0 to OJa are
owts or 0 to 2 wt of chromium oxide with a particle size of 20μ or less
A porous tin rag characterized by a particle size distribution consisting of % and a composition with a good composition.
JP58041335A 1983-03-11 1983-03-11 Porous plag Granted JPS59169978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041335A JPS59169978A (en) 1983-03-11 1983-03-11 Porous plag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041335A JPS59169978A (en) 1983-03-11 1983-03-11 Porous plag

Publications (2)

Publication Number Publication Date
JPS59169978A true JPS59169978A (en) 1984-09-26
JPH025709B2 JPH025709B2 (en) 1990-02-05

Family

ID=12605646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041335A Granted JPS59169978A (en) 1983-03-11 1983-03-11 Porous plag

Country Status (1)

Country Link
JP (1) JPS59169978A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166752A (en) * 1986-12-26 1988-07-09 黒崎窯業株式会社 Refractories for gas blowing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869776A (en) * 1981-10-16 1983-04-26 アイコ−株式会社 Gas permeable refractories

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869776A (en) * 1981-10-16 1983-04-26 アイコ−株式会社 Gas permeable refractories

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166752A (en) * 1986-12-26 1988-07-09 黒崎窯業株式会社 Refractories for gas blowing

Also Published As

Publication number Publication date
JPH025709B2 (en) 1990-02-05

Similar Documents

Publication Publication Date Title
US4125407A (en) Refractories which have dense-structure as well as spalling resistance and method for fabricating same
JP5774135B2 (en) Sintered materials based on doped chromium oxide
JPS6042274A (en) Manufacture of zirconia refractories
JP4641807B2 (en) Ladle sliding opening and closing device
CN106631052A (en) Micropowder castable for working layer of ladle bottom impact zone
JP3782306B2 (en) Ladle sliding opening and closing device
US4775504A (en) Process for producing refractory plate for sliding nozzle
JPS59169978A (en) Porous plag
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
CN114292089A (en) Tundish dry material added with zircon powder and preparation method thereof
JPS6411589B2 (en)
JP2005088020A (en) Plugging structure of plugging-material for slidable opening/closing device of ladle
JPH0428672B2 (en)
JPS6051659A (en) Porous nozzle
JP4960574B2 (en) Refractory used for continuous casting nozzles to prevent alumina adhesion
JPH0952755A (en) Magnesia-chrome refractory
JPH0223502B2 (en)
JP2007217260A (en) Porous refractory material
JPH0147432B2 (en)
JPS59213669A (en) Manufacture of zircon-zirconia refrctories
JPH0741358A (en) Magnesia-dolomite brick and production thereof
JPS6131346A (en) Nozzle for casting
JPS6150913B2 (en)
JPS59146975A (en) Plate refractories for sliding nozzle
JP2518559B2 (en) Refractory materials and their preparation method