JPH0147432B2 - - Google Patents

Info

Publication number
JPH0147432B2
JPH0147432B2 JP58041334A JP4133483A JPH0147432B2 JP H0147432 B2 JPH0147432 B2 JP H0147432B2 JP 58041334 A JP58041334 A JP 58041334A JP 4133483 A JP4133483 A JP 4133483A JP H0147432 B2 JPH0147432 B2 JP H0147432B2
Authority
JP
Japan
Prior art keywords
particle size
alumina
nozzle
air permeability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58041334A
Other languages
Japanese (ja)
Other versions
JPS59169977A (en
Inventor
Akihiro Tsuchinari
Toshihiko Nishisaka
Osamu Shimobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP58041334A priority Critical patent/JPS59169977A/en
Publication of JPS59169977A publication Critical patent/JPS59169977A/en
Publication of JPH0147432B2 publication Critical patent/JPH0147432B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Nozzles (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は取鍋又はタンデイツシユに装着される
鋳造用ノズルのうち、地金又は鋼中の析出物、特
にアルミナのノズル内周面への付着をガスシール
により防止するようにしたポーラス質ノズルに係
るものである。 現在、鋳造用ノズル耐火物としては高アルミナ
質及びアルミナ・カーボン質が多用されている
が、これらの材質では鋼中の析出物、特にアルミ
ナ粒子がノズル耐火物の孔内周面に付着して使用
時間の経過と共に徐徐に肥厚し、遂にはノズル孔
を閉塞するに至り操業が停止する場合もあつた。
これを防止するために、ノズル耐火物には主とし
てアルゴンガスを吹込み、ノズル孔内周面と溶鋼
との界面にガス皮膜を形成させるか、又は吹込ん
だガスにより溶鋼流を撹拌させ溶鋼温度を均一化
することによつて、アルミナの付着を防止するよ
うにされている。 このような目的に使用されるガス吹込み用ポー
ラスノズルが具備すべき特性としては、耐食性、
熱衝撃抵抗性が大なることはもとより、ノズル耐
火物の所要域の各部分から均一にガスが噴出でき
るものであることが最大の条件である。 ところで、ポーラス質耐火物にこのような特性
を付与する手段として、たとえば実開昭51−
157570号、実開昭57−3642号又は特開昭57−
17462号では球形粒子を使用することが報告され
ているが、それらは取鍋内の溶鋼撹拌、溶鋼流の
酸化若しくは窒化の防止等或いは有害雰囲気ガス
からの金属溶湯流の保護若しくは遮蔽を目的とし
たものであつて、本発明が解決せんとする鋼中の
析出物、特にアルミナの付着防止を目的としたも
のと本質的に異つている。また、上記先行技術に
使用されている球形粒子の化学的特性及び実施態
様ではSiO2含有量はきわめて多量であり、従つ
て、溶鋼、酸素洗浄時における酸素ガスに対する
耐食性が劣ることが欠点となつている。 本発明は斯かる現況に鑑がみなされたもので、
耐食性に優れた高アルミナ質球状粒子を用いるこ
とにより、所要の通気性と組織の均一化を得ると
共に、耐食性、熱衝撃抵抗性に優れたもので、鋼
中介在物、特にアルミナ付着防止を目的とした鋳
造用ポーラス質ノズルの提供を目的としている。 以下、本発明のポーラス質ノズルにつき詳説す
る。本発明にみる各実施例においてそれらが具備
すべき物性とその策定は次のとおりであつて、通
気性、耐食性及び熱衝撃抵抗性の観点から、ポー
ラス質ノズルに必須の基本的物性として通気率、
細孔径・分布及び気孔率を考慮する必要があり、
これらについての検討事項を列記する。 (a) 通気率について 通気率は所要の通気性が得られるか否かを示
すもので、鋼中の介在物の付着防止に関して最
も重要な物性である。耐火物の通気率について
は、単位時間当りのガスの流量をQ、圧力損失
をΔP、ノズル表面積をA、同じく厚みをLと
すると、 通気率Kr=L/A・Q/ΔP ………(1) で示される。従つてノズルが使用されるときの
使用条件若しくは操業条件からQ及びΔPが設
定できるとL及びAは既知であるから、(1)式に
より通気率が計算できる。ただしQは温度と圧
力の補正、ΔPはゲージ圧力と溶鋼ヘツド圧を
考慮する必要がある。 以上の事項に基いて一般的な操作条件から(1)
式を用いて計算される通気率は0.01〜0.5(c.c.・
cm/cm2・sec・cmH2O)の値となる。 (b) 細孔径・分布について 一般に細孔径が大きくなると、ノズル耐火物
への溶鋼の侵透又はノズルの溶損が著しく大と
なる。そこで溶鋼ヘツド圧と、溶鋼−耐火物間
に働らく表面張力との両者の均衡を考慮するこ
とにより、溶鋼の侵入が生じないような細孔径
を設定できる。いま、溶鋼高さをH(cm)とす
れば溶鋼の侵入を防止cm2きる細孔直径de(cm)
は次の(2)式の不等式を満たすことが必要であ
る。 de<4T cosθ/ρ・g・H ………(2) ここに、Tは溶鋼−耐火物間の表面張力、θ
は同じく接触角、ρは溶鋼密度、gは重力の加
速度である。 本発明では耐火物の材質としてアルミナを主
とするものであるから、アルミナと溶鋼間のT
及びθを用い、操業条件により定まるH及びρ
の値を(2)式に代入して計算すると、一般的な操
作条件のもとでは細孔径の最大値は約50μとな
る。 一方、細孔を経て溶鋼中に噴出されるガス
は、本来の目的からすればノズルと溶鋼との界
面に存在している必要があり、噴出するガスが
溶鋼流の乱れの中まで達すると、ガスシールの
目的を達することはできない。これらのことを
考慮した細孔径は、実験の結果約7μが望まし
い。また、細孔の分布は均一化の観点より細孔
相互の間隙は小さい方が望ましい。 (c) 気孔率について 気孔率は熱衝撃抵抗性と密接な関係がある。
使用中に亀裂が発生すると通気性が変動し、安
定な操業を継続することが困難となる。アルミ
ナ質耐火物における熱衝撃抵抗性と気孔率との
関係を調べると、気孔率がおよそ20〜25%前後
で熱衝撃抵抗性が大となる。 以上の諸点からみて、ポーラス質ノズルが具備
すべき基本的物性は、 通気率 0.01〜0.5(c.c.・cm/cm2・sec・cmH2O) 細孔直径 7〜50μ 気孔率 20〜25% の範囲に設定することが要件となる。 次に、これらの知見に基づく本発明の具体的な
実施の諸例を挙げる。 実施例 1 アルミナ質球状粒子、市販されている在来の微
粉焼結アルミナ、粘土及び酸化クロムを第1表に
示すような内容比率にて調整し、フエノール樹脂
を添加してフレツトミルで充分混練した後、フリ
クシヨンプレスでノズル形状に成形して1700℃で
焼成した。また、これと併行して非球形粒子の市
販焼結アルミナを骨材として、同様に混練、成
形、焼成した。 その各実施例の基本物性と耐食性、熱衝撃抵抗
性との状態は第1表に併せ示したとおりである。 なお、組成又は配合比率はwt%であり、各種
のテスト方法は以下の各実施例を通じて下記のよ
うに行なつた。 溶損比率は、各焼成体について回転侵食法によ
り100%鋼の溶鋼を用いて1650℃で45分接触を4
回繰り返してその溶損量を精測し、No.1の配合体
の値を100(%)とした場合のNo.2〜18、No.19及び
20並びにNo.21〜28の各溶損量の割合を100分比で
表してある。 亀裂の程度は、各配合体より50×50×50mmの供
試体をつくりだし、1500℃の電気炉中に入れて急
熱し、20分保持した後取出して空冷する操作を反
復した。その操作の回数と亀裂の状態により、 2回後、亀裂なし……◎ 1回後、亀裂なし……〇 1回後、微亀裂発生……△ 1回後、大亀裂発生……× として熱衝撃抵抗性を評価した。 第1表につき検討すると先づ第1表に示された
No.1とNo.2とは非球状粒子を骨材とする在来タイ
プのものであり、No.3〜18は本発明のものであ
る。 本発明のものは同じ配合組成の在来タイプと比
較して、たとえばNo.6とNo.1又はNo.7とNo.2にみ
るごとく通気率が高く、従つて通気性に優れてい
ることがわかる。 また、見掛気孔率、平均細孔径及び通気率がほ
ぼ同じ値を示す配合体のうちで、球状粒子の本発
明のものと非球状粒子の在来タイプの比較を行な
うと、たとえばNo.4とNo.1又はNo.6とNo.2にみる
ごとく耐食性、熱衝撃抵抗性は球状粒子を用いた
本発明のNo.4及びNo.6の方がそれぞれ優れいるこ
とが認められる。 No.7及び8は極めて通気性は良いが耐食性、熱
衝撃抵抗性が劣つている。これは粒度分布が粗大
化傾向にあるためマトリツクス相当部が少なくな
り、ポーラス化して充分な強度が得られていない
ことに起因している。 No.9〜11は粘土の含有量につき検討したもので
あるが、粘土含有量の多いNo.11は耐食性及び熱衝
撃抵抗性が劣る結果になつており、耐食性及び熱
衝撃抵抗性に及ぼす影響から推察すれば5wt%程
度以下が望ましい。 No.12〜16は酸化クロムの含有量について検討し
たものであるが、酸化クロム含有量の多いNo.16は
耐食性に優れている反面、熱衝撃抵抗性が劣る傾
向があり、その配合量はおよそ2wt%又はそれ以
下が望ましい。 No.17及び18へ骨材粒子の化学組成につき検討し
たものであるが、当然のことながらSiO2量の多
いNo.18は耐食性が劣つている。No.17及び18の結果
から骨材粒子の化学組成としては、Al2O3が89wt
%以上、SiO2が11wt%以下とすることが望まし
いことがわかる。 以上の結果から1700℃焼成の場合には、高通気
性を示すNo.7及び8の耐食性と熱衝撃抵抗性に若
干問題があるが、その点を除けば、この諸例にお
いては、骨材粒子の化学組成及び粘土、酸化クロ
ム含有量を調整することにより通気性、耐食性及
び熱衝撃抵抗性に優れたポーラス質ノズルを得る
ことができる。なお、通気性は良好であつても耐
食性又は熱衝撃抵抗性がやゝ劣るNo.7又はNo.8の
ような場合には、焼成温度の上昇(実施例2に示
すもの)又は添加物の強化(実施例3に示すも
の)又は添加物の強化(実施例3に示すもの)に
より耐食性、熱衝撃抵抗性を向上させることがで
きるのは本発明の有利な点である。 実施例 2 焼成温度を調整することにより得られるポーラ
ス質耐火物の物性及び特性がどのような傾向を示
すかを検討した。 第1表に示された配合のうち、No.7及び8につ
いて焼成温度を高め、1760℃で焼成した場合の結
果をNo.19及び20として第2表に示す。この結果か
らみれば気孔率が減少し、従つて強度の増大によ
り熱衝撃抵抗性が改善され、また、若干ながら耐
食性の向上も認められる。しかし、耐食性の向上
については未だ充分とは考えられないので、溶鋼
に対して高耐食性を示すジルコニアに注目して、
骨材粒子の添加物について検討することにした。 実施例 3 骨材粒子に対する添加物への追加の質、量を検
討したもので、第3表に示すごとき配合比率に調
整し、実施例1と同様にフレツトミルを用いて混
練し、成形した後、No.21〜24は実施例2と同様
に、又No.25〜28は実施例1と同様に1700℃で焼成
した。 予測したとおり、ジルコン又はジルコニアの添
加によつて耐食性、熱衝撃抵抗性が向上している
ことが第3表により明瞭である。 特に熱衝撃抵抗性の向上が顕著であるが、これ
はジルコニアの場合は焼成によりアルミナとジル
コニアとの熱膨張差によつて微細なクラツクが発
生し、そのクラツクにより発生する熱応力が緩和
されるためであり、一方、ジルコンの場合には焼
成により強度が増加することが支配的になつてい
ると考えられる。しかし、ジルコニアの添加量が
必要以上に多くなると、微細なクラツクの占める
割合が過多となつて強度減少が生ずる。 耐食性については、ジルコニア、ジルコンの添
加量が比較的少い場合は原料特性によつて高耐食
性を示すが、添加量が多くなるとジルコニアによ
るクラツクの増大及びジルコンによる組成分とて
のSiO2量の増加を招き、却つて耐食性は劣化す
る。 従つて、第3表より望ましい添加量は、ジルコ
ニアでは1〜13wt%、ジルコンでは2〜10wt%
と推定される。 以上詳説した各実施例の結果を、粉体層等で多
用されているKozeny−Carman式を増す線分と
共に第1図を示す。 前記のごとく通気率Krは(1)式により、又細孔
径de(cm)は(2)式により表わされ、同時に
Kozeny−Carman式は空筒速度をu、気孔率を
εとすれば次式で示される。 u=(φc dp)2gc/36KμL・ε2/(1−ε)2・ΔP…
……(3) 細孔の相当直径をそれぞれde、rhとすれば、 de=4rh=4ε/(1−ε)Sv ………(4) ここに、Svは粒子単位体積当りの表面積で、
形状係数φcを用いると、 Sv=6/φc dp ………(5) (3)式と(1)式から粒子径dp、気孔率εなる場の
通気率Krは、 Kr=(φc dp)2gc/36μK・ε3/(1−ε)2………(6
) また(4)(5)(6)からは、 Kr=gc/16μK・ε・de2 ………(7) 通気孔Krはこのように挙動が裏付けされるか
ら、本発明に寄与する球状粒子(球形又は実質球
形と認められる粒子)は第1図にみるような性状
を示し、2つの大きな特徴がみられる。 その第1はKozeny−Carman式と極めてよく
一致していることである。このことは製造に関す
る一切が非常に管理し易く、又諸事象を理論化し
て考えることが可能である。 第2には、同じ〔(気孔率)×(細孔径)2〕値に
対応する通気率が非球状のものに較べて大であ
る。すなわち、球状粒子を用いた方が通気性が良
いことになる。これは気孔形状が円形化してお
り、且つ相対的に貫通気孔が多く流動抵抗が小さ
いことを示唆している。つまり、逆に考えると同
じ通気率に対し〔(気孔率)×(細孔径)2〕が小と
なり、同時に気孔率、細孔径はいずれも耐食性に
関与する因子であるから、これらが小となること
は当然に耐食性の向上になるのである。 本発明のポーラス質ノズルは叙上のごとく溶融
金属容器に装着して優れた効果を発現するもの
で、本発明の要旨に従うものであればその技術的
思想は上記実施の諸例に限定されるものではな
く、それらから導かれる応用又は変形も本発明の
技術的範囲に包含されることはいうまでもない。
The present invention relates to a porous nozzle, which is a casting nozzle mounted on a ladle or tundish, which prevents deposits in base metal or steel, particularly alumina, from adhering to the inner circumferential surface of the nozzle through a gas seal. It is something. Currently, high alumina and alumina/carbon materials are often used as nozzle refractories for casting, but with these materials, precipitates in the steel, especially alumina particles, adhere to the inner circumferential surface of the hole in the nozzle refractory. As the usage time progressed, the thickness gradually increased, and in some cases, the nozzle hole was eventually blocked, resulting in the stoppage of operation.
In order to prevent this, argon gas is mainly blown into the nozzle refractory to form a gas film on the interface between the inner peripheral surface of the nozzle hole and the molten steel, or the molten steel flow is stirred by the blown gas and the temperature of the molten steel is increased. By making it uniform, the adhesion of alumina is prevented. Porous nozzles for gas blowing used for such purposes must have corrosion resistance,
In addition to having high thermal shock resistance, the most important condition is that the nozzle should be able to eject gas uniformly from each required area of the refractory. By the way, as a means of imparting such characteristics to porous refractories, for example,
No. 157570, Utility Model Publication No. 57-3642 or JP-A-57-
No. 17462 reports the use of spherical particles, but these are used for purposes such as stirring molten steel in a ladle, preventing oxidation or nitridation of the molten steel flow, or protecting or shielding the molten metal flow from harmful atmospheric gases. This is essentially different from the method aimed at preventing the adhesion of precipitates in steel, particularly alumina, which is the object of the present invention. In addition, the chemical properties and embodiments of the spherical particles used in the above-mentioned prior art have extremely high SiO 2 content, and therefore have a disadvantage of poor corrosion resistance against oxygen gas during molten steel and oxygen cleaning. ing. The present invention was created in consideration of the current situation,
By using high-alumina spherical particles with excellent corrosion resistance, it achieves the required air permeability and uniform structure, and also has excellent corrosion resistance and thermal shock resistance, and is intended to prevent inclusions, especially alumina, from adhering to steel. The purpose of this project is to provide a porous nozzle for casting. The porous nozzle of the present invention will be explained in detail below. The physical properties that each of the embodiments of the present invention should have and their formulation are as follows.From the viewpoint of air permeability, corrosion resistance, and thermal shock resistance, air permeability is the essential basic physical property for porous nozzles. ,
It is necessary to consider pore size, distribution, and porosity.
The following is a list of considerations regarding these matters. (a) Regarding air permeability Air permeability indicates whether or not the required air permeability can be obtained, and is the most important physical property in preventing the adhesion of inclusions in steel. Regarding the air permeability of refractories, if the gas flow rate per unit time is Q, the pressure loss is ΔP, the nozzle surface area is A, and the thickness is L, then air permeability Kr=L/A・Q/ΔP......( 1). Therefore, if Q and ΔP can be set from the usage conditions or operating conditions when the nozzle is used, then since L and A are known, the air permeability can be calculated using equation (1). However, Q needs to be corrected for temperature and pressure, and ΔP needs to take into account gauge pressure and molten steel head pressure. From the general operating conditions based on the above (1)
The air permeability calculated using the formula is 0.01 to 0.5 (cc・
cm/ cm2・sec・cmH2O ). (b) Regarding pore size and distribution Generally, as the pore size increases, the penetration of molten steel into the nozzle refractory or the erosion of the nozzle increases significantly. Therefore, by considering the balance between the molten steel head pressure and the surface tension acting between the molten steel and the refractory, it is possible to set a pore diameter that will prevent molten steel from penetrating. Now, if the height of molten steel is H (cm), the diameter of the pore that can prevent molten steel from entering cm2 is de (cm).
must satisfy the following inequality (2). de<4T cosθ/ρ・g・H……(2) Here, T is the surface tension between molten steel and refractory, θ
Similarly, ρ is the contact angle, ρ is the molten steel density, and g is the acceleration of gravity. In the present invention, since alumina is the main material of the refractory, the T between alumina and molten steel is
and θ, H and ρ are determined by the operating conditions.
When calculated by substituting the value of into equation (2), the maximum value of the pore diameter is approximately 50μ under general operating conditions. On the other hand, the gas ejected into the molten steel through the pores must exist at the interface between the nozzle and the molten steel, and if the ejected gas reaches the turbulence of the molten steel flow, The purpose of gas seal cannot be achieved. Taking these things into consideration, the pore diameter is preferably about 7μ as a result of experiments. Further, from the viewpoint of uniform distribution of pores, it is desirable that the gaps between pores be small. (c) Regarding porosity Porosity is closely related to thermal shock resistance.
If cracks occur during use, air permeability will fluctuate, making it difficult to continue stable operations. When examining the relationship between thermal shock resistance and porosity in alumina refractories, thermal shock resistance becomes high when the porosity is approximately 20 to 25%. In view of the above points, the basic physical properties that a porous nozzle should have are: Air permeability 0.01-0.5 (cc・cm/cm 2・sec・cmH 2 O) Pore diameter 7-50μ Porosity 20-25% It is a requirement that it be set within the range. Next, examples of specific implementations of the present invention based on these findings will be given. Example 1 Alumina spherical particles, commercially available fine powder sintered alumina, clay, and chromium oxide were adjusted to the content ratios shown in Table 1, phenolic resin was added, and the mixture was thoroughly kneaded with a fret mill. Afterwards, it was formed into a nozzle shape using a friction press and fired at 1700°C. In addition, in parallel with this, commercially available sintered alumina with non-spherical particles was used as an aggregate, and kneaded, molded and fired in the same manner. The basic physical properties, corrosion resistance, and thermal shock resistance of each example are shown in Table 1. Note that the composition or blending ratio is expressed in wt%, and various test methods were performed as described below throughout each of the following Examples. The erosion rate was determined by contacting each fired body for 45 minutes at 1650℃ using the rotary erosion method using 100% molten steel.
Repeatedly measure the amount of erosion loss, No. 2 to 18, No. 19 and No. 2 to 18, No. 19 and
20 and Nos. 21 to 28, the ratio of each amount of erosion is expressed as a 100% ratio. To determine the degree of cracking, a test specimen of 50 x 50 x 50 mm was made from each compound, placed in an electric furnace at 1500°C, rapidly heated, held for 20 minutes, then taken out and cooled in the air. Depending on the number of operations and the condition of the cracks, after 2 times, no cracks...◎ After 1 time, no cracks...○ After 1 time, small cracks occur...△ After 1 time, large cracks occur...× Impact resistance was evaluated. When considering Table 1, first of all, it is shown in Table 1.
Nos. 1 and 2 are conventional types that use non-spherical particles as aggregate, and Nos. 3 to 18 are those of the present invention. The product of the present invention has a higher air permeability as seen in No. 6 and No. 1 or No. 7 and No. 2, for example, compared to the conventional type with the same composition, and therefore has excellent air permeability. I understand. In addition, among the blends having approximately the same apparent porosity, average pore diameter, and air permeability, when comparing the present invention with spherical particles and the conventional type with non-spherical particles, for example, No. 4 As seen in No. 1, No. 6, and No. 2, it is recognized that No. 4 and No. 6 of the present invention using spherical particles are superior in corrosion resistance and thermal shock resistance, respectively. Nos. 7 and 8 have extremely good air permeability, but are poor in corrosion resistance and thermal shock resistance. This is because the particle size distribution tends to become coarser, so the matrix-equivalent portion decreases, making it porous and not providing sufficient strength. Nos. 9 to 11 were studied regarding clay content, but No. 11, which has a high clay content, had poor corrosion resistance and thermal shock resistance, and the influence on corrosion resistance and thermal shock resistance was investigated. Judging from this, it is desirable that the content be around 5wt% or less. Nos. 12 to 16 were examined regarding the content of chromium oxide, but while No. 16, which has a high chromium oxide content, has excellent corrosion resistance, it tends to have poor thermal shock resistance. Approximately 2 wt% or less is desirable. The chemical composition of the aggregate particles in Nos. 17 and 18 was investigated, and as a matter of course, No. 18 with a large amount of SiO 2 has poor corrosion resistance. From the results of No. 17 and 18, the chemical composition of the aggregate particles is 89wt Al 2 O 3 .
% or more and SiO 2 is desirably 11wt% or less. From the above results, in the case of firing at 1700℃, there are some problems with the corrosion resistance and thermal shock resistance of Nos. 7 and 8, which show high air permeability, but other than that, in these examples, the aggregate By adjusting the chemical composition and content of clay and chromium oxide of the particles, a porous nozzle with excellent air permeability, corrosion resistance, and thermal shock resistance can be obtained. In addition, in cases such as No. 7 or No. 8, where the corrosion resistance or thermal shock resistance is slightly inferior even though the air permeability is good, the firing temperature may be increased (as shown in Example 2) or additives may be added. It is an advantage of the present invention that corrosion resistance, thermal shock resistance can be improved by reinforcement (as shown in Example 3) or additive reinforcement (as shown in Example 3). Example 2 The tendency of the physical properties and characteristics of porous refractories obtained by adjusting the firing temperature was investigated. Among the formulations shown in Table 1, the firing temperature was increased for Nos. 7 and 8 and the results were shown as Nos. 19 and 20 in Table 2 when they were fired at 1760°C. These results show that the porosity is reduced and the thermal shock resistance is improved by increasing the strength, and the corrosion resistance is also slightly improved. However, it is still not considered sufficient to improve corrosion resistance, so we focused on zirconia, which has high corrosion resistance against molten steel.
We decided to consider additives for aggregate particles. Example 3 The quality and quantity of additives added to aggregate particles were investigated. After adjusting the blending ratio as shown in Table 3, kneading and molding using a fret mill in the same manner as in Example 1. , Nos. 21 to 24 were fired at 1700° C. in the same manner as in Example 2, and Nos. 25 to 28 were fired at 1700° C. in the same manner as in Example 1. As expected, Table 3 clearly shows that the addition of zircon or zirconia improves corrosion resistance and thermal shock resistance. In particular, the improvement in thermal shock resistance is remarkable, because in the case of zirconia, fine cracks are generated due to the difference in thermal expansion between alumina and zirconia during firing, and the thermal stress generated by these cracks is alleviated. On the other hand, in the case of zircon, it is thought that the increase in strength due to firing is predominant. However, if the amount of zirconia added is larger than necessary, the proportion of fine cracks becomes too large, resulting in a decrease in strength. Regarding corrosion resistance, when the amount of zirconia or zircon added is relatively small, high corrosion resistance is shown due to the raw material characteristics, but when the amount added is large, cracks due to zirconia increase and the amount of SiO 2 as a composition due to zircon decreases. This leads to an increase in corrosion resistance, and on the contrary, corrosion resistance deteriorates. Therefore, from Table 3, the desirable addition amount is 1 to 13 wt% for zirconia and 2 to 10 wt% for zircon.
It is estimated to be. The results of each of the examples detailed above are shown in FIG. 1 along with a line segment that increases the Kozeny-Carman equation, which is often used in powder beds and the like. As mentioned above, the air permeability Kr is expressed by equation (1), and the pore diameter de (cm) is expressed by equation (2), and at the same time,
The Kozeny-Carman equation is expressed by the following equation, where u is the cylinder velocity and ε is the porosity. u=(φc dp) 2 gc/36KμL・ε 2 /(1−ε) 2・ΔP…
...(3) If the equivalent diameters of the pores are de and rh, respectively, then de = 4rh = 4ε/(1-ε)Sv ......(4) Here, Sv is the surface area per unit volume of the particle,
Using the shape factor φc, Sv = 6/φc dp ......(5) From equations (3) and (1), the air permeability Kr for the particle diameter dp and porosity ε is: Kr = (φc dp) 2 gc/36μK・ε 3 /(1−ε) 2 ………(6
) Also, from (4)(5)(6), Kr=gc/16μK・ε・de 2 ………(7) Since the behavior of the ventilation hole Kr is supported in this way, it is assumed that the vent hole Kr has a spherical shape that contributes to the present invention. Particles (particles recognized as spherical or substantially spherical) exhibit properties as shown in FIG. 1, and have two major characteristics. The first is that it agrees extremely well with the Kozeny-Carman equation. This makes everything related to manufacturing very easy to manage, and it is possible to theorize and think about various phenomena. Second, the air permeability corresponding to the same [(porosity)×(pore diameter) 2 ] value is greater than that of a non-spherical material. In other words, the use of spherical particles provides better air permeability. This suggests that the pores are circular in shape, and there are relatively many through-holes, so the flow resistance is low. In other words, if you think about it the other way around, for the same air permeability, [(porosity) x (pore diameter) 2 ] becomes smaller, and at the same time, since both porosity and pore diameter are factors involved in corrosion resistance, they become smaller. Naturally, this will improve corrosion resistance. As described above, the porous nozzle of the present invention exhibits excellent effects when attached to a molten metal container, and as long as the gist of the present invention is followed, the technical idea is limited to the examples of implementation described above. Needless to say, the invention is not limited to the above, and any applications or modifications derived therefrom are also included within the technical scope of the present invention.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における気孔率及び細孔径と通
気率との関連を示す図である。
FIG. 1 is a diagram showing the relationship between porosity, pore diameter, and air permeability in the present invention.

Claims (1)

【特許請求の範囲】 1 球状粒子の化学組成が、Al2O3含有89wt%以
上、SiO2含有11wt%以下からなり、且つ球形又
は球形に近い球状のアルミナ質粒子を骨材とし、
適宜添加材と混合せる配合体を混練、成形後焼成
して、ガス吹込に好適な通気率を保持する構成と
したことを特徴とするポーラス質ノズル。 2 特許請求の範囲第1項記載の配合体が、粒子
径2.0〜0.3mmのアルミナ質球状粒子70〜100wt%、
粒子径50μ以下の微粉アルミナ0〜25wt%、粒子
径15μの粘土0〜5wt%、粒子径20μ以下の酸化ク
ロム0〜2.0wt%からなる粒度分布と成分組成と
により形成されたことを特徴とするポーラス質ノ
ズル。 3 特許請求の範囲第2項記載の粒度分布と成分
組成において、微粉アルミナ又は粘土に置換或い
は一部置換して、粒子径50μ以下のジルコニア粉
末を1〜13wt%添加することを特徴とするポー
ラス質ノズル。 4 特許請求の範囲第2項記載の粒度分布と成分
組成において、微粉アルミナ又は粘土に置換或い
は一部置換して、粒子径70μ以下のジルコン粉末
2〜10wt%添加することを特徴とするポーラス
質ノズル。
[Scope of Claims] 1. The chemical composition of the spherical particles is 89 wt% or more containing Al 2 O 3 and 11 wt % or less containing SiO 2 , and spherical or nearly spherical alumina particles are used as aggregate,
1. A porous nozzle characterized in that it has a structure that maintains an air permeability suitable for gas injection by kneading a blended material mixed with appropriate additives, molding, and then firing. 2 The blend according to claim 1 contains 70 to 100 wt% of alumina spherical particles with a particle diameter of 2.0 to 0.3 mm,
It is characterized by being formed with a particle size distribution and component composition consisting of 0 to 25 wt% of fine powder alumina with a particle size of 50 μ or less, 0 to 5 wt% of clay with a particle size of 15 μ, and 0 to 2.0 wt% of chromium oxide with a particle size of 20 μ or less. porous nozzle. 3. A porous material having a particle size distribution and a component composition according to claim 2, in which 1 to 13 wt% of zirconia powder with a particle size of 50 μm or less is added by replacing or partially replacing fine powder alumina or clay. quality nozzle. 4. A porous material characterized in that, in the particle size distribution and component composition described in claim 2, 2 to 10 wt% of zircon powder with a particle size of 70 μ or less is added as a substitute or partial substitute for fine powder alumina or clay. nozzle.
JP58041334A 1983-03-11 1983-03-11 Porous nozzle Granted JPS59169977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041334A JPS59169977A (en) 1983-03-11 1983-03-11 Porous nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041334A JPS59169977A (en) 1983-03-11 1983-03-11 Porous nozzle

Publications (2)

Publication Number Publication Date
JPS59169977A JPS59169977A (en) 1984-09-26
JPH0147432B2 true JPH0147432B2 (en) 1989-10-13

Family

ID=12605619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041334A Granted JPS59169977A (en) 1983-03-11 1983-03-11 Porous nozzle

Country Status (1)

Country Link
JP (1) JPS59169977A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6197161A (en) * 1984-10-17 1986-05-15 ハリマセラミック株式会社 Porous refractories for gas blowing
JPH0263656A (en) * 1988-08-29 1990-03-02 Tokyo Yogyo Co Ltd Gas blowing upper nozzle for tandish sliding nozzle

Also Published As

Publication number Publication date
JPS59169977A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
US4059662A (en) Method of making immersion nozzle and long stopper for continuous casting of steel
WO1999038818A1 (en) Alumina-magnesia-graphite type refractory
JP4641807B2 (en) Ladle sliding opening and closing device
JP4132212B2 (en) Zirconia-graphite refractory with excellent corrosion resistance and nozzle for continuous casting using the same
JP3200378B2 (en) Nozzle for continuous casting of aluminum killed steel
JPH0147432B2 (en)
JPS6051659A (en) Porous nozzle
JP2579681B2 (en) Manufacturing method of immersion nozzle for continuous casting
JP3213699B2 (en) Nozzle for continuous casting of steel
JPH0428672B2 (en)
EP1681114A1 (en) Filler for ladle sliding and opening/closing device
JPH0223502B2 (en)
JP2007217260A (en) Porous refractory material
JPS59169978A (en) Porous plag
JP2020083678A (en) Zirconia-carbon containing refractory
JP2760751B2 (en) Immersion nozzle for continuous casting
JP2004082133A (en) Method for continuously casting molten steel for thin sheet
JP4960574B2 (en) Refractory used for continuous casting nozzles to prevent alumina adhesion
JP2003145265A (en) Immersion nozzle for casting
JPS6150913B2 (en)
JPS6323149B2 (en)
JP3536886B2 (en) Method for producing porous refractory for gas-blown porous plug
JP2000094099A (en) Nozzle for continuous casting
JP2978125B2 (en) Tundish stopper-refractory for head
JP2676227B2 (en) Carbon containing refractories