JPS59167851A - Method and apparatus for manufacturing magnetic recording medium - Google Patents

Method and apparatus for manufacturing magnetic recording medium

Info

Publication number
JPS59167851A
JPS59167851A JP4270483A JP4270483A JPS59167851A JP S59167851 A JPS59167851 A JP S59167851A JP 4270483 A JP4270483 A JP 4270483A JP 4270483 A JP4270483 A JP 4270483A JP S59167851 A JPS59167851 A JP S59167851A
Authority
JP
Japan
Prior art keywords
cooling drum
substrate
ferromagnetic material
base
ferromagnetic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4270483A
Other languages
Japanese (ja)
Other versions
JPH0552565B2 (en
Inventor
Kunio Wakai
若居 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4270483A priority Critical patent/JPS59167851A/en
Publication of JPS59167851A publication Critical patent/JPS59167851A/en
Publication of JPH0552565B2 publication Critical patent/JPH0552565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To attain the manufacture in high speed by providing a cooling drum made of a nonmagnetic stainless steel in a vacuum tank and directing a vapor flow of a ferromagnetic member to a base moving along the circumferential side face of the cooling drum from a ferromagnetic member vapor-deposition source so as to form the ferromagnetic metallic thin film layer on the base. CONSTITUTION:The inside of a vacuum tank 1 is kept vacuum by an exhaust system 2, the cooling drum 3 made of the nonmagnetic stainless steel is provided at the center of the vacuum tank 1 and a base 4 made of a polyester film is wound on a winding roll 8 from a payoff roll 5 via a guide roller 6 through the cooling drum 3 and a guide roller 7. The ferromagnetic member 10 is heated and evaporated by an evaporating source 9 to the base 4 moving along the circumferential side face of the cooling drum 3 during this time and the vapor- deposition is attained. A reflected electron preventing device 13 is provided between the cooling drum 3 and a deposition preventing plate 2, and the arrival of reflected secondary electrons to the base 4 when the ferromagnetic member 10 in the ferromagnetic member evaporating source 9 is evaporated is prevented effectively by applying a magnetic field to the device 13.

Description

【発明の詳細な説明】 この発明は、強磁性金属薄膜層を記録層とする磁気記録
媒体の製造方法およびその実施に使用する装置に関し、
その目的とするところは熱変形等を生じることなく高速
で能率的に前記の磁気記録媒体を製造する方法およびそ
の実施に使用する装置を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium having a ferromagnetic metal thin film layer as a recording layer, and an apparatus used for carrying out the method.
The purpose is to provide a method for manufacturing the magnetic recording medium at high speed and efficiency without causing thermal deformation, and an apparatus used for carrying out the method.

強磁性金属薄膜層を記録層とする磁気記録媒体は、通常
、ポリエステルフィルムなどの基板を真空槽内に取りつ
けた円筒状の冷却ドラムの周・?!1面に沿って移動さ
せ、この基板に強磁性材を真空蒸着するなどしてつくら
れており、冷却ドラムJしては一般にドラム本体が軟鋼
製でその外周面にクロムメッキを施したものが使用され
ている。
Magnetic recording media with a ferromagnetic metal thin film layer as the recording layer are usually manufactured using a cylindrical cooling drum with a substrate such as a polyester film mounted in a vacuum chamber. ! It is made by moving the drum along one surface and vacuum-depositing a ferromagnetic material onto this substrate. Cooling drums generally have a drum body made of mild steel and a chrome-plated outer surface. It is used.

ところが、従来から使用されている軟鋼製でその外周面
にクロムメッキを施した冷却ドラムは、熱伝導性が悪い
ため冷却効果が充分でなく、特に高速で真空蒸着を行う
場合には冷却効果が悪(てピンホールやしわが発生し、
はなはだしい場合は基板が強磁性材蒸発源からの輻射熱
等で溶断する場合がある。また強磁性材蒸発源で強磁性
材を加熱蒸発する際には約2000℃の高温で加熱され
るため、強磁性材が突沸して冷却ドラムに付着する場合
があり、このように強磁性材が冷却ドラム表面に付着す
ると、これを取り除く際クロムメッキを全て剥がさなけ
ればならず、しかも再びクロムメッキを施さなければな
らないため非常に面倒でドラム表面を研磨してそのまま
再使用したりすることはできない。さらに軟鋼部の冷却
ドラムは磁性を有するため、この冷却ドラムの近傍に強
磁性材蒸発源から反射される二次電子が基板に至るのを
防止する反射電子防止装置を備えても、反射電子装置に
おいて反射電子を有効に防止する磁力線が冷却ドラムに
吸収されてしまって二次電子が基板に反射されるのを有
効に防止できず、基板が二次電子の反射によって損傷さ
れるのを有効に防止できないなどの難点がある。
However, the conventionally used cooling drum made of mild steel with chrome plating on its outer surface has poor thermal conductivity and does not have sufficient cooling effect, especially when vacuum evaporation is performed at high speed. Pinholes and wrinkles may occur,
In extreme cases, the substrate may melt due to radiant heat from the ferromagnetic material evaporation source. In addition, when ferromagnetic material is heated and evaporated using a ferromagnetic material evaporation source, the ferromagnetic material is heated at a high temperature of approximately 2000°C, so the ferromagnetic material may bump and adhere to the cooling drum. If it adheres to the surface of the cooling drum, all the chrome plating must be removed to remove it, and the chrome plating must be applied again, which is very troublesome and it is not possible to polish the drum surface and reuse it as is. Can not. Furthermore, since the cooling drum of the mild steel section is magnetic, even if a backscattered electron prevention device is installed near the cooling drum to prevent secondary electrons reflected from the ferromagnetic material evaporation source from reaching the substrate, the backscattered electron The lines of magnetic force that effectively prevent backscattered electrons are absorbed by the cooling drum, making it impossible to effectively prevent secondary electrons from being reflected on the substrate, thereby preventing the substrate from being damaged by the reflection of secondary electrons. There are some drawbacks, such as the fact that it cannot be prevented.

この発明者はかかる欠点を改善するため冷却ドラムにつ
いて種々検討を行った結果、非磁性の不銹鋼からなる冷
却ドラムを使用し、これを真空槽内に配設して真空蒸着
を行うと、この種の冷却ドラムは熱伝導率が高くて熱伝
導性に優れるため冷却効果が良好で、従って基板を冷却
ドラムの周側面に沿って高速で移動させても基板を充分
に冷却することができてピンホールやしわが発生するな
どの熱変形を生じることなく高速で蒸着を行うことがで
き、また従来の軟m製の冷却ドラムに比して硬く、外周
面にクロムメッキも施されていないため、強磁性材が突
沸して表面に付着しても冷却ドラムの表面を研磨するだ
けでそのまま再使用することができ、さらに非磁性であ
るため、強磁性材蒸発源から反射される二次電子が基板
に至i】のを防止する反射電子防止装置の磁力線を吸収
することもなく、二次電子の反射によって基板が損傷さ
れるのを良好に抑制できることを見いだし、この発明を
なすに至った。
As a result of various studies on cooling drums in order to improve these drawbacks, the inventor found that by using a cooling drum made of non-magnetic stainless steel and placing it in a vacuum chamber to perform vacuum evaporation, this type of The cooling drum has a high thermal conductivity and has a good cooling effect, so even if the substrate is moved at high speed along the circumferential surface of the cooling drum, the substrate can be sufficiently cooled. Vapor deposition can be performed at high speed without thermal deformation such as holes or wrinkles, and it is harder than conventional soft m cooling drums and does not have chrome plating on its outer surface. Even if ferromagnetic material bumps and adheres to the surface, it can be reused by simply polishing the surface of the cooling drum.Furthermore, since it is non-magnetic, secondary electrons reflected from the ferromagnetic material evaporation source are It was discovered that the damage to the substrate due to the reflection of secondary electrons can be effectively suppressed without absorbing the magnetic lines of force of the backscattered electron prevention device that prevents damage to the substrate, and this invention has been completed.

以下、図面を参照しながらこの発明について説明する。The present invention will be described below with reference to the drawings.

第1図は真空蒸着装置の断面図を示したものであり、1
は真空槽でこの真空槽1の内部は排気糸2により真空に
保持される。3ば真空槽1の中央部に配設された非磁性
の不銹鋼からなる冷却ドラムであり、ポリエステルフィ
ルム等の基板4は原反ロール5よりガイドローラ6を介
してこの冷却ドラム3の周側面に沿って移動し、ガイド
ローラ7を介して巻き取りロール8に巻き取られ、この
ような基板移送機構によって移動される。この間冷却ド
ラム3の周側面に沿って移動する基板4に対向して真空
槽1の下底に配設された強磁性材蒸発源9で強磁性材1
0が熱電子源11の加熱により加熱蒸発され、この蒸気
流が基板4に差し向けられて防着板3の作用により斜め
入射蒸着が行われる。13は冷却ドラム3と防着板2と
の間に配設された反射電子防止装置であり、この反射電
子防止装置に磁界をかけることにより強磁性材蒸発源9
内の強磁性材10が蒸発される際反射される二次電子が
基板4に至るのを有効に防止される。
Figure 1 shows a cross-sectional view of the vacuum evaporation apparatus,
is a vacuum chamber, and the inside of this vacuum chamber 1 is maintained in a vacuum by an exhaust line 2. 3 is a cooling drum made of non-magnetic stainless steel disposed in the center of the vacuum chamber 1, and a substrate 4 such as a polyester film is passed from a raw roll 5 through a guide roller 6 to the circumferential side of the cooling drum 3. The substrate is moved along the substrate, is taken up by a take-up roll 8 via a guide roller 7, and is moved by such a substrate transfer mechanism. During this time, the ferromagnetic material evaporation source 9 disposed at the bottom of the vacuum chamber 1 faces the substrate 4 moving along the circumferential side of the cooling drum 3.
0 is heated and evaporated by the heating of the thermionic source 11, and this vapor flow is directed toward the substrate 4, and oblique incidence evaporation is performed by the action of the deposition prevention plate 3. 13 is a backscattered electron prevention device disposed between the cooling drum 3 and the adhesion prevention plate 2, and by applying a magnetic field to this backscattered electron prevention device, the ferromagnetic material evaporation source 9 is removed.
Secondary electrons reflected when the ferromagnetic material 10 inside is evaporated are effectively prevented from reaching the substrate 4.

このように、この発明において真空槽1の中央部に配設
される冷却ドラム3は、非磁性の不銹鋼からなるもので
あることが好ましく、この不銹鋼からなる冷却ドラムは
熱伝導率が高くて熱伝導性に優れるため、冷却効果が良
好でたとえ基板を冷却ドラムの周側面に沿って高速で移
動させても基板を充分に冷却することができる。従って
、ピンホールやしわが発生するなどの熱変形を生じるこ
となく高速で真空蒸着行うことができ能率的な生産が行
えて量産性が向上する。また、非磁性であるため反射電
子防止装置13の磁力線を吸収することもなく、二次電
子の反射によって基板が損傷されるのを良好に抑制する
ことができ、さらに従来のようにクロムメッキも施され
ていないため強磁性材が突沸して表面に付着しても冷却
ドラム3の表面を研磨するだけでそのまま使用すること
ができる。このような冷却ドラムの表面粗さは2.0μ
以下のものであることが好ましく、表面粗−さが2.0
μ以下のオーステナイト系の不銹鋼などが好適なものと
して使用される。
Thus, in the present invention, the cooling drum 3 disposed in the center of the vacuum chamber 1 is preferably made of non-magnetic stainless steel, and the cooling drum made of this stainless steel has high thermal conductivity and is heat-resistant. Since it has excellent conductivity, it has a good cooling effect, and even if the substrate is moved at high speed along the circumferential surface of the cooling drum, the substrate can be sufficiently cooled. Therefore, vacuum deposition can be performed at high speed without causing thermal deformation such as pinholes or wrinkles, allowing efficient production and improving mass productivity. In addition, since it is non-magnetic, it does not absorb the magnetic lines of force of the backscattered electron prevention device 13, and can effectively suppress damage to the board due to reflection of secondary electrons. Since the cooling drum 3 is not coated, even if the ferromagnetic material bumps and adheres to the surface, the cooling drum 3 can be used as is by simply polishing the surface. The surface roughness of such a cooling drum is 2.0μ
It is preferable that the surface roughness is 2.0.
An austenitic non-rusting steel having a diameter of less than μ is preferably used.

基板としては、ポリエステル、ポリイミド、ポリアミド
等一般に使用されている高分子成形物からなるプラスチ
ックフィルムおよび銅などの非磁性金属が使用され、ま
たこのような基板上への強磁性金属薄膜層の形成は真空
蒸着の他スパッタリングおよびイオンブレーティング等
の手段によって行われ、強磁性金属薄膜層の形成材料と
しては、コバルト、ニッケル、鉄などの金属単体の他、
これらの合金あるいは酸化物、及びCo  P −、C
As the substrate, a plastic film made of commonly used polymer moldings such as polyester, polyimide, polyamide, etc. and non-magnetic metals such as copper are used, and the formation of a ferromagnetic metal thin film layer on such a substrate is The ferromagnetic metal thin film layer is formed by means such as vacuum evaporation, sputtering, and ion blating.In addition to single metals such as cobalt, nickel, and iron, the material for forming the ferromagnetic metal thin film layer is
Alloys or oxides of these, Co P -, C
.

−Ni−Pなど一般に使用される強磁性材料が使用され
る。
Commonly used ferromagnetic materials such as -Ni-P are used.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例1 第1図に示すように、非磁性の不銹鋼からなるドラム表
面粗さが0.5μの冷却ドラム3を真空槽1の中央部に
配設した真空蒸着装置を使用し、約10μ厚のポリエス
テルベースフィルム4を、原反ロール5よりガイドロー
ラ6を介して冷却ドラム3の周側面に沿って移動させ、
ガイドローラ7を介して巻き取りロール8に巻き取るよ
うにセットするとともに、強磁性材蒸発源9にコバルト
−ニッケル合金(重量比8:2)10をセントした。
Example 1 As shown in FIG. 1, a vacuum evaporation apparatus was used in which a cooling drum 3 made of non-magnetic stainless steel and having a drum surface roughness of 0.5 μm was disposed in the center of a vacuum chamber 1. The polyester base film 4 is moved along the circumferential side of the cooling drum 3 from the raw roll 5 via the guide roller 6,
The sample was set to be wound onto a take-up roll 8 via a guide roller 7, and 10 pieces of a cobalt-nickel alloy (weight ratio 8:2) was placed in a ferromagnetic material evaporation source 9.

ついで排気系2で真空槽1内を約5X10”’l−ルに
まで真空排気し、熱電子源11で強磁性材蒸発源内のコ
バルト−ニッケル合金10を加熱蒸発するとともにポリ
エステルベースフィルム4を、50m/分の速度で走行
させて真空蒸着を行い、ポリエステルベースフィルム4
上にコバルト−ニッケル合金からなる厚さが0.1 μ
の強磁性金属薄膜層を形成して磁気記録媒体をつくった
Next, the inside of the vacuum chamber 1 is evacuated to approximately 5 x 10'' l by the exhaust system 2, and the cobalt-nickel alloy 10 in the ferromagnetic material evaporation source is heated and evaporated by the thermionic source 11, and the polyester base film 4 is Vacuum deposition was performed by running at a speed of 50 m/min to form a polyester base film 4.
The top layer is made of cobalt-nickel alloy with a thickness of 0.1 μm.
A magnetic recording medium was created by forming a ferromagnetic metal thin film layer.

比較例1 実施例1において、非磁性の不銹鋼からなるドラム表面
粗さが0.5 μの冷却ドラムに代えて、ドラム本体が
軟111mでその外周面にクロムメッキを施した表面粗
さが1.0μの冷却ドラムを使用した以外は実施例1と
同様にして磁気記録媒体をつくった。
Comparative Example 1 In Example 1, instead of using a cooling drum made of non-magnetic stainless steel with a surface roughness of 0.5 μm, a drum body was made of soft 111 m long and had a surface roughness of 1 μm with chrome plating on its outer peripheral surface. A magnetic recording medium was produced in the same manner as in Example 1 except that a cooling drum of .0 μm was used.

実施例および比較例で得られた磁気記録媒体について、
ピンホールの有無およびしわの発生の有無を観察した。
Regarding the magnetic recording media obtained in Examples and Comparative Examples,
The presence or absence of pinholes and the occurrence of wrinkles were observed.

下表はその結果である。The table below shows the results.

上表から明らかなように、従来の方法で得られた磁気記
録媒体(比較例)はピンホールおよびしわの発生が認め
られるのに対し、この発明の装置および方法で得られた
磁気記録媒体(実施例)はピンホールやしわの発生が認
められず、このことからこの発明の製造方法およびその
実施に使用する装置によれば高速で能率的に熱変形のな
い磁気記録媒体が得られるのがわかる。
As is clear from the above table, the magnetic recording medium obtained by the conventional method (comparative example) has pinholes and wrinkles, whereas the magnetic recording medium obtained by the apparatus and method of the present invention (comparative example) has pinholes and wrinkles. No pinholes or wrinkles were observed in Example), which shows that the manufacturing method of the present invention and the apparatus used to carry out the method can efficiently produce a magnetic recording medium free of thermal deformation at high speed. Recognize.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の製造方法を実施するために使用する
真空蒸着装置の1例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing one example of a vacuum evaporation apparatus used to carry out the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】 1、非磁性の不銹鋼からなる冷却ドラムを真空槽内に配
設し、この冷却ドラムの周側面に沿って移動する基板に
強磁性材蒸発源から強磁性材の蒸気流を差し向けて、基
板上に強磁性金属薄膜層を形成することを特徴とする磁
気記録媒体の製造方法 2、真空槽内に、非磁性の不銹鋼からなる冷却ドラムと
、この冷却ドラムの周側面に沿って移動する基板と、こ
の基板を冷却ドラムの周側面に沿、  って移動案内す
る基板移送機構と、冷却ドラムの周側面に沿って移動す
る基板と対向する強磁性材蒸発源と、強磁性材蒸発源か
ら基板に至る蒸気流を必要に応じて部分的に適宜遮断す
る防着板と、強磁性材蒸発源から反射される二次電子が
基板に至るのを防止する反射電子防止装置とを配設して
なる磁気記録媒体製造装置
[Claims] 1. A cooling drum made of non-magnetic stainless steel is disposed in a vacuum chamber, and a vapor flow of ferromagnetic material from a ferromagnetic material evaporation source is applied to a substrate moving along the circumferential side of the cooling drum. 2, a method for manufacturing a magnetic recording medium characterized by forming a ferromagnetic metal thin film layer on a substrate by directing a cooling drum made of non-magnetic stainless steel and a peripheral side surface of the cooling drum in a vacuum chamber; a substrate that moves along the circumferential surface of the cooling drum; a substrate transfer mechanism that moves and guides the substrate along the circumferential surface of the cooling drum; a ferromagnetic material evaporation source that faces the substrate that moves along the circumferential surface of the cooling drum; A deposition prevention plate that partially blocks the vapor flow from the ferromagnetic material evaporation source to the substrate as necessary, and a backscattered electron prevention plate that prevents secondary electrons reflected from the ferromagnetic material evaporation source from reaching the substrate. A magnetic recording medium manufacturing device comprising:
JP4270483A 1983-03-14 1983-03-14 Method and apparatus for manufacturing magnetic recording medium Granted JPS59167851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4270483A JPS59167851A (en) 1983-03-14 1983-03-14 Method and apparatus for manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4270483A JPS59167851A (en) 1983-03-14 1983-03-14 Method and apparatus for manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS59167851A true JPS59167851A (en) 1984-09-21
JPH0552565B2 JPH0552565B2 (en) 1993-08-05

Family

ID=12643446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4270483A Granted JPS59167851A (en) 1983-03-14 1983-03-14 Method and apparatus for manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59167851A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585672A (en) * 1978-12-25 1980-06-27 Nec Corp Sputtering apparatus
JPS57179952A (en) * 1981-04-24 1982-11-05 Fuji Photo Film Co Ltd Method and apparatus for magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585672A (en) * 1978-12-25 1980-06-27 Nec Corp Sputtering apparatus
JPS57179952A (en) * 1981-04-24 1982-11-05 Fuji Photo Film Co Ltd Method and apparatus for magnetic recording medium

Also Published As

Publication number Publication date
JPH0552565B2 (en) 1993-08-05

Similar Documents

Publication Publication Date Title
JPH0411625B2 (en)
JPS59167851A (en) Method and apparatus for manufacturing magnetic recording medium
JPH0626018B2 (en) Method of manufacturing magnetic recording medium
JPS59150083A (en) Vacuum deposition device
US5122392A (en) Method and apparatus for manufacturing magnetic recording medium
JPS61289533A (en) Manufacture of magnetic recording medium and its device
JP3204719B2 (en) Manufacturing method of magnetic recording medium
JP2668953B2 (en) Manufacturing method of magnetic recording medium
JPS61278032A (en) Method and device for manufacturing magnetic recording medium
JPH11193460A (en) Winding device in vacuum vessel
JPS61159573A (en) Vacuum depositing apparatus
JPS61214135A (en) Production of magnetic recording medium
JPH05101383A (en) Manufacture of magnetic recording medium
JPS59172163A (en) Production of vertical magnetic recording medium
JPH053052B2 (en)
JPS61187127A (en) Manufacture of magnetic recording medium
JPS6032127A (en) Production of magnetic recording medium
JPS60147933A (en) Magnetic recording medium manufacturing device
JPS59172164A (en) Production of magnetic recording medium
JPH04168275A (en) Production of thin film
JPS60119638A (en) Method and apparatus for manufacturing magnetic recording medium
JPS5922234A (en) Production of vertical magnetic recording medium
JPH11209871A (en) Continuous foil production device
JPS61278031A (en) Method and device for manufacturing magnetic recording medium
JPH07192259A (en) Production of magnetic recording medium