JPH025709B2 - - Google Patents

Info

Publication number
JPH025709B2
JPH025709B2 JP58041335A JP4133583A JPH025709B2 JP H025709 B2 JPH025709 B2 JP H025709B2 JP 58041335 A JP58041335 A JP 58041335A JP 4133583 A JP4133583 A JP 4133583A JP H025709 B2 JPH025709 B2 JP H025709B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
particles
alumina
air permeability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58041335A
Other languages
Japanese (ja)
Other versions
JPS59169978A (en
Inventor
Akihiro Tsuchinari
Toshihiko Nishisaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP58041335A priority Critical patent/JPS59169978A/en
Publication of JPS59169978A publication Critical patent/JPS59169978A/en
Publication of JPH025709B2 publication Critical patent/JPH025709B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、溶鋼の撹拌又は溶鋼中の介在物の浮
上除脱を目的として、取鍋、タンデイツシユ等の
溶融金属容器に装着されるガス吹込用ポーラスプ
ラグの製造方法に係るものである。 現在、製鋼プロセスにおいては、鋼の表面品
質、耐食性、熱間加工性等の品質向上並びに合金
鋼の高級化を目的として耐火物を通してガスを吹
込む工程が汎用されている。この手段は、ガス吹
込によつて溶鋼を撹拌させ、溶鋼温度を均一化す
るとか、或いは微細気泡のバブリングにより
Cr2O3、Al2O3、チタン酸化物、マンガンシリケ
ート物等の介在物を浮上除脱させることにより上
記目的を達成せんとするもので、ここに吹込まれ
るガスは主にAr又はN2ガス等の不活性ガスであ
るが、取鍋製錬炉においてはArとO2との混合ガ
スを吹込み、脱ガス、脱炭処理が行なわれてい
る。 また、ガス吹込みに使用後のポーラスプラグは
付着した地金を除去するために、シヤープランス
を通じて酸素ガスを吹付け、いわゆる酸素洗浄さ
れる。このような場合、溶融地金温度又はポーラ
スプラグが非常に高温になるため、多孔質耐火物
たるポーラスプラグの損傷が著しくなる。従つて
ポーラスプラグには特に酸素ガスに対する耐食性
が優れた耐火材料を使用しなければならない。 従来、この種のポーラスプラグには主としてア
ルミナ質材料が使用されているが、骨材粒子が非
球状であるために、その製造時又はポーラスプラ
グ自体について、 (1) 混合、混練及び成形時に粒子のエツジ部が磨
砕又は破壊し、粒度分布が変化する、 (2) 混練坏土間の内部摩擦及び坏土と成形金型間
の界層摩擦により、不均一な充填構造となる。 (3) 細孔形状が不整である、 (4) 通気性が低い、 (5) 所望する物性、たとえば通気率、細孔径、気
孔率を最適の状態に得難い、 (6) 成形による通気配向性を生ずる、 等の問題点を有しているため、製造工程の管理と
品質の維持が困難となつている。 このような欠点を解消せんとして、骨材に球形
粒子を用いる方法が報告されている。たとえば、
実開昭51−157570号に開示される技術事項は、ム
ライト質球形粒子を用いたものであるが、ムライ
ト球はSiO2含有量が多いため、溶鋼に対する耐
食性は劣るばかりか、酸素洗浄等の酸素ガスに対
する抵抗性が極めて低いものになつており、上記
の諸点は解消されたかにみえても別の問題点が生
じている。 また、ポーラスプラグの具備すべき特性である
通気率はおよそ0.5〜3(CC・cm/cm2・sec・cm
H2O)と広範囲にわたつており、1.0以上の通気
率を得ようとする場合には成形圧が低い状態で成
形されるのが一般的製造方法である。従つて、お
のずと成形体の強度が低く、焼成までの取扱い処
理がきわめて困難なばかりが耐食性が劣る状態に
ある。 本発明は斯かる現況に鑑がみ、所望の通気性と
組織の均一化を得ると共に耐食性、熱衝撃抵抗性
に優れたガス吹込用ポーラスプラグを提案せんと
してなされたもので、具体的には、耐食性に優れ
且つ粒子強度の大なるアルミナ質球状粒子を用い
たポーラスプラグの製造方法の提供を目的として
いる。 以下、本発明のポーラスプラグの製造方法につ
き説明する。 先づ、球状粒子の耐食性の向上につき検討した
結果、粒子個体の化学組成についてはAl2O3
98wt%以上、SiO2が1wt%以下であることがポー
ラス質耐火物を形成する耐火材料としての耐食性
を満足する条件であることを確認した。ついで、
酸素ガスに対する抵抗性について検討したとこ
ろ、酸素洗浄時の温度は約2000℃に達し、その結
果上記のSiO2の組成含量では溶損が著しく、約
1%以下としなければ耐食性を所期通り保全でき
ないことがわかつた。 次に、このような知見に基づき種種の実施例を
挙げる。 上記のように策定したアルミナ質球状粒子、市
販の焼結アルミナ、ジルコン若しくはジルコニア
又は酸化クロムを第1表に示すごとき各比率で配
合し、フエノール樹脂を添加してフレツトミルで
充分混練した後オイルプレスで成形し、乾燥後焼
成した。 No.1は骨材粒子として非球状粒子を用いた在来
品で、所定量の通気性を保持させるため500Kg/
cm2の成形圧で成形したものであり、No.2は骨材粒
子をアルミナ質球状粒子のみとし成形圧を1000
Kg/cm2としたものであり、No.6はアルミナ微粉が
過量のものである。 No.3〜5およびNo.7〜14は本発明品で、アルミ
ナ質球状粒子を骨材として用いたもので、成形圧
1000Kg/cm2で成形し、乾燥後1700℃で6時間の条
件で焼成した。得られるポーラス質耐火物の特性
を第1表に併せ示した。 本表における組成又は配合比率はwt%であり、
各テスト方法は下記のように行つた。 溶損比率(%)は各焼成体について、シヤープ
ランスにより酸素ガスを吹込んで、2000℃で10分
間の酸素洗浄試験を行なつてその溶損量を精測
し、No.1のものの値を100(%)とした場合の溶損
割合で示した。 亀裂発生の有無については、40×40×40mmの供
試体を、電気炉中で1500℃にて急熱し、20分間保
持した後取出して空冷する操作を反復した。その
操作の回数と亀裂の状態により、 2回後、亀裂なし ……◎ 1回後、亀裂なし ……〇 1回後、微亀裂発生 ……△ 1回後、大亀裂発生 ……× として熱衝撃抵抗性を検認した。 No.1〜10及びNo.12〜14の骨材粒子は粒子径が
0.84〜0.59mmの占有量がおよそ80wt%、No.11は粒
子径084〜0.59mmの占有量がおよそ40wt%で0.59
mm/0.3mmの占有量がおよそ35wt%である。 第1表に示す結果からみれば、微粉アルミナの
添加量を増量するにつれ、気孔率、細孔径及び通
気率が減少し、逆に耐食性は向上する。また、熱
衝撃抵抗性は微粉アルミナ量の増量と共に劣化す
る傾向にある。 このことから推察して、SiO2含有量の極めて
少ない高耐食性のポーラスプラグとしては、添加
すべき微粉アルミナ量の好適値としてはおよそ
15wt%であり、この範囲の構成であればNo.1の
在来品に比較して、通気性及び熱衝撃抵抗性が同
等若しくは同等以上であり、耐食性については極
めて優れていることがわかる。 このように在来品に較べて本発明品が高耐食性
を有しているのは、成形圧による粒子間距離及び
焼結度合いによるものと思われる。すなわち、在
来品のごとく非球形粒子を用いながら高通気性を
得ようとすれば、成形圧を低くするか又は粗大径
の粒子を用いなければならない。粒子径を大きく
すると、前記のごとく混合、混練、成形時に粒子
の稜線部が磨砕され、粒度分布が変動し易いから
一般には成形圧を低くする方が物性管理上の対応
が容易であるが、成形圧を低くした場合には粒子
配位は疎となり間隙が著大となつて焼結し難くな
る。 すなわち、No.1の強度は主に晶形錯雑による単
なる機械的からまりにより発現しているもので、
粒子間の焼結又はボンドの結合が不充分なため容
易に溶鋼の浸透が進むものと解析される。 No.7〜10は微粉アルミナの代りにジルコン粉末
を添加したもので、No.2〜6と比較した場合、強
度及び、熱衝撃抵抗性が向上する反面、耐食性の
改善は期待し難い。これはジルコン中に含まれる
SiO2量に起因すると思われる。この各例にあつ
ては、在来品に比較した場合にNo.7からNo.9まで
のジルコン粉末約10.0wt%までの含有にとどめれ
ば充分な耐食性が得られる。 No.11はアルミナ質球状粒子の粒度分布を粒子径
が大きい方へ拡大し、且つ粒子間結合をアルミナ
及びジルコン微粉で行なわせたものであるが、在
来品に較べ通気性が良好で、耐食性と熱衝撃抵抗
性も優れた結果となつている。 No.12〜14はさらに耐食性向上を目的として、酸
化クロムの含有量について検討したものである。
酸化クロム含有量が増すにつれ、耐食性が向上
し、逆に強度、熱衝撃抵抗性が劣化している。従
つて好ましい含有量はおよそ2wt%以下である。 以上の結果を集約すると、非球形粒子を骨材と
した在来品に対し、単一粒子の化学組成を規制し
たアルミナ質球状粒子を骨材とした本発明品は通
気性、耐食性及び熱衝撃性に優れ、且つ成形圧を
高くした状態であつても、添加微粉の質量を選択
変化させることにより所望する通気性が得られる
ことが確認されたのである。 以上の説明にみるごとく本発明のポーラスプラ
グの製造方法は、取鍋、タンデイツシユ等の溶融
金属容器に装着して優れた効果を発揮するもので
あり、本発明の要旨に従うものであれば、その技
術的思想は上記の諸例に限定されるものではな
く、それらから導かれる応用、転用又は変形も本
発明の技術的範囲に包含されることはいうまでも
ない。
The present invention relates to a method for manufacturing a porous plug for blowing gas that is attached to a molten metal container such as a ladle or tundish for the purpose of stirring molten steel or floating and removing inclusions in molten steel. BACKGROUND ART Currently, in the steel manufacturing process, a process of blowing gas through a refractory is widely used for the purpose of improving surface quality, corrosion resistance, hot workability, etc. of steel, and upgrading alloy steel. This method involves stirring the molten steel by blowing gas to make the temperature of the molten steel uniform, or by bubbling fine bubbles.
The purpose is to achieve the above objective by floating and removing inclusions such as Cr 2 O 3 , Al 2 O 3 , titanium oxide, manganese silicate, etc. The gas blown here is mainly Ar or N. In the ladle smelting furnace, a mixed gas of Ar and O 2 is blown into the furnace for degassing and decarburization. Further, the porous plug after being used for gas injection is subjected to so-called oxygen cleaning by spraying oxygen gas through a shear prance to remove attached metal. In such a case, the temperature of the molten metal or the porous plug becomes extremely high, resulting in significant damage to the porous plug, which is a porous refractory. Therefore, the porous plug must be made of a refractory material that has excellent corrosion resistance, especially against oxygen gas. Conventionally, alumina materials have been mainly used for this type of porous plug, but because the aggregate particles are non-spherical, there are a number of problems during manufacturing or the porous plug itself: (1) particles during mixing, kneading and molding; (2) Internal friction between the kneaded clay and interfacial friction between the clay and the mold result in a non-uniform filling structure. (3) Irregular pore shape, (4) Low air permeability, (5) Difficulty in achieving the desired physical properties, such as air permeability, pore diameter, and porosity, in an optimal state, (6) Air flow orientation due to molding. This makes it difficult to manage the manufacturing process and maintain quality. In an attempt to overcome these drawbacks, a method using spherical particles as aggregate has been reported. for example,
The technical matter disclosed in Utility Model Application Publication No. 51-157570 uses mullite spherical particles, but since mullite spheres have a high SiO 2 content, they not only have poor corrosion resistance against molten steel, but also have difficulty with oxygen cleaning, etc. Resistance to oxygen gas has become extremely low, and even though the above-mentioned problems seem to have been solved, other problems have arisen. In addition, the air permeability, which is a characteristic that porous plugs should have, is approximately 0.5 to 3 (CC・cm/cm 2・sec・cm
H 2 O), and when trying to obtain an air permeability of 1.0 or higher, the general manufacturing method is to mold at a low molding pressure. Therefore, the strength of the molded product is naturally low, and handling up to firing is extremely difficult, as well as poor corrosion resistance. In view of the current situation, the present invention was made with the aim of proposing a porous plug for gas blowing that has the desired air permeability and uniform structure, as well as excellent corrosion resistance and thermal shock resistance. The object of the present invention is to provide a method for manufacturing a porous plug using alumina spherical particles having excellent corrosion resistance and high particle strength. The method for manufacturing the porous plug of the present invention will be explained below. First, as a result of investigating the improvement of corrosion resistance of spherical particles, the chemical composition of the individual particles was found to be Al 2 O 3 .
It was confirmed that 98wt% or more and SiO 2 content of 1wt% or less are conditions that satisfy corrosion resistance as a refractory material forming a porous refractory. Then,
When we investigated the resistance to oxygen gas, we found that the temperature during oxygen cleaning reached approximately 2000°C, and as a result, the above composition content of SiO 2 caused significant erosion and corrosion resistance could not be maintained as expected unless the SiO 2 content was kept below approximately 1%. I found out that I can't do it. Next, various examples will be given based on this knowledge. The alumina spherical particles formulated as above, commercially available sintered alumina, zircon or zirconia, or chromium oxide were blended in the ratios shown in Table 1, phenol resin was added, and the mixture was sufficiently kneaded in a fret mill, followed by oil press. It was molded, dried and fired. No. 1 is a conventional product that uses non-spherical particles as aggregate particles, and in order to maintain a certain amount of air permeability, it weighs 500 kg/
No. 2 was molded at a molding pressure of 1,000 cm 2 and the molding pressure was 1,000 cm.
Kg/cm 2 , and No. 6 contains an excessive amount of fine alumina powder. Nos. 3 to 5 and Nos. 7 to 14 are the products of the present invention, which use alumina spherical particles as aggregates, and the molding pressure is
It was molded at 1000Kg/cm 2 , dried and then fired at 1700°C for 6 hours. The properties of the porous refractories obtained are also shown in Table 1. The composition or blending ratio in this table is wt%,
Each test method was performed as follows. The erosion rate (%) was determined by injecting oxygen gas into each fired body using a shear prance, performing an oxygen cleaning test at 2000℃ for 10 minutes, and measuring the amount of erosion accurately. It is shown as the erosion loss rate when it is set to 100 (%). To check for cracks, a 40 x 40 x 40 mm specimen was rapidly heated to 1500°C in an electric furnace, held for 20 minutes, then taken out and cooled in the air. Depending on the number of operations and the condition of the cracks, there will be no cracks after 2 times...◎ No cracks after 1 time...○ Slight cracks will occur after 1 time...△ Large cracks will occur after 1 time...× Heat treatment Impact resistance was verified. The aggregate particles No. 1 to 10 and No. 12 to 14 have a particle size of
The occupancy of 0.84 to 0.59 mm is approximately 80 wt%, and No. 11 has a particle size of 0.84 to 0.59 mm, which is approximately 40 wt% and 0.59
The occupation amount of mm/0.3mm is approximately 35wt%. From the results shown in Table 1, as the amount of finely powdered alumina added increases, the porosity, pore diameter, and air permeability decrease, and conversely, the corrosion resistance improves. Furthermore, thermal shock resistance tends to deteriorate as the amount of fine alumina increases. Inferring from this, for highly corrosion-resistant porous plugs with extremely low SiO 2 content, the appropriate amount of fine alumina to be added is approximately
15wt%, and it can be seen that if the composition is within this range, the air permeability and thermal shock resistance are the same or higher than that of the No. 1 conventional product, and the corrosion resistance is extremely excellent. The reason why the products of the present invention have higher corrosion resistance than conventional products is thought to be due to the distance between particles and the degree of sintering caused by the molding pressure. That is, if high air permeability is to be obtained while using non-spherical particles as in conventional products, the molding pressure must be lowered or particles with a coarse diameter must be used. When the particle size is increased, the ridges of the particles are ground during mixing, kneading, and molding as described above, and the particle size distribution tends to fluctuate, so it is generally easier to manage physical properties by lowering the molding pressure. When the molding pressure is lowered, the particle coordination becomes sparse and the gaps become extremely large, making it difficult to sinter. In other words, the No. 1 strength is mainly due to mere mechanical entanglement due to crystal shape complexity.
It is analyzed that molten steel easily penetrates due to insufficient sintering or bonding between particles. Nos. 7 to 10 have zircon powder added instead of fine alumina powder, and when compared with Nos. 2 to 6, although the strength and thermal shock resistance are improved, it is difficult to expect an improvement in corrosion resistance. This is contained in zircon
This seems to be due to the amount of SiO2 . In each of these examples, sufficient corrosion resistance can be obtained if the content is limited to about 10.0 wt% of zircon powder No. 7 to No. 9 when compared to conventional products. No. 11 is a product in which the particle size distribution of alumina spherical particles is expanded toward larger particle diameters, and the particles are bonded with alumina and zircon fine powder, but it has better air permeability than conventional products. Excellent results were also achieved in corrosion resistance and thermal shock resistance. In Nos. 12 to 14, the content of chromium oxide was further investigated for the purpose of improving corrosion resistance.
As the chromium oxide content increases, corrosion resistance improves, while strength and thermal shock resistance deteriorate. Therefore, the preferred content is approximately 2 wt% or less. Summarizing the above results, compared to the conventional product that uses non-spherical particles as aggregate, the product of the present invention that uses alumina spherical particles as aggregate with a controlled chemical composition of single particles has better air permeability, corrosion resistance, and thermal shock resistance. It was confirmed that the desired air permeability can be obtained by selectively changing the mass of the added fine powder even when the molding pressure is high. As can be seen from the above description, the method for manufacturing a porous plug of the present invention exhibits excellent effects when attached to a molten metal container such as a ladle or tundish. It goes without saying that the technical idea is not limited to the above-mentioned examples, and any applications, diversions, or modifications derived therefrom are also included within the technical scope of the present invention.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 粒子個体の化学組成がAl2O3が98wt%以上、
SiO2が1wt%以下で、粒子径2.0〜0.3mmの球形又
は球形に近いアルミナ質球状粒子を80〜95wt%
と、 粒子径50μ以下の微粉アルミナ15wt%以下およ
び/または粒子径50μ以下のジルコン粉末若しく
はジルコニア15wt%以下と、 からなる配合体を成形、焼成することを特徴とす
るポーラスプラグの製造方法。
[Claims] 1. The chemical composition of the individual particles is 98 wt% or more of Al 2 O 3 ,
80 to 95 wt% of spherical or nearly spherical alumina particles with a particle size of 2.0 to 0.3 mm and less than 1 wt% of SiO 2
and 15 wt% or less of finely divided alumina with a particle size of 50 μm or less and/or 15 wt% or less of zircon powder or zirconia with a particle size of 50 μm or less.
JP58041335A 1983-03-11 1983-03-11 Porous plag Granted JPS59169978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041335A JPS59169978A (en) 1983-03-11 1983-03-11 Porous plag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041335A JPS59169978A (en) 1983-03-11 1983-03-11 Porous plag

Publications (2)

Publication Number Publication Date
JPS59169978A JPS59169978A (en) 1984-09-26
JPH025709B2 true JPH025709B2 (en) 1990-02-05

Family

ID=12605646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041335A Granted JPS59169978A (en) 1983-03-11 1983-03-11 Porous plag

Country Status (1)

Country Link
JP (1) JPS59169978A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774091B2 (en) * 1986-12-26 1995-08-09 黒崎窯業株式会社 Refractory for gas injection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869776A (en) * 1981-10-16 1983-04-26 アイコ−株式会社 Gas permeable refractories

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869776A (en) * 1981-10-16 1983-04-26 アイコ−株式会社 Gas permeable refractories

Also Published As

Publication number Publication date
JPS59169978A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
CN107746258B (en) Ultralow-linear-change baking-free air brick and preparation method and application thereof
JPS61251560A (en) Monolithic refractory honeycomb filter and removal of impurities from molten metal therewith
JP4641807B2 (en) Ladle sliding opening and closing device
JPS59131573A (en) Refractory composition, preparation and refractory casted body
US8007580B2 (en) Material used to combat thermal expansion related defects in high temperature casting processes
CN112745134A (en) Air brick containing corundum ceramic balls and preparation method thereof
KR910003250B1 (en) Casting nozzle
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
JPH025709B2 (en)
CN114292089A (en) Tundish dry material added with zircon powder and preparation method thereof
US8011419B2 (en) Material used to combat thermal expansion related defects in the metal casting process
JP2008207238A (en) Casting mold
JPH0428672B2 (en)
JPS6051659A (en) Porous nozzle
CN114929646A (en) Particles for producing sintered refractory products, batch for producing sintered refractory products, method for producing sintered refractory products and sintered refractory products
JPH03159956A (en) Production of porous refractory for gas blowing
JPH0223502B2 (en)
JPH0952755A (en) Magnesia-chrome refractory
JP3536886B2 (en) Method for producing porous refractory for gas-blown porous plug
JP2007217260A (en) Porous refractory material
JPS6131346A (en) Nozzle for casting
JPH0147432B2 (en)
JPS6071571A (en) Nozzle refractories for molten metal vessel
JPH11246265A (en) High corrosion resistant fused silica-containing refractory
JP2810111B2 (en) Gas injected refractories