JPS59167035A - Formation of interelement isolation region - Google Patents
Formation of interelement isolation regionInfo
- Publication number
- JPS59167035A JPS59167035A JP4124783A JP4124783A JPS59167035A JP S59167035 A JPS59167035 A JP S59167035A JP 4124783 A JP4124783 A JP 4124783A JP 4124783 A JP4124783 A JP 4124783A JP S59167035 A JPS59167035 A JP S59167035A
- Authority
- JP
- Japan
- Prior art keywords
- resist
- film
- region
- isolation region
- insulating film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44B—MACHINES, APPARATUS OR TOOLS FOR ARTISTIC WORK, e.g. FOR SCULPTURING, GUILLOCHING, CARVING, BRANDING, INLAYING
- B44B5/00—Machines or apparatus for embossing decorations or marks, e.g. embossing coins
- B44B5/0052—Machines or apparatus for embossing decorations or marks, e.g. embossing coins by pressing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Local Oxidation Of Silicon (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、MO8形トランジスタなどの半導体素子を集
積化して製造する際に用いられる素子間分離技術に関し
、特に素子間分離領域においてバーズビークを発生させ
ることなく、絶縁分離を行うことができる素子間分離の
形成方法に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an element isolation technique used when manufacturing semiconductor elements such as MO8 type transistors in an integrated manner, and particularly relates to an element isolation technique that causes bird's beak to occur in an element isolation region. The present invention relates to a method for forming isolation between elements, which allows isolation to be performed without any problems.
従来、MO8形トランジスタなどの半導体素子を集積化
して製造する際に用いられている素子間分離の形成方法
とし、ては第1図(ト)乃至(2)に示すものがある。2. Description of the Related Art Conventionally, methods for forming isolation between elements used when manufacturing semiconductor elements such as MO8 type transistors in an integrated manner are shown in FIGS. 1(G) to 1(2).
同図において、(1)はシリコンなどの半導体基板、(
2)はシリコン酸化膜、(3)はシリコン窒化膜、(4
)はレジス)、(11)u素子間分離領域、(12)は
活性化領域、(13)は素子間分離領域(11)に選択
酸化により形成された分離酸化膜、(21)は分離酸化
膜(13)の形成時にできたバーズビークと呼ばれる形
状の酸化膜の吊状領域である。In the figure, (1) is a semiconductor substrate such as silicon, (
2) is a silicon oxide film, (3) is a silicon nitride film, and (4) is a silicon nitride film.
) is a resist), (11) u element isolation region, (12) is an activation region, (13) is an isolation oxide film formed by selective oxidation in the element isolation region (11), (21) is isolation oxidation. This is a hanging region of the oxide film in the shape called a bird's beak that was created during the formation of the film (13).
従来よシ使用されている素子間分離方法は、シリコン基
板(1)上の活性化領域(12)tシリコン窒化膜(3
)で被覆して、選択酸化法によシ第1図(4)乃至(2
)で示す工程で行われている。まず、シリコン基板(1
)上にシリコン酸化1t!(2)e形成した後シリコン
酸化膜(3)全形成する(第1図(A))。ここで、シ
リコン窒化膜(3)の下にシリコン酸化膜(2)を形成
するのは、半導体基板(1)とシリコン窒化膜(3)と
の熱膨張係数の違いによるストレスを緩和するためであ
る。その後、活性化領域(12)に対応した領域にレジ
メ)(4)v被覆しく第1図03) ) 、次に、この
レジス)(4)′fI:マスクにしてシリコン窒化膜(
3)ヲエッチングする(第1図(C))。次いで、例え
ば高温の酸素雰囲気中で長時間熱酸化処理して分離酸化
膜(13)を形成する(第1図0)))。このように、
シリコン窒化膜(3)で被覆されている活性化領域(1
2)は酸素の拡散が少なく、はとんどシリコン基板と反
応せず、また、シリコン窒化膜(3)のない素子間分離
領域(11)は酸素と反応して分離酸化膜(13)が形
成される。The device isolation method conventionally used is to form an active region (12) on a silicon substrate (1) and a silicon nitride film (3).
) and then selectively oxidized by coating (4) to (2).
). First, silicon substrate (1
) 1t of silicon oxide on top! (2) After forming e, a silicon oxide film (3) is completely formed (FIG. 1(A)). The reason why the silicon oxide film (2) is formed under the silicon nitride film (3) is to alleviate stress caused by the difference in thermal expansion coefficient between the semiconductor substrate (1) and the silicon nitride film (3). be. Thereafter, the region corresponding to the activated region (12) is coated with a resist (4)v (FIG. 103)), and then this resist (4)'fI: is used as a mask to cover the silicon nitride film (
3) Etch it (Fig. 1(C)). Then, for example, thermal oxidation treatment is performed for a long time in a high temperature oxygen atmosphere to form an isolation oxide film (13) (FIG. 10)). in this way,
An active region (1) covered with a silicon nitride film (3)
2) has little oxygen diffusion and hardly reacts with the silicon substrate, and the isolation region (11) without the silicon nitride film (3) reacts with oxygen to form the isolation oxide film (13). It is formed.
しかしながら、このような従来の素子間分離方法は、選
択酸化法により形成された分離酸化膜が基板上に分離酸
化膜厚の1/2程度盛シ上がり、同時にシリコン窒化膜
の端部は分離酸化膜がくい込んでしまい、いわゆるバー
ズビークと呼ばれる酸化膜の吊状領域が形成される。こ
のくい込み(バーズビーク)の量は、例えは1μmの膜
厚の分離酸化膜を形成した場合、約0.5μm程度両端
で生じる。このため、超LSI 、例えば256K +
1Mピッ)RA?11などの半導体素子において微細化
、高密度化が困難となる。また、分離酸化膜が活性化領
域よりも盛シ上っているため、その段差部で配線パター
ンなどの段切れを生じやすいという欠点もあった。However, in such conventional device isolation methods, the isolation oxide film formed by selective oxidation is raised on the substrate by about 1/2 of the thickness of the isolation oxide film, and at the same time, the edges of the silicon nitride film are separated from the isolation oxide film. The film sinks in, forming a hanging region of the oxide film called a bird's beak. For example, when an isolation oxide film with a thickness of 1 μm is formed, the amount of this intrusion (bird's beak) is approximately 0.5 μm at both ends. For this reason, very large scale integrated circuits, such as 256K +
1M beep) RA? It becomes difficult to miniaturize and increase density in semiconductor elements such as No. 11. Furthermore, since the isolation oxide film is raised higher than the active region, there is also the drawback that the wiring pattern is likely to break off at the stepped portion.
本発明は以上の点に鑑み、このような従来の欠点を解決
するためになされたもので、その目的は、素子間分離領
域における分離絶縁膜のくい込みを少なくシ、かつ平坦
な分離絶縁膜全形成することにより、半導体素子の微細
化、高′密度化を達成することかできる素子間分離の形
成方法を提供することにある。In view of the above points, the present invention has been made in order to solve the conventional drawbacks.The purpose of the present invention is to reduce the penetration of the isolation insulating film in the isolation region between elements, and to make the entire isolation insulating film flat. It is an object of the present invention to provide a method for forming isolation between elements, which can achieve miniaturization and high density of semiconductor elements.
このような目的を達成するために、本発明は、半導体基
板上の素子間分離領域外の領域にレジストに形成する工
程と、このレジストをマスクにして素子間分離領域をエ
ツチングして溝部を形成する工程と、前記レジメ)1除
去したのち前記半導体基板上にCVD法またはスパッタ
法などの薄膜堆積法により絶縁膜を形成する工程と、こ
の絶縁膜上にポジ形しジストヲ塗布したのち該レジスト
にエネルギー照射を行う工程と、照射されたポジ形レジ
スト全現像処理して除去する工程と、素子間分離領域上
に残ったポジ形しジス)kマスクにして前記絶縁膜をプ
ラズマまたはウェットケミカル法によりエツチングする
工程と、残ったポジ形レジストを除去したのち高圧酸化
法などで熱酸化を行う工程を上記の順序で行うものであ
り、以下実施例を用いて詳細に説明する。In order to achieve such an object, the present invention includes a step of forming a resist in a region outside the device isolation region on a semiconductor substrate, and a step of etching the device isolation region using this resist as a mask to form a groove. a step of forming an insulating film on the semiconductor substrate by a thin film deposition method such as a CVD method or a sputtering method after removing the above-mentioned regimen) 1; and a step of applying a positive resist on the insulating film and then applying a resist to the resist. A step of performing energy irradiation, a step of completely developing and removing the irradiated positive resist, and a step of removing the positive resist remaining on the element isolation region by using a mask to remove the insulating film using a plasma or wet chemical method. The etching step and the step of removing the remaining positive resist and then performing thermal oxidation by high-pressure oxidation or the like are performed in the above order, and will be explained in detail below using examples.
第2図囚乃至旬は本発明の一実施例における分熱酸化膜
の形成方法金示す工程断面図であシ、同図において第1
図と同一または相当部分は同一符号を付しである。Figures 2 to 2 are cross-sectional views showing a method for forming a thermally oxidized film in an embodiment of the present invention.
The same or corresponding parts as in the figures are given the same reference numerals.
オす、シリコン基板(1)上に輩化シリコン膜(3)が
形成された基板上に光またはEB (電子ビーム)用の
レジスト(図示せず)を被覆した後、素子間分離領域(
11)に光または電子ビームを照射し、現像してこの部
分のレジスト全除去し、その後、残ったレジストをマス
クにしてRIE (反応性イオンエツチング)などによ
りシリコン基板(1)’にエツチングして素子間分離領
域(11)に断面が凹形状を有する溝部(5)全形成す
る。この場合、エツチングはフッ素系ガスを使用する場
合が多く、例えば0.54mエツチングするためには、
(CF4 + 02)ガスを用い、13 Pa 、 0
.5 W/cwt2の条件で約5分エツチングすること
が必要である。次に、このようにしてエツチングされた
シリコン基板(1)からレジスト全除去し、しかる後C
VD法、スパッタ法またdEB蒸着法などの低温による
薄膜堆積法によりシリコン基板(1)上に絶縁膜として
のシリコン酸化膜(6)をデポジットする(第2図の)
)。この際、シリコン酸化膜(6)の厚さはシリコン基
板(1)の素子分離領域(11)に形成されたエツチン
グ溝部(5)の深さと同程度にするが、この溝部分はこ
れより厚くなってそれに応じた形状を呈することになる
。After coating a resist for light or EB (electron beam) (not shown) on the substrate on which the oxidized silicon film (3) is formed on the silicon substrate (1),
11) is irradiated with light or an electron beam and developed to completely remove the resist in this area.Then, using the remaining resist as a mask, the silicon substrate (1)' is etched by RIE (reactive ion etching) or the like. A groove portion (5) having a concave cross section is entirely formed in the element isolation region (11). In this case, fluorine-based gas is often used for etching. For example, in order to etch 0.54m,
Using (CF4 + 02) gas, 13 Pa, 0
.. It is necessary to perform etching for about 5 minutes under the condition of 5 W/cwt2. Next, the resist is completely removed from the silicon substrate (1) etched in this way, and then C.
A silicon oxide film (6) as an insulating film is deposited on a silicon substrate (1) by a low-temperature thin film deposition method such as a VD method, a sputtering method, or a dEB deposition method (as shown in Fig. 2).
). At this time, the thickness of the silicon oxide film (6) is made to be approximately the same as the depth of the etching groove (5) formed in the element isolation region (11) of the silicon substrate (1), but this groove is thicker than this. Therefore, it will take on a corresponding shape.
次いで、シリコン酸化膜(6)が形成されたシリコン基
板(1)上に、例えばPMrviAなどのポジ形EBレ
ジスト(7)k m部した後、このシリコン基板(1)
上全面に荷電粒子線としての電子ビーム(10> V照
射する(第2図(0)。この際、電子ビーム(10)が
素子間分離領域外ではレジスト(7)内に十分に入射し
て底部まで到達し、かつ素子分離領域内では底部まで到
達せずシリコン酸化膜(6)の表面とtXぼ同じ深さま
で到達するように照射される。次いで、電子ビームが照
射されて可溶化されたポジ形EBレジス) (7) t
−現像処理して除去することにより、素子間分離領域(
11)上にだけポジ形EBレジスト(7)が残る(第2
図(6))。次いで、この残ったポジ形EBレジスト(
7)ヲマスクにしてシリコン酸化wX(6)’にプラズ
マエツチング法またはウェットケミカルエツチング法に
より除去する(第2図(ト))。この際、プラズマエツ
チング法を使用する場合は(CF4+H2)混合ガスを
用い、ウェットケミカルエツチング法による場合はHF
液などを用いればよく、活性領域(12)上の酸化膜を
完全に除去するために、ややオーバーぎみにエツチング
を行う必要がある。Next, a positive EB resist (7) such as PMrviA is applied onto the silicon substrate (1) on which the silicon oxide film (6) is formed, and then this silicon substrate (1) is coated with a positive EB resist (7) such as PMrviA.
The entire upper surface is irradiated with an electron beam (10>V) as a charged particle beam (Fig. 2 (0). At this time, the electron beam (10) is sufficiently incident on the resist (7) outside the element isolation region. The electron beam is irradiated so that it reaches the bottom, but does not reach the bottom in the element isolation region, but reaches approximately the same depth as the surface of the silicon oxide film (6).Next, the electron beam is irradiated and solubilized. positive type EB register) (7) t
-By developing and removing, the inter-element isolation region (
11) Positive EB resist (7) remains only on top (second
Figure (6)). Next, this remaining positive EB resist (
7) Using a mask, the silicon oxide wX(6)' is removed by plasma etching or wet chemical etching (FIG. 2(g)). At this time, when using the plasma etching method, use a (CF4 + H2) mixed gas, and when using the wet chemical etching method, use HF.
A liquid or the like may be used, and in order to completely remove the oxide film on the active region (12), it is necessary to perform etching slightly overly.
そのため、第2図(ト)のように素子間分離領域(11
)上のシリコン酸化膜(6)のエツジ部分がエツチング
されることになる。なお、符号(8)はこのオーバーエ
ッチでできた素子間分離領域(11)のくぼみである。Therefore, as shown in FIG.
) will be etched. Note that reference numeral (8) indicates a depression in the element isolation region (11) created by this overetching.
次いで、このエツジ部分のくほみ(8)ヲ埋めるために
、素子間分離領域(11)上に残ったレジスト(7)を
除去した後(第2図(ロ))、第2図(Qに示すように
、高圧酸化法などで短時間酸化を行うことにより、前記
くぼみ(8)が熱酸化膜(9)にて埋め込まれ、素子間
分離領域(11) を平坦化する仁とができる。Next, in order to fill in the holes (8) in this edge portion, the resist (7) remaining on the element isolation region (11) is removed (FIG. 2(b)), and then the resist (7) in FIG. As shown in Figure 2, by performing oxidation for a short time using a high-pressure oxidation method or the like, the recess (8) is filled with a thermal oxide film (9), forming a layer that flattens the isolation region (11). .
本発明では、素子間分離領域を高温で長時間酸化する工
程がないため、酸化膜のくい込み現象(バーズビーク)
が発生しない。すなわち、従来の分離酸化膜形成は10
00℃前後の高温処理を行うのに比べて、本発す」の場
合は、シリコン酸化膜などの絶縁膜をCVD法では50
0℃〜800℃、蒸着法では100℃前後の低温状態で
行うため、従来の方法による問題を生じない。CVD法
または蒸着法によシ形成するシリコン酸化膜の絶縁膜は
、エツチングで形成した素子間分離領域(u)のm部(
5)の深さと同程度の厚さであればよい。素子間分離領
域(11)上は大きくくほんだ糎部(5)が形成されて
おplこの溝部分のし1シストは他の部分に比べて約1
.5〜2倍程度厚くなっており、例えIIf、PMMA
を1.5μm塗布すれば、素子間分離領域(11)上に
残ったレジストの厚さ#′i2.0〜2.5μmになる
。ここで、例えば電子ビーム(EB) w 10 KV
で約5×1O−5C/傭2照射すれば、EBは約1.5
μmの深さまで到達するため、素子間分離領域(11)
上身外のレジストは底部まで全部現像液に対して可溶と
なる。そして、この素子間分子!領域(11)上に残っ
たレジストをマスクに前記したエツチングを行うことに
よシ、素子間分離領域全形成する。この場合、エツチン
グは、活性領域(12)と素子間分離領域(11)が平
坦になったときに終らせることは技術的に困難であシ、
通常はややオーバーぎみにエツチングを行うことになる
。よって、本発明では、このエツチングにょシ生じた素
子間領域のくほみ(第2図(転)の符号(8))を高圧
酸化法などで埋めることにより、平坦な素子間分離酸化
wXを形成することができる。なお、素子間分離領域(
11)のくぼみ(8)は小さなものであり、酸化時間も
短かくてよい。In the present invention, since there is no step of oxidizing the isolation region between elements at high temperature for a long time, the phenomenon of oxide film penetration (bird's beak) occurs.
does not occur. In other words, conventional isolation oxide film formation requires 10
Compared to high-temperature processing at around 00°C, in the case of this method, insulating films such as silicon oxide films are
Since it is carried out at a low temperature of 0°C to 800°C, and around 100°C in the case of vapor deposition, problems caused by conventional methods do not occur. The insulating film of silicon oxide film formed by the CVD method or vapor deposition method is applied to the m part (
The thickness may be approximately the same as the depth in 5). A large, concave adhesive part (5) is formed on the inter-element isolation region (11), and the thickness of this groove part is about 1 cyst compared to other parts.
.. It is about 5 to 2 times thicker, for example IIf, PMMA.
If 1.5 μm of resist is applied, the thickness #'i of the resist remaining on the element isolation region (11) will be 2.0 to 2.5 μm. Here, for example, an electron beam (EB) w 10 KV
If you irradiate about 5×1O-5C/2, the EB will be about 1.5.
Inter-element isolation region (11) to reach a depth of μm
All of the resist outside the top, down to the bottom, becomes soluble in the developer. And this inter-element molecule! By performing the above-described etching using the resist remaining on the region (11) as a mask, the entire element isolation region is formed. In this case, it is technically difficult to finish the etching when the active region (12) and the isolation region (11) have become flat;
Normally, etching will be done slightly over-etching. Therefore, in the present invention, by filling in the gaps in the inter-element region caused by etching (symbol (8) in FIG. can be formed. Note that the isolation region between elements (
The depressions (8) in 11) are small, and the oxidation time may be short.
なお、以上の実施例ではシリコン基板(1)上にシリコ
ン窒化膜が形成された基板を用いる場合について示した
が、このシリコン窒化膜は省いてもよい。また、半導体
基板上に形成する分離用の絶縁膜は、シリコン酸化膜の
他に、低温状態で薄膜の形成可能な絶縁膜であれによく
、また下地として500八以下の薄い熱酸化膜を施して
もよい。さらには、エネルギー照射を行う荷電粒子線と
して電子ビームの他にイオンビーム全周いた夛、また光
照射を利用しても同様の効果が得られる。Note that although the above embodiments have been described using a substrate in which a silicon nitride film is formed on a silicon substrate (1), this silicon nitride film may be omitted. In addition to the silicon oxide film, the isolation insulating film formed on the semiconductor substrate may be any insulating film that can be formed into a thin film at low temperatures, and a thin thermal oxide film of 500% or less may be applied as a base. It's okay. Furthermore, similar effects can be obtained by using, in addition to an electron beam, an ion beam or light irradiation as a charged particle beam for energy irradiation.
以上説明したように、本発明の素子間分離の形成方法に
よれば、半導体基板上の素子間分離領域に溝部を形成し
、該半導体基板上に低温による薄膜j&積法によりシリ
コン酸化膜などの絶縁膜を形成し、この絶縁膜上にポジ
形レジストを塗布して該レジスト上にエネルギー照射を
行うとともに現像処理を行った後、素子間分離領域に残
ったレジストをマスクにして絶縁膜のエツチングを行い
、しかる後レジストを除去して高圧酸化法などで熱酸化
を行うことにより、従来法によるバーズビークをなくす
ことができるので、分離絶縁膜のくい込みが少なくなシ
、したがって、超LSIなどの半導体素子の高密度化が
可能となる。また、オーバーエッチでできる素子間分離
領域のくぼみを熱酸化膜で埋め込むことができるので、
平坦な分離酸化膜が得られ、半導体基板表面が平坦化さ
れて配線パターンの段切れなどの発生を防止できる効果
がある。As explained above, according to the method for forming element isolation of the present invention, a groove is formed in an element isolation region on a semiconductor substrate, and a silicon oxide film or the like is formed on the semiconductor substrate by a thin film deposition method at low temperature. After forming an insulating film, applying a positive resist on the insulating film, irradiating the resist with energy, and performing a development process, the insulating film is etched using the resist remaining in the element isolation region as a mask. By removing the resist and performing thermal oxidation using high-pressure oxidation, it is possible to eliminate the bird's beak caused by conventional methods, thereby reducing the amount of penetration of the isolation insulating film, and thereby improving the performance of semiconductors such as VLSIs. It becomes possible to increase the density of elements. In addition, the depressions in the isolation region created by over-etching can be filled with a thermal oxide film.
A flat isolation oxide film can be obtained, the surface of the semiconductor substrate can be flattened, and there is an effect that the occurrence of disconnections in the wiring pattern can be prevented.
第1図(2)乃至(2)は従来の分離酸化膜の形成方法
を示す工程断面図、第2図(4)乃至(Qは本発明の一
実施例における分離酸化膜の形成方法を示す工程断面図
である。
(1)・・・・シリコン基板、(3)・・・・シリコン
♀化膜、(5)・・・・溝部、(6)・・・・シリコン
酸化膜(絶縁膜)、(7)・・・・ポジ形EBレジスト
、(8)・・・・素子間分離領域のくぼみ、(9)・・
・・熱酸化1ffl、(10,)・・・・電子ビーム(
EB)、(11)・・・・ 素子分離領域、(12)・
・・・ 活性化領域。
代理人 葛野信−
第1図
第2図
第2図FIGS. 1(2) to (2) are process cross-sectional views showing a conventional method for forming an isolation oxide film, and FIGS. 2(4) to (Q) show a method for forming an isolation oxide film in an embodiment of the present invention. It is a cross-sectional view of the process. (1)...Silicon substrate, (3)...Silicon oxide film, (5)...Groove portion, (6)...Silicon oxide film (insulating film). ), (7)... Positive EB resist, (8)... Recess in element isolation region, (9)...
・・Thermal oxidation 1ffl, (10,)・・・・Electron beam (
EB), (11)... element isolation region, (12)...
...Activation area. Agent Makoto Kuzuno - Figure 1 Figure 2 Figure 2
Claims (6)
トヲ形成する工程と、仁のレジストをマスクにして素子
間分離領域をエツチングして溝部を形成する工程と、前
記レジストを除去したのち前記半導体基板上にCVD法
またはスパッタ法などの薄膜堆積法により絶縁膜を形成
する工程と、この絶縁膜上にポジ形しジスト’2塗布し
たのち該レジストにエネルギー照射を行う工程と、照射
されたポジ形しジストヲ現像処理して除去する工程と、
素子間分離領域上に残ったポジ形しジスifマスクにし
て前記絶縁膜をグ2ズマまた#iミラエツトケミカルに
よシエッチングする工程と、残ったポジ形しジス)を除
去したのち高圧酸化法などで熱酸化を行う工程とからな
ること全特徴とする素子間分離の形成方法。(1) A step of forming a resist in a region outside the device isolation region on the semiconductor substrate, a step of etching the device isolation region using a thick resist as a mask to form a groove, and a step of removing the resist and then etching the device isolation region. A step of forming an insulating film on a semiconductor substrate by a thin film deposition method such as a CVD method or a sputtering method, a step of applying energy to the resist after applying a positive resist '2 on the insulating film, and a step of irradiating the resist with energy. A step of developing and removing the positive molding,
A step of etching the insulating film using a positive-type resistor mask remaining on the isolation region between the elements, and a process of etching the insulating film using a plasma or #i Miraet chemical, and a high-pressure oxidation process after removing the remaining positive-type resistor. A method for forming isolation between elements, which is characterized in that it consists of a step of thermal oxidation using a method such as a thermal oxidation process.
成されたシリコン基板であることを特徴とする特許請求
の範囲第1項記載の素子間分離の形成方法。(2) The method for forming element isolation according to claim 1, wherein the semiconductor substrate is a silicon substrate having a silicon nitride film formed on its main surface.
特許請求の範囲第1項または第2項記載の素子間分離の
形成方法。(3) The method for forming element isolation according to claim 1 or 2, wherein the insulating film is a silicon oxide film.
た溝部の深さと同程度にすることを特徴とする特許請求
の範囲第1項乃至第3項のいずれかの項に記載の素子間
分離の形成方法。(4) The device according to any one of claims 1 to 3, wherein the thickness of the insulating film outside the device isolation region is approximately the same as the depth of the etched groove. How to form a separation.
とする特許請求の範囲第1項乃至第4項のいずれかの項
に記載の素子間分離の形成方法。(5) The method for forming isolation between elements according to any one of claims 1 to 4, characterized in that a thin thermal oxide film is used as an insulating deoxidizing base.
徴とする特許請求の範囲第1項乃至第5項のいずれかの
項に記載の素子間分離の形成方法。 σ)EB用レしスト鉱素子間分離領域外では荷電粒子線
のエネルギー照射が底まで到達する厚さであり、素子間
分離領域では底まで到達し得ない厚さであることを特徴
とする特許請求の範囲第6項記載の素子間分離の形成方
法。(6) The method for forming isolation between elements according to any one of claims 1 to 5, wherein the positive resist is an EB resist. σ) Rest mineral for EB The thickness is such that the energy irradiation of the charged particle beam reaches the bottom outside the inter-element isolation region, and the thickness is such that it cannot reach the bottom in the inter-element isolation region. A method for forming isolation between elements according to claim 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4124783A JPS59167035A (en) | 1983-03-11 | 1983-03-11 | Formation of interelement isolation region |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4124783A JPS59167035A (en) | 1983-03-11 | 1983-03-11 | Formation of interelement isolation region |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59167035A true JPS59167035A (en) | 1984-09-20 |
Family
ID=12603103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4124783A Pending JPS59167035A (en) | 1983-03-11 | 1983-03-11 | Formation of interelement isolation region |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59167035A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4945069A (en) * | 1988-12-16 | 1990-07-31 | Texas Instruments, Incorporated | Organic space holder for trench processing |
-
1983
- 1983-03-11 JP JP4124783A patent/JPS59167035A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4945069A (en) * | 1988-12-16 | 1990-07-31 | Texas Instruments, Incorporated | Organic space holder for trench processing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6514672B2 (en) | Dry development process for a bi-layer resist system | |
US4333964A (en) | Method of making integrated circuits | |
US4333965A (en) | Method of making integrated circuits | |
JPH10303290A (en) | Component isolating method of semiconductor device | |
KR100415088B1 (en) | method for fabricating semiconductor device | |
US6380610B1 (en) | Dislocation free local oxidation of silicon with suppression of narrow space field oxide thinning effect | |
JPS59167035A (en) | Formation of interelement isolation region | |
JPH0281426A (en) | Manufacture of semiconductor device | |
JPS59175137A (en) | Manufacture of semiconductor device | |
JPH07135247A (en) | Manufacture of semiconductor device | |
JPS6058636A (en) | Forming of dielectric isolation region | |
KR100338091B1 (en) | Method for manufacturing semiconductor device | |
JPS59167034A (en) | Formation of interelement isolation region | |
KR100320445B1 (en) | Trench Formation Method in Semiconductor Devices | |
JPS6339103B2 (en) | ||
JPS59141243A (en) | Forming method of inter-element isolation | |
US3477123A (en) | Masking technique for area reduction of planar transistors | |
JPH0467648A (en) | Manufacture of semiconductor device | |
JPS59175135A (en) | Manufacture of semiconductor device | |
KR0172302B1 (en) | Method of manufacturing semiconductor device | |
JPH09181077A (en) | Semiconductor device and manufacturing method thereof | |
JPS5928358A (en) | Manufacture of semiconductor device | |
JPS59175136A (en) | Manufacture of semiconductor device | |
JPS59175138A (en) | Manufacture of semiconductor device | |
JPH02229431A (en) | Manufacture of semiconductor device |