JPS59166629A - Cooling method of steel strip - Google Patents
Cooling method of steel stripInfo
- Publication number
- JPS59166629A JPS59166629A JP3912383A JP3912383A JPS59166629A JP S59166629 A JPS59166629 A JP S59166629A JP 3912383 A JP3912383 A JP 3912383A JP 3912383 A JP3912383 A JP 3912383A JP S59166629 A JPS59166629 A JP S59166629A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- steel strip
- roll
- temp
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/573—Continuous furnaces for strip or wire with cooling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は内部を冷却したロールにより鋼帯を冷却するに
際し鋼帯のロールへの密着度を良好にして11m1方向
に均一な冷却を得る方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cooling a steel strip using internally cooled rolls by improving the degree of adhesion of the steel strip to the rolls and obtaining uniform cooling in a direction of 11 m.
連続焼鈍炉等における高温の鋼帯の冷却方法としてはガ
スを吹付けるガスジェット方式、気液混合のミストを吹
付けるミスト冷却、水スプレ一方式、水中へ浸漬させる
方式、および内部を冷却したロールに鋼帯を巻付けて冷
却するロール冷却法などがある。これらの方法のうちガ
スジェット方式は送風機のエネルギー消費量が大である
という欠点がある。また、水と鋼帯が直接に接触するよ
うな方式においては水中の酸素にまり鋼帯表面に酸化膜
が形成され色が付く等の問題があり、その場合後処理設
備が必要となり設備費が大となる欠点がある。これらの
方式に対してロール冷却法はエネルギー消費量や設備費
か小であるとともに銅帯の表面性状も良好に保たれると
いう特徴があるため連続焼鈍φ等に採用されつつある。Methods for cooling high-temperature steel strips in continuous annealing furnaces, etc. include a gas jet method that sprays gas, a mist cooling method that sprays a gas-liquid mixture mist, a water spray method, a method that immerses the steel strip in water, and a roll that is internally cooled. There is a roll cooling method in which a steel strip is wrapped around the material to cool it. Among these methods, the gas jet method has the disadvantage that the energy consumption of the blower is large. In addition, in methods where water and steel strip come into direct contact, there are problems such as the formation of an oxide film on the surface of the steel strip due to the presence of oxygen in the water, which causes discoloration. In this case, post-treatment equipment is required, which increases equipment costs. There are major drawbacks. In contrast to these methods, the roll cooling method is being adopted for continuous annealing φ, etc. because it has the characteristics of low energy consumption and equipment cost, and good surface quality of the copper strip.
しかしながら、ロール冷却法においては冷却が幅方向に
不均一になりやすく、そのため特に薄物において冷却不
均一に起因する平坦度悪化が生じやすいという問題かあ
る。発明者らはこの問題について種々の検討を行い、ロ
ール・鋼帯間の間隙のガスの熱膨張による銅帯の浮上り
が冷却不均一の原因のひとつであることをつきとめ本発
明を導出するのに至った。以下にその内容を説明する。However, in the roll cooling method, cooling tends to be uneven in the width direction, and therefore, there is a problem that flatness is likely to deteriorate due to uneven cooling, especially in thin objects. The inventors conducted various studies on this problem and found that the lifting of the copper strip due to thermal expansion of the gas in the gap between the roll and the steel strip was one of the causes of uneven cooling, and the present invention was developed. reached. The contents will be explained below.
鋼帯と冷却ロールの接触面をミクロに見ると、鋼帯の張
力により発生ずる接触面圧が非雷に小さいため第1図の
ように表面の細かい凹凸のごく一部で接しているにすぎ
ない。ここで、真に接している面積S1と見かり上の接
触面積S。との比は近似的に次式で求められる。If we look at the contact surface between the steel strip and the cooling roll microscopically, the contact surface pressure generated by the tension of the steel strip is extremely small, so the contact is only at a small portion of the fine irregularities on the surface, as shown in Figure 1. do not have. Here, the true contact area S1 and the apparent contact area S. The ratio between .
31 P
ここでP:接触圧力(kg/龍2)
H:軟い方の材料のかたさくkg/llll2)ロール
に鋼帯が巻き付いている(巻付角は任意)ときの接触圧
力Pは次式で求められる。31 P Where, P: Contact pressure (kg/Ryu2) H: Hardness of the softer material kg/llll2) When the steel strip is wrapped around a roll (the wrapping angle is arbitrary), the contact pressure P is as follows: It is determined by the formula.
σ t
P= −(kg/mm2) (21ここでσ
;張力応力(kg/龍2)
t:板厚 (IIIl)
R:ロール半径(鰭)
標準的な計算例を述べると、例えばσ−1kg/龍2、
t=0.4肚、R= 400鰭とするとP = 0.0
01kg / III 2即ち、約0.1気圧となり、
高温を想定してH= 20kg /關2とするとて、=
0.00005 (0,005%)となる。即ち可−
はきわめて小さく、条件が変わってsoが変化しても見
かけ上の接触面積の殆ど大部分は非接触であることがわ
かる。この非接触の部分には銅帯がロールに巻イ」<と
きに巻込まれた雰囲気ガスが存在している。したがって
、このガスの温度Tqは、ロールと鋼帯との間にはさま
れる直前には雰囲気ガスの温度−に等しく、また、鋼帯
とロールとの間にはさまれた直後(きわめて短い時間の
間)も雰囲気ガスの温度にほぼ等しい。そして鋼帯とロ
ール間にはさまれてからは鋼帯による加熱とロールによ
る冷却を受け、短い時間で鋼帯温度−とロール表面温度
TRの平均値−「−程度の値Tに達する。(より詳細に
見れば、間隙のうち鋼帯に近い位置はどTsに近い温度
になりロールに近い位置はど丑に近い温度となるが、こ
のような温度の分布は以下に説明する現象にはあまり影
響しないので、以下、七としては間隙内のガス温度の平
均値を考える。)このように、鋼帯とロール間にはさま
れてから温度が1′6からT1に変化するため、ガスの
圧力&および/又は体積Wか“変化する。ガスを完全ガ
スと考えるとこのときの変化は次式に従う。σ t P= −(kg/mm2) (21 where σ
; Tensile stress (kg/Ryu2) t: Plate thickness (IIIl) R: Roll radius (fin) To give a standard calculation example, for example, σ-1kg/Ryu2,
If t = 0.4 degrees, R = 400 fins, P = 0.0
01kg / III 2, that is, approximately 0.1 atmosphere,
Assuming high temperature and assuming H = 20 kg / 2, =
0.00005 (0,005%). That is, possible.
is extremely small, and it can be seen that even if the conditions change and so changes, most of the apparent contact area remains non-contact. In this non-contact area, atmospheric gas is present when the copper strip is wound on a roll. Therefore, the temperature Tq of this gas is equal to the temperature of the atmospheric gas immediately before it is sandwiched between the roll and the steel strip, and immediately after it is sandwiched between the steel strip and the roll (for a very short time). ) is also approximately equal to the temperature of the atmospheric gas. After being sandwiched between the steel strip and the rolls, the steel strip is heated by the steel strip and cooled by the rolls, and in a short period of time reaches a value T that is approximately - the average value of the steel strip temperature - and the roll surface temperature TR. If we look at it in more detail, the temperature in the gap close to the steel strip is close to Ts, and the temperature close to the roll is close to Doox, but this temperature distribution is not suitable for the phenomenon explained below. Since it does not have much effect, below we will consider the average value of the gas temperature in the gap as 7.) In this way, the temperature changes from 1'6 to T1 after being sandwiched between the steel strip and the rolls, so the gas temperature changes from 1'6 to T1. The pressure &/or volume W of “changes.” Considering the gas as a perfect gas, the change at this time follows the following equation.
ただし、Tqの単位は(”c )である。However, the unit of Tq is ("c").
ここで、従来のロール冷却法の場合の現象を、計算例に
より検討する。従来のロール冷却法では冷却室の雰囲気
温度Toは鋼帯温度πに比べるとかなり低い。ここでは
冷延鋼板の連続焼鈍炉の1次冷却帯の場合を考え、TO
=150℃とする。また、Ts= 700 ’c 、
TR= 100℃、雰囲気の圧力は1気圧とする。張力
σ、板厚t、ロール半径Rについては前述の計算例と同
じとする。したがって、張力により発生する面圧Pは0
.1気圧である。前記理論によりT1は
したがってlは150℃から400℃に上昇することに
なり、式(3)より、&■の値は−i丁−7−ア弓−=
1.6倍になる。したがって、もし、ガスの体積が変化
しないとすれば圧力は1.6倍にな/J1.6気圧にな
ることになる。ところが、鋼帯をロールに押し付けよう
とする力は、外側の雰囲気圧力1気圧と前記の張力によ
る面圧0.1気圧を加えた1、1気圧であり、これは1
.6気圧より小さくつりあわない。Here, the phenomenon in the case of the conventional roll cooling method will be examined using calculation examples. In the conventional roll cooling method, the ambient temperature To in the cooling chamber is considerably lower than the steel strip temperature π. Here, we will consider the case of the primary cooling zone of a continuous annealing furnace for cold-rolled steel sheets.
=150°C. Also, Ts=700'c,
TR=100°C, and the atmospheric pressure is 1 atm. The tension σ, the plate thickness t, and the roll radius R are the same as in the calculation example described above. Therefore, the surface pressure P generated by tension is 0
.. It is 1 atm. According to the above theory, T1 and therefore l will increase from 150°C to 400°C, and from equation (3), the value of &■ is -i-7-a-=
It becomes 1.6 times. Therefore, if the volume of the gas does not change, the pressure will increase by 1.6 times to /J1.6 atm. However, the force trying to press the steel strip against the roll is 1.1 atm, which is the sum of the outside atmospheric pressure of 1 atm and the surface pressure due to the tension of 0.1 atm, which is 1.1 atm.
.. Less than 6 atmospheres and unbalanced.
したがって実際にはガスの体積が約1.45倍になるこ
とによりPcTV◇が1.6倍、hが1.1気圧となる
。Therefore, in reality, the volume of the gas increases by about 1.45 times, so that PcTV◇ becomes 1.6 times and h becomes 1.1 atm.
このとき、ガスの体積が1.45倍になるため、鋼帯ば
ロールから離れ浮いた状態となる。At this time, the volume of the gas increases by 1.45 times, so the steel strip separates from the roll and floats.
以上の計算より、従来法ではガスの熱膨張に起因する銅
帯の浮きが生じる場合が多いと考えられる。さらに、膨
張したガスが周囲のすきまから次第に逃げるため浮きの
程度が幅方向に異なったものになると考えられる。From the above calculations, it is considered that in the conventional method, the copper strip often lifts due to thermal expansion of the gas. Furthermore, it is thought that the degree of floating differs in the width direction because the expanded gas gradually escapes from the surrounding gaps.
以上に分析した如く、従来技術に於いては鋼帯と冷却ロ
ールの接触部分の密着性が不十分であり、冷却効率が落
ちるとともに銅帯の幅方向の冷却も不均一となる問題が
あった。As analyzed above, in the conventional technology, there was a problem that the adhesion between the steel strip and the cooling roll was insufficient, resulting in lower cooling efficiency and uneven cooling in the width direction of the copper strip. .
本発明の目的はこのような従来技術の問題を解決し、冷
却効率が良好で幅方向に均一な鋼帯の冷却方法を提供す
ることにある。An object of the present invention is to solve the problems of the prior art and to provide a method for cooling a steel strip with good cooling efficiency and uniformity in the width direction.
本発明に従うと、冷却ロールの表面に鋼帯を連続的に接
触させて鋼帯を冷却する方法に於いて、該冷却ロールと
該鋼帯との間隙に巻込まれる直前の雰囲気ガスの温度を
冷却前の鋼帯温度と該冷却ロールの表面温度の平均値よ
り大きくすることを特徴とする上記鋼帯の冷却方法が提
供される。According to the present invention, in a method of cooling a steel strip by continuously bringing the steel strip into contact with the surface of a cooling roll, the temperature of the atmospheric gas immediately before being drawn into the gap between the cooling roll and the steel strip is cooled. There is provided a method for cooling a steel strip, characterized in that the temperature of the steel strip is set to be higher than the average value of the previous steel strip temperature and the surface temperature of the cooling roll.
本発明の方法は、冷却ロールを収容する冷却室の雰囲気
ガス全体の温度を冷却前の銅帯温度を冷却ロールの表面
温度の平均値より大きくすることにより達成できるが、
或いは、冷却ロールに鋼帯が巻き付く直前の位置で鋼帯
とロールの間の楔状空間にガスを吹き付け、該ガスの温
度を冷却前の銅帯温度と冷却ロールの表面温度の平均値
より大きくすることによっても達成できる。The method of the present invention can be achieved by increasing the temperature of the entire atmospheric gas in the cooling chamber housing the cooling roll so that the temperature of the copper strip before cooling is higher than the average value of the surface temperature of the cooling roll.
Alternatively, gas is blown into the wedge-shaped space between the steel strip and the roll just before the steel strip is wound around the cooling roll, and the temperature of the gas is made higher than the average value of the temperature of the copper strip before cooling and the surface temperature of the cooling roll. It can also be achieved by doing.
以下本発明を添イ」の図面を参照して更に詳細に説明す
る。Hereinafter, the present invention will be explained in more detail with reference to the accompanying drawings.
第2図は本発明の方法を実施するだめの全体を冷却室内
に配置されたロール冷却装置の概略図である。FIG. 2 is a schematic diagram of a roll chiller, the entire vessel of which is placed within a cooling chamber, for carrying out the method of the invention.
鋼帯1ば内部を冷却されたロール群2a、2b、2c、
2d、及び2eの周りに巻付げられて走行する。この冷
却装置全体は冷却室3内に配置され、雰囲気ガスが調整
されている。Steel strip 1 has internally cooled roll groups 2a, 2b, 2c,
It runs wrapped around 2d and 2e. The entire cooling device is placed in a cooling chamber 3, and the atmospheric gas is adjusted.
本発明に従い、冷却室3の雰囲気全体の温度を冷却前の
鋼帯1の温度と冷却ロール2aの表面温度の平均温度よ
り高く保持してもよく、或いは第2図に示す如く、鋼帯
1と冷却ロール2a、2b、2c、2d、 2eの各々
との間の楔状の空間に配置された平型ノズル4a、 4
b、 4c、 4d、 4eで高温のガスを噴射しても
よい。According to the present invention, the temperature of the entire atmosphere in the cooling chamber 3 may be maintained higher than the average temperature of the temperature of the steel strip 1 before cooling and the surface temperature of the cooling roll 2a, or as shown in FIG. Flat nozzles 4a, 4 arranged in wedge-shaped spaces between the cooling rolls 2a, 2b, 2c, 2d, and 2e.
High temperature gas may be injected in steps b, 4c, 4d, and 4e.
本発明の方法に従い、冷却室の雰囲気温度T。を400
’c又は700°Cにした場合の現象を前述同様に理論
的に分析する。According to the method of the invention, the ambient temperature T in the cooling chamber. 400
The phenomenon when the temperature is 700°C or 700°C will be theoretically analyzed in the same manner as described above.
Toが400 ’cのときには、ガスの温度変化がない
ため、間隙のガスは1気圧であり、外からの圧力1.1
気圧のうち1気圧を間隙のガスが受は持ち0.1気圧を
直接接触部においてロールが受は持つことになる。さら
にT。を400℃より高くしてたとえばTsとおなし7
00″Cとすれば、前記と同様の計算によりPa Ve
の値ば間隙において:o:偶i = 0.7倍になる。When To is 400'c, there is no change in gas temperature, so the gas in the gap is at 1 atm, and the external pressure is 1.1
Of the atmospheric pressure, the gas in the gap receives 1 atm, and the roll receives 0.1 atm in the direct contact area. More T. If the temperature is higher than 400℃, for example, Ts7
00″C, then by the same calculation as above, Pa Ve
If the value of is in the gap: o: even i = 0.7 times.
したがって■が変化しないと考えると&は0.7倍すな
わち0.7気圧となり、外からの圧力1.1気圧のうち
0.7気圧を間隙のガスが受は持ち残り0.4気圧を直
接接触部においてロールが受り持っことになる。すなわ
ち銅帯は、張力による面圧の4倍の圧力でロールに押し
付けられることになる。Therefore, if we consider that ■ does not change, & becomes 0.7 times that is, 0.7 atm, and the gas in the gap receives 0.7 atm out of the 1.1 atm pressure from outside, and the remaining 0.4 atm directly. The roll will be in charge of the contact area. In other words, the copper strip is pressed against the roll with a pressure four times greater than the surface pressure due to tension.
(実際には、このような場合には鋼帯がロールに吸いつ
υ)られる状態になるため、間隙の体積すなわちガスの
体積■は多少減少し、■は0.7気圧より多少大きい値
となる。)
以上のような現象が計算通りに起ごっているかどうかを
調べることば困難であるが、以下に説明するように雰囲
気のガス温度又は噴射ガス温度T。(Actually, in such a case, the steel strip is sucked by the roll υ), so the volume of the gap, that is, the volume of gas ■, decreases somewhat, and ■ becomes a value slightly larger than 0.7 atm. Become. ) It is difficult to check whether the above phenomena occur as calculated, but as explained below, the atmospheric gas temperature or the injection gas temperature T.
を高くする本発明の実験により本発明の効果が確認され
、以上の推定が少くとも定性的には正しいことが確認さ
れた。The effect of the present invention was confirmed by experiments of the present invention to increase the , and the above estimation was confirmed to be correct, at least qualitatively.
実施例
冷延鋼板の連続焼鈍炉の1次冷却帯に設置された冷却ロ
ールの入側にガス吹付はノズルを設置し、各種温度のガ
スをロールと銅帯との間に吹付けるようにし、板厚Q、
4mm、板幅1200mm、入側温度650°C1張力
応力1 kg / mm 2の鋼帯の冷却実験を行なっ
た。本実験においては、ロール表面温度は約120℃で
あった。実験の結果、吹付ガス温度T。が低いほど幅方
向の冷却が不均一となり、エツジ付近の冷却が不十分に
なる傾向が現われ、同時に平坦度の悪化が顕著となった
。これに対して−が600’c以上では幅方向の冷却不
均一および平坦度の悪化はほとんど認められなかった。Example A gas spraying nozzle was installed on the inlet side of the cooling roll installed in the primary cooling zone of a continuous annealing furnace for cold-rolled steel sheets, and gas at various temperatures was sprayed between the roll and the copper strip. Plate thickness Q,
A cooling experiment was conducted on a steel strip with a diameter of 4 mm, a plate width of 1200 mm, an entrance temperature of 650 °C, and a tensile stress of 1 kg/mm2. In this experiment, the roll surface temperature was about 120°C. As a result of the experiment, the blown gas temperature T. The lower the value, the more uneven the cooling in the width direction became, and there was a tendency for the cooling near the edges to become insufficient, and at the same time, the flatness deteriorated more significantly. On the other hand, when - is 600'c or more, non-uniform cooling in the width direction and deterioration in flatness were hardly observed.
第3図には噴射ガス温度T。と鋼帯の冷却速度の関係を
示す。冷却速度は幅中央での値である。第3図よりTo
が高いとかえって冷却速度が大きくなるという一見窩識
に反するが前述の理論から予測される現象が現われてい
ることがわかる。なお、−が小の場合にはエツジが冷え
にくい現象が加わるため、もし銅帯の冷却速度を全幅に
わたっての平均で考えれば、この傾向はさらに強くなる
。Figure 3 shows the injection gas temperature T. shows the relationship between the cooling rate of the steel strip and the cooling rate of the steel strip. The cooling rate is the value at the center of the width. From Figure 3, To
Although this seems contrary to the conventional wisdom that a high cooling rate actually increases the cooling rate, it can be seen that the phenomenon predicted from the above theory is occurring. Note that when - is small, a phenomenon occurs in which the edge is difficult to cool, so if the cooling rate of the copper strip is considered as an average over the entire width, this tendency becomes even stronger.
以上の実験の結果は以下のように解釈される。The results of the above experiments are interpreted as follows.
鋼帯からの熱による冷却ロールのサーマルクラウン(凸
になる)や入側の板形状(中伸び、耳波など。ただし実
験に使用した鋼帯はほぼフラット)の影響で鋼帯とロー
ルの密着度は幅方向に異なる。The close contact between the steel strip and the roll is due to the thermal crown (convexity) of the cooling roll due to the heat from the steel strip and the shape of the plate on the entry side (medium elongation, ear wave, etc. However, the steel strip used in the experiment was almost flat). The degree differs in the width direction.
すなわち、面圧の弱い部分さらに極端な場合には浮いた
部分等が生じる。%が低い場合の間隙のガスの熱膨張は
そのような浮きを助長することになり、また、前述のよ
うにすきまからのガスの逃げ等も幅方向に異なると推定
され、幅方向に浮いた部分が多くなるとともに浮きの程
度も幅方向に異なるようになる。このため幅方向に冷却
速度が異なることになり、温度低下による収縮の度合が
幅方[i′I畏こ異なって平坦度悪化が生しることにな
る。That is, areas where the surface pressure is weak, and in extreme cases, floating areas, etc. occur. When the percentage is low, the thermal expansion of the gas in the gap will promote such floating, and as mentioned above, it is assumed that the escape of gas from the gap will also differ in the width direction. As the number of parts increases, the degree of floating also varies in the width direction. Therefore, the cooling rate differs in the width direction, and the degree of shrinkage due to the temperature drop differs in the width direction, resulting in deterioration of flatness.
これに対して1″0が高い場合には鋼帯がロールに吸い
つけられるため鋼帯とロールは全幅にわたって密着する
。このときにも、サーマルクラウン、板形状等の影響で
、直接接触部を通しての接触圧力は幅方向に異なると考
られるが、間隙のガスの圧力が低くなった場合には第1
図のような状態の鋼帯とロールが通常よりさらに接近し
間隙の体積が小さくなる度合ばかなり小さいと考えられ
る。このことと、ロール冷却法においては面積が非席に
小さい直接接触部を通しての熱伝導より間隙のガスを通
しての熱伝導の方が大きな割合を占めることから、圧力
が変わってT【が変わっても熱の伝わり方はあまり変わ
らないと推定される。このため、丑が高い場合には幅方
向に均一な冷却になると考えられる。第3図のグラフの
傾きがT。大では小さく1小では大きいことも以上の推
論と合致している。On the other hand, when 1″0 is high, the steel strip is attracted to the roll, so the steel strip and roll are in close contact over the entire width.At this time, due to the influence of thermal crown, plate shape, etc. It is thought that the contact pressure of
If the steel strip and roll in the state shown in the figure are closer than usual and the volume of the gap is small, it is considered to be quite small. In addition to this, in the roll cooling method, the heat conduction through the gas in the gap occupies a larger proportion than the heat conduction through the direct contact part, which has an extremely small area, so even if the pressure changes and T It is estimated that the way heat is transferred does not change much. For this reason, it is thought that when the ox is high, cooling will be uniform in the width direction. The slope of the graph in Figure 3 is T. The fact that it is small when it is large and large when it is small by 1 is consistent with the above reasoning.
以上のように本発明にまり鋼帯の均一冷却が可能となっ
た。なおロールと鋼帯との間の間隙は表面あらさと同じ
程度の大きさであるため間隙中のガスの量は弗素に少な
く、このためノズルを用いてロールと鋼帯との間に高温
ガスを吹き付ける場合、その量ばかなり少な(すること
ができる。As described above, the present invention has made it possible to uniformly cool the steel strip. The gap between the roll and the steel strip is about the same size as the surface roughness, so the amount of gas in the gap is smaller than that of fluorine. Therefore, a nozzle is used to inject high-temperature gas between the roll and the steel strip. When spraying, the amount can be quite small.
第1図は冷却ロール表面と鋼帯との接触状態の概略図で
ある。
第2図は本発明の方法の1実施例を実施する装置の概略
図である。
第3図は噴射ガスの温度と鋼帯の冷却速度の関係を示す
グラフである。
(主な参照番号)
1:鋼帯、2a〜2e:冷却ロール、3.冷却室、48
〜4e:ガス噴射ノズル、
出願人 住友金属工業株式会社
代理人 弁理士 新居正彦
第1図
第3図
8
毘
0 200 400 600 80
0C72研は力゛又0羞度〔°C]FIG. 1 is a schematic diagram of the state of contact between the cooling roll surface and the steel strip. FIG. 2 is a schematic diagram of an apparatus for carrying out one embodiment of the method of the invention. FIG. 3 is a graph showing the relationship between the temperature of the injection gas and the cooling rate of the steel strip. (Main reference numbers) 1: Steel strip, 2a-2e: Cooling roll, 3. Cooling room, 48
~4e: Gas injection nozzle, Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Masahiko Arai Figure 1 Figure 3 Figure 8 Bi0 200 400 600 80
0C72 sharpness is power or 0 degree [°C]
Claims (3)
帯を冷却する方法に於いて、該冷却ロールと該鋼帯との
間隙に巻込まれる直前の雰囲気ガスの温度を冷却前の鋼
帯温度と該冷却ロールの表面温度の平均値より大きくす
ることを特徴とする銅帯の冷却方法。(1) In the method of cooling a steel strip by continuously bringing a copper strip into contact with the surface of a cooling roll, the temperature of the atmospheric gas just before it is drawn into the gap between the cooling roll and the steel strip is adjusted to the temperature before cooling. A method for cooling a copper strip, characterized by making the temperature of the steel strip higher than the average value of the surface temperature of the cooling roll.
ールの表面に連続的に接触せしめて鋼帯を冷却する方法
に於いて、該冷却室の雰囲気ガスの温度を冷却前の鋼帯
温度と該冷却ロールの表面温度の平均値より大きくする
ことを特徴とする鋼帯の冷却方法。(2) In a method of cooling a steel strip by continuously bringing the steel strip into contact with the surface of the cooling roll in a cooling chamber that accommodates a cooling roll, the temperature of the atmospheric gas in the cooling chamber is lower than that of the steel strip before cooling. A method for cooling a steel strip, characterized in that the temperature is set to be higher than the average value of the surface temperature of the cooling roll.
帯を冷却する方法に於いて、該冷却ロールに鋼帯か巻き
付く直前の位置で銅帯とロールの間の楔状空間にガスを
吹き付け、該ガスの温度を冷却前の鋼帯温度と冷却ロー
ルの表面温度の平均値より大きくすることを特徴とする
鋼帯の冷却方法。(3) In a method of cooling a copper strip by continuously bringing the copper strip into contact with the surface of a cooling roll, a wedge-shaped space between the copper strip and the roll is placed at a position immediately before the steel strip wraps around the cooling roll. A method for cooling a steel strip, which comprises blowing a gas and making the temperature of the gas higher than the average value of the temperature of the steel strip before cooling and the surface temperature of a cooling roll.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3912383A JPS59166629A (en) | 1983-03-11 | 1983-03-11 | Cooling method of steel strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3912383A JPS59166629A (en) | 1983-03-11 | 1983-03-11 | Cooling method of steel strip |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59166629A true JPS59166629A (en) | 1984-09-20 |
JPH0365410B2 JPH0365410B2 (en) | 1991-10-11 |
Family
ID=12544316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3912383A Granted JPS59166629A (en) | 1983-03-11 | 1983-03-11 | Cooling method of steel strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59166629A (en) |
-
1983
- 1983-03-11 JP JP3912383A patent/JPS59166629A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0365410B2 (en) | 1991-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1069193B1 (en) | Method for controlling the atmosphere and the tension in a furnace for continuously heat treating metal band | |
JPS6356295B2 (en) | ||
JPS6314050B2 (en) | ||
JP3940205B2 (en) | Method of nitriding treatment of grain-oriented electrical steel sheet with small deviation in longitudinal and width direction and apparatus therefor | |
JPS59166629A (en) | Cooling method of steel strip | |
JPS62149820A (en) | Method for cooling steel strip | |
JP2003277833A (en) | Method and device for manufacturing metal plate | |
JPS60255933A (en) | Device for cooling metallic strip | |
JPS6050124A (en) | Method for cooling steel strip with roll | |
JPH11236622A (en) | Method for cooling steel strip in continuous annealing furnace | |
JPH01219128A (en) | Manufacture of thin scale hot rolled steel sheet | |
JPH02277723A (en) | Vertical type continuous annealing furnace | |
JPS60255932A (en) | Device for cooling metallic strip | |
JPS59162230A (en) | Cooling method of steel strip | |
JPH0255619A (en) | Straightening method for flatness of metallic plate | |
JPS6063326A (en) | Continuous annealing installation provided with guide roll | |
JP3153478B2 (en) | Method and apparatus for cooling stainless steel strip | |
JP2768221B2 (en) | Coil grinder device for metal strip | |
JPS6130632A (en) | Cooling method of steel strip | |
JP2001131645A (en) | Continuous heat treating method for steel strip | |
JPS6237699B2 (en) | ||
JPH11129016A (en) | Method of manufacturing hot-steel plate with good tight-scale properties | |
JP2005256093A (en) | Apparatus for controlling thermal-crown | |
JPH06306488A (en) | Continuous heat treating furnace for steel strip preventing generation of drawing on steel strip | |
JP2001323325A (en) | Apparatus and method for cooling metal strip |