JPS60255932A - Device for cooling metallic strip - Google Patents

Device for cooling metallic strip

Info

Publication number
JPS60255932A
JPS60255932A JP11063684A JP11063684A JPS60255932A JP S60255932 A JPS60255932 A JP S60255932A JP 11063684 A JP11063684 A JP 11063684A JP 11063684 A JP11063684 A JP 11063684A JP S60255932 A JPS60255932 A JP S60255932A
Authority
JP
Japan
Prior art keywords
cooling
roll
strip
steel strip
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11063684A
Other languages
Japanese (ja)
Inventor
Yoshio Ono
尾野 善夫
Koji Tanaka
孝司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP11063684A priority Critical patent/JPS60255932A/en
Publication of JPS60255932A publication Critical patent/JPS60255932A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Abstract

PURPOSE:To obtain the titled device capable of cooling a metallic strip uniformly widthwise and lengthwise by blowing a jet gas against the part of contact between a roll and a metallic strip which is transported along the peripheral surface of the cooling roll. CONSTITUTION:A steel strip W winds along the peripheral surface 1.2 of a cooling roll 1 having a refrigerant passage 1.1 inside, and is transported in the direction as shown by the arrow and cooled. In said cooling device, a nozzle 2 is provided at the inlet side of the steel strip W, and a jet gas G is blown against the part of contact C between the surface of the steel strip W and the peripheral surface 1.2 of the cooling roll 1. Accordingly, a gaseous film is formed between the peripheral surface 1.2 of the roll and the surface of the steel strip W, and the strip is cooled at the part of contact C. Consequently, the steel strip W which is transported is cooled widthwise and lengthwise at a uniform cooling rate, and the deformation and unevenness in quality of the steel strip W is prevented.

Description

【発明の詳細な説明】 本発明は、銅帯の連続焼鈍処理工程における鋼帯の冷却
等に好適な金属帯の冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal strip cooling device suitable for cooling a steel strip in a continuous annealing process for copper strips.

調帯の連続焼鈍処理は、鋼帯の材質改善、例えば高張力
の付与、絞り性、加工性の向上等を目的とし、鋼帯の加
熱および冷却を所定のヒートサイクルに従って実施する
ことにより達成される。
Continuous annealing of steel strips aims to improve the material properties of the steel strips, such as imparting high tension, improving drawability, and workability, and is achieved by heating and cooling the steel strips according to a predetermined heat cycle. Ru.

この連続焼鈍処理における銅帯の冷却法として、冷却水
に浸漬する方法、シェフ)ガスを吹付ける方法、あるい
は内部水冷構造を有する冷却ロールを使用する方法等が
実施されてI)る。しかし、冷却水浸漬法は、銅帯が不
必要に低温度まで冷却されるため、その後の過時効処理
において鋼帯をその処理温度まで再加熱するための熱エ
ネルギーを多量に必要とする等の欠点があり、一方ジエ
ンドガス吹付法では、冷却速度がやや緩慢なため、高張
力鋼の焼鈍処理には不向きであるほか、爾後の過時効処
理に長時間装する等の珪点がある。
As a cooling method for the copper strip in this continuous annealing treatment, methods such as immersion in cooling water, spraying with chef's gas, or using a cooling roll having an internal water cooling structure have been implemented. However, with the cooling water immersion method, the copper strip is unnecessarily cooled to a low temperature, and the subsequent overaging treatment requires a large amount of thermal energy to reheat the steel strip to the treatment temperature. On the other hand, the die-end gas spraying method has a rather slow cooling rate, making it unsuitable for annealing high-strength steel, and it also has disadvantages, such as requiring a long period of time for subsequent over-aging treatment.

冷却ロールを用いて冷却を行う方法は、上記浸漬法やジ
ェットガス吹(1法の欠点を補う方法として近時広く使
用されつつある。これは、第6図に示すように、内部冷
却構造を有する冷却ロール(1)を連続焼鈍処理ライン
内に配設し、内部(1・l)への冷却水通人下に、その
胴部局面(1・2)に加熱された調帯を巻回して移動さ
せながら、ロールの胴部周面と銅帯との間の熱伝導によ
り銅帯を冷却する方法である。この場合、一本のロール
で綱帯温度を、例えば650℃から400℃に急激に冷
却すると、調帯の歪の発生、その他の不都合が生じるの
で、通常は、図示のように冷却ロール(1)を複数本直
列に配置し、各段のロールのそれぞれにおける銅帯の降
温幅を適当な値(例えば40〜50℃)に設定し、全部
のロールを通過することにより所定の冷却速度で目標温
度まで冷却されるように処理条件の制御がなされる。
The method of cooling using a cooling roll has recently become widely used as a method to compensate for the drawbacks of the above-mentioned immersion method and jet gas blowing method.This method uses an internal cooling structure as shown in Figure 6. A cooling roll (1) having the above-mentioned structure is placed in a continuous annealing treatment line, and a heated toner belt is wound around the body surface (1/2) while cooling water is flowing into the interior (1/1). In this method, the copper strip is cooled by heat conduction between the circumferential surface of the body of the roll and the copper strip while moving the copper strip.In this case, the temperature of the strip is changed from 650°C to 400°C with one roll. Rapid cooling can cause distortion of the strip and other problems, so normally a plurality of cooling rolls (1) are arranged in series as shown in the figure, and the temperature of the copper strip is lowered by each roll of each stage. The processing conditions are controlled so that the width is set to an appropriate value (for example, 40 to 50° C.) and the material is cooled to a target temperature at a predetermined cooling rate by passing through all the rolls.

しかしながら、調帯を冷却ロールに当接させて移送する
だけでは、調帯の全面を均一に冷却することは至難であ
り、板幅方向および長平方向における張力分布の不均一
に起因する調帯の形くずれや材質のムラが生し易い。そ
れは、冷却ロール部に導入される綱帯の形状が板幅方向
および長手方向とも完全に平坦であるわけでなく、原板
段階や加熱工程で生した所謂耳伸びや中伸び等により、
わずかではあるが波状の凹凸をなしていることによる。
However, it is extremely difficult to uniformly cool the entire surface of the strip by simply transporting the strip in contact with a cooling roll. It is easy to cause deformation and unevenness in the material. This is because the shape of the rope introduced into the cooling roll section is not completely flat in both the sheet width and longitudinal directions, and due to so-called edge elongation and mid-elongation that occur during the original sheet stage and heating process,
This is due to the fact that it is slightly undulating.

そのため冷却ロール部におけるロール周面と鋼帯との当
接部での両者の接触状況をみると、第7図のように冷却
ロール日)の周面(l・2)に直接接触する部分と、接
触しない部分とが牛しる。すなわち、冷却ロール(1)
の周面に幻して凸に湾曲している部分(a)はロール局
面に接触し、凹に湾曲している部分(b)では、ロール
周面との間に空隙(S)が生しる。図は板幅方向を示す
が、長手方向についても同様である。接触部分(a)は
急速に冷却され、非接触部(b)は空i (S)の空気
層の断熱効果をうけ、冷却速度は極めて緩慢である。こ
のため、鋼帯の張力分布が不均一となり、強く冷却され
た接触部分(a)に収縮が生しる結果、銅帯(W)は、
冷却ロール(1)に接触する前よりもその凹凸が強めら
れた状態で次段の冷却ロールへ送り込まれる。次段の冷
却ロール部においても上記と同様に接触部と非接触部の
冷却の緩急の差により更に凹凸が強められる。このよう
な不均一な冷却の繰返しによって、銅帯の形くずれが著
しくなるとともに、冷却ロール周面との接触部と非接触
部とにおける焼鈍効果に差異が生じる結果、得られる調
帯の材質は板幅方向および長手方向にわたり均一性に欠
けたものとなる。
Therefore, if we look at the contact between the roll circumferential surface and the steel strip at the abutting part in the cooling roll section, as shown in Figure 7, the part that directly contacts the circumferential surface (l 2) of the cooling roll , and parts that do not touch each other. That is, the cooling roll (1)
The convexly curved part (a) that appears on the circumferential surface of the roller contacts the roll curved surface, and the concavely curved part (b) creates a gap (S) between it and the roll circumferential surface. Ru. Although the figure shows the board width direction, the same applies to the longitudinal direction. The contact portion (a) is rapidly cooled, and the non-contact portion (b) receives the heat insulating effect of the air layer i (S), so that the cooling rate is extremely slow. For this reason, the tension distribution of the steel strip becomes uneven, and as a result, contraction occurs in the strongly cooled contact area (a), and as a result, the copper strip (W)
It is sent to the next cooling roll in a state where the unevenness is more intense than before it contacts the cooling roll (1). In the cooling roll portion of the next stage, the unevenness is further strengthened due to the difference in speed of cooling between the contact portion and the non-contact portion, as described above. As a result of repeated uneven cooling, the shape of the copper strip becomes noticeably deformed, and the annealing effect differs between the contact area and the non-contact area with the circumferential surface of the cooling roll.As a result, the material of the resulting strip becomes This results in a lack of uniformity across the width and length of the board.

本発明は上記問題を解決するためになされたものである
The present invention has been made to solve the above problems.

未発明に係る金属帯冷却装置は、冷却ロール部における
金属帯の入側に、冷却ロール胴部周面と銅帯表面との当
接部に向□けてジェットガスを吹付けるためのノズルを
配置し、該ノズルからのジェットガスにて上記当接部に
おけるロール周面と銅帯表面との間に気体膜を形成して
綱帯を移送するようにしたことを特徴とする。
The uninvented metal strip cooling device includes a nozzle on the inlet side of the metal strip in the cooling roll section for spraying jet gas toward the abutment area between the circumferential surface of the cooling roll body and the surface of the copper strip. The present invention is characterized in that the jet gas from the nozzle forms a gas film between the roll circumferential surface and the surface of the copper strip at the abutting portion to transfer the wire strip.

本発明について図面を参照して説明すると、第1図にお
いて、(2)はジェットガスノズルである。冷却ロール
(1)に懸は回された銅帯(W)は矢示のように冷却ロ
ール部に導入される。すなわちノズル(2)は冷却ロー
ル部の綱帯入側に位置して、そのガス噴出口が冷却ロー
ル(1)周面と綱帯(W)表面の当接部(C)に指向す
るように設置される。なお、冷却ロール(1)は内部冷
却構造を有し、その内部冷媒流路(1N)内に通人され
る水等の冷媒によりロール外周面が所定の温度に冷却保
持される点は従来の冷却ロールのそれと特に異なるもの
ではない。
The present invention will be explained with reference to the drawings. In Fig. 1, (2) is a jet gas nozzle. The copper strip (W) passed through the cooling roll (1) is introduced into the cooling roll section as shown by the arrow. In other words, the nozzle (2) is located on the rope entrance side of the cooling roll section, and its gas outlet is directed toward the abutment area (C) between the circumferential surface of the cooling roll (1) and the surface of the rope (W). will be installed. The cooling roll (1) has an internal cooling structure, and the outer circumferential surface of the roll is cooled and maintained at a predetermined temperature by a refrigerant such as water passed through the internal refrigerant flow path (1N). It is not particularly different from that of a cooling roll.

本発明によれば、冷却ロール(1)に懸は回さレタ銅帯
(W)の連続的移送下に、ノズル(2)から、冷却ロー
ル(1)との銅帯(W)との当接部(C)に向けてジェ
ットガス(G)が吹付けられる。このジェットガス(G
)の送給により、第2図に示すように、当接部(C)に
は、冷却ロール(1)の周面と鋼帯(W)表面との間に
気体膜(F)が形成され、該気体till! (F)に
よって冷却ロール(])周面と銅帯(W)の凸部Ca>
とは非接触状態となる。この非接触状態は極めてはやい
サイクルで断続的に形成される。鋼帯(W>の凸部(a
)はロール周面に対する接触と、上記気体膜による非接
触状態とが繰返えされることにより、ジェットガスの吹
付けがない場合にくらべ、その部分の冷却速度がゆるや
かになる。その一方においで、冷却ロール(1)周面に
対し凹部をなず鋼帯表面とロール周面との間の空隙(S
)にはジェットガス(G)が冷媒として与えられること
によりその部分の冷却速度が高められる。
According to the present invention, the copper strip (W) is continuously transferred from the nozzle (2) to the contact between the cooling roll (1) and the copper strip (W). Jet gas (G) is blown toward the contact portion (C). This jet gas (G
), as shown in Fig. 2, a gas film (F) is formed between the circumferential surface of the cooling roll (1) and the surface of the steel strip (W) at the contact portion (C). , the gas till! (F) The cooling roll (]) circumferential surface and the convex portion Ca of the copper strip (W)>
There will be no contact with. This non-contact state is formed intermittently in extremely rapid cycles. Convex part (a
) is repeatedly brought into contact with the roll circumferential surface and in a non-contact state due to the gas film, so that the cooling rate of that part becomes slower than when jet gas is not blown. On the other hand, a gap (S
) is provided with jet gas (G) as a refrigerant, thereby increasing the cooling rate of that part.

このように銅帯(W)の凸部(a)の冷却速度の緩和と
、凹部(b)における冷却速度の増大の2つの効果が相
まって銅帯(W)の冷却速度分布が平坦化される結果、
鋼帯(W)の波状の凹凸が強められることがなく、各段
の冷却ロールを順次通過することによって、ムラのない
冷却処理が達成される。
In this way, the two effects of relaxing the cooling rate at the convex portions (a) of the copper strip (W) and increasing the cooling rate at the concave portions (b) combine to flatten the cooling rate distribution of the copper strip (W). result,
The wavy irregularities of the steel strip (W) are not strengthened, and by passing through the cooling rolls of each stage in sequence, an even cooling process is achieved.

本発明において使用されるジェットガス(G)は通常は
空気であるが、鋼帯表面の酸化防止を要する場合には窒
素ガス等の不活性ガスを使用すればよい。ジェットガス
(G)の吹付は条件は適宜設定すればよいが、一般的に
、吐出圧力2000〜50QQ+uAq、吹付は量10
〜30rrf/分の条件下に好結果を得ることができる
The jet gas (G) used in the present invention is usually air, but if it is necessary to prevent oxidation of the steel strip surface, an inert gas such as nitrogen gas may be used. The jet gas (G) spraying conditions may be set appropriately, but generally the discharge pressure is 2000 to 50QQ+uAq and the spraying amount is 10
Good results can be obtained under conditions of ~30 rrf/min.

本発明における冷却ロール(1)は、胴部周面が粗化さ
れていることが好ましい。粗面であることによって気体
膜(F)がより安定化され、綱帯(W)の凸部(a)と
凹部(b)とにおける冷却効果が−そう均一化されるか
らである。その粗面ば、例えば、ショットまたはローレ
ット加工等により形成される。粗面化の他の方法として
溝を穿設するのも有効である。第4図は溝(1・3)を
周面に螺旋状に穿設した例、第5図は螺旋1(1・3)
を交叉させて穿設した例である。
It is preferable that the cooling roll (1) in the present invention has a roughened body peripheral surface. This is because the rough surface makes the gas film (F) more stable, and the cooling effect in the convex portions (a) and concave portions (b) of the rope (W) becomes more uniform. The rough surface is formed by, for example, shot or knurl processing. Drilling grooves is also effective as another method for roughening the surface. Figure 4 shows an example of grooves (1 and 3) being spirally drilled on the circumferential surface, and Figure 5 shows spiral grooves (1 and 3).
This is an example where the holes are crossed.

本発明冷却装置を適用した一般的連続焼鈍設備の例を第
3図に示す。銅帯(W)はペイオフリール(30)から
巻出され、表面浄化処理装置(31)を経て隷属焼鈍炉
内に導入され、加熱帯(32)・均熱帯(33)で所定
温度に加熱・均熱されたのち、−次冷却帯(34)で緩
かに冷却され、ついで二次冷却帯(35)において適当
段数の冷却ロール群(1)と各ロールに付設されたジェ
ットガスノズル(2)を有する本発明冷却装置により、
所定の冷却速度で目標温度まで冷却される。ついで再加
熱帯(36)・過時効処理帯(37)で所定の熱処理が
施されたのち、最終冷却帯(38)での冷却をうけて巻
取リール(39)に巻取られる。最終冷却帯(3日)に
おいても本発明冷却装置を使用してよいことは言うまで
もない。
FIG. 3 shows an example of a general continuous annealing facility to which the cooling device of the present invention is applied. The copper strip (W) is unwound from a payoff reel (30), introduced into a slave annealing furnace through a surface purification treatment device (31), and heated to a predetermined temperature in a heating zone (32) and a soaking zone (33). After being uniformly heated, it is gently cooled in the secondary cooling zone (34), and then in the secondary cooling zone (35), the cooling roll group (1) with an appropriate number of stages and the jet gas nozzle (2) attached to each roll are cooled. With the cooling device of the present invention having
It is cooled down to the target temperature at a predetermined cooling rate. Then, after being subjected to a predetermined heat treatment in a reheating zone (36) and an overaging treatment zone (37), it is cooled in a final cooling zone (38) and wound onto a take-up reel (39). It goes without saying that the cooling device of the present invention may also be used in the final cooling zone (3 days).

上記連続焼鈍設備による連続焼鈍処理の実施例として、
冷間圧延鋼帯(i幅1240璽1、板厚0.8fl)を
ライン速度200m/分で移送し、加熱帯(32)・均
熱帯(33)で750℃に加熱・均熱したのち1、−次
冷却帯(34)で650℃まで冷却し、ついで二次冷却
帯(35)において冷却速度100°C/秒にて400
℃まで冷却した。但し、冷却帯(35)における冷却ロ
ール(1)は5段であり、各ロールとも内部水冷により
胴部外周面は約200〜250℃に保持されており、各
ロールの入側ジェットガスノズル(2)からの圧空(常
温)の吹付圧力は3500 uAq、吹付量は20d/
分に調節保持した。冷却の後、過時効処理帯(37)に
おいて400℃×150秒の過時効処理を達成し、最終
冷却帯(38)にて衝風冷却により、冷却速度5℃/秒
で150℃まで冷却した。上記連続焼鈍処理後の銅帯の
形状は処理前のそれと殆ど変化がなく、板幅方向および
長手方向の波状凹凸はほぼ21−±l+n程度である。
As an example of continuous annealing treatment using the above continuous annealing equipment,
A cold-rolled steel strip (width 1240 x 1, plate thickness 0.8 fl) was transferred at a line speed of 200 m/min, heated and soaked at 750°C in the heating zone (32) and soaking zone (33). , - cooled to 650°C in the secondary cooling zone (34), then cooled to 400°C at a cooling rate of 100°C/sec in the secondary cooling zone (35).
Cooled to ℃. However, there are five stages of cooling rolls (1) in the cooling zone (35), and the outer circumferential surface of the body of each roll is maintained at approximately 200 to 250°C by internal water cooling, and the inlet jet gas nozzle (2 ) The blowing pressure of compressed air (at room temperature) is 3500 uAq, and the blowing amount is 20 d/
Adjusted and held for minutes. After cooling, an overaging treatment of 400°C x 150 seconds was achieved in the overaging treatment zone (37), and cooling was performed at a cooling rate of 5°C/sec to 150°C by blast cooling in the final cooling zone (38). . The shape of the copper strip after the above-mentioned continuous annealing treatment is almost unchanged from that before the treatment, and the wavy unevenness in the width direction and longitudinal direction is about 21-±l+n.

銅帯の冷却ムラが緩和されることにより、従来に比し、
鋼帯の材質の均一性も向上する。
By alleviating uneven cooling of the copper strip, compared to conventional methods,
The uniformity of the material of the steel strip is also improved.

以上のように、本発明によれば、鋼帯を板幅方向および
長手方向にわたって均一な冷却速度で所要の温度に冷却
することができ、従って従来のような鋼帯と冷却ロール
の接触ムラに起因する銅帯の形くずれや温度分布の偏り
がなく、所期の均一な連続焼鈍処理を達成することがで
きる。上記説明では、銅帯の連続焼鈍を例に挙げたが、
その他、連続溶融めっき後の銅帯の冷却等、各種金属帯
の冷却処理に有用なことは言うまでもない。
As described above, according to the present invention, a steel strip can be cooled to a desired temperature at a uniform cooling rate in both the width direction and the longitudinal direction. The desired uniform continuous annealing process can be achieved without causing deformation of the copper strip or uneven temperature distribution. In the above explanation, continuous annealing of a copper strip was taken as an example, but
Needless to say, it is also useful for cooling various metal strips, such as cooling copper strips after continuous hot-dip plating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明冷却装置の模式的説明図、第2図は本発
明装置における冷却ロールと鋼帯との当接部の説明図、
第3図は銅帯連続焼鈍設備に本発明冷却装置を適用した
例を示す概略図、第4図、第5図は本発明における冷却
ロールの胴部周面の例を模式的に示す概略図、第6図は
従来の冷却装置の概略図、第7図は従来の冷却装置の冷
却ロールと調帯との当接部の説明図である。 l:冷却ロール、1・3:溝、2:ノズル、Gニジエツ
トガス、W:鋼帯。 代理人 弁理士 宮崎新へ部 第1図 第2図
FIG. 1 is a schematic explanatory diagram of the cooling device of the present invention, FIG. 2 is an explanatory diagram of the contact portion between the cooling roll and the steel strip in the device of the present invention,
Fig. 3 is a schematic diagram showing an example in which the cooling device of the present invention is applied to copper strip continuous annealing equipment, and Figs. 4 and 5 are schematic diagrams showing an example of the circumferential surface of the body of the cooling roll in the present invention. , FIG. 6 is a schematic diagram of a conventional cooling device, and FIG. 7 is an explanatory diagram of a contact portion between a cooling roll and a toning band in the conventional cooling device. l: cooling roll, 1/3: groove, 2: nozzle, G nitrogen gas, W: steel strip. Agent Patent Attorney Arata Miyazaki Department Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 +11 内部冷却構造を有する冷却ロールの周面に金属
帯を巻回して移送しながら金属帯の冷却を行う冷却装置
であって、 金属帯の入側に、冷却ロール周面と金属帯表面の当接部
に向けてジェットガスを吹付けるためのノズルを配設し
、該ノズルからのジェットガスにより上記当接点におけ
るロール周面と金属帯表面との間に気体膜を形成しなが
ら調帯を移送するようにしたことを特徴とする金属帯冷
却装置。 (2)冷却ロールは、その周面が多数の凹凸により粗化
されていることを特徴とする上記第(11項に記載の金
属帯冷却装置。
[Scope of Claims] +11 A cooling device that cools the metal band while winding the metal band around the circumference of a cooling roll having an internal cooling structure and transporting the metal band, the cooling device comprising: a cooling roll having an internal cooling structure on the inlet side of the metal band; A nozzle is provided for spraying jet gas toward the contact portion of the metal strip surface, and the jet gas from the nozzle forms a gas film between the roll circumferential surface and the metal strip surface at the contact point. A metal band cooling device characterized in that the metal band cooling device is configured to transfer the band while moving the band. (2) The metal strip cooling device according to item (11) above, wherein the cooling roll has a circumferential surface roughened with a large number of irregularities.
JP11063684A 1984-05-30 1984-05-30 Device for cooling metallic strip Pending JPS60255932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11063684A JPS60255932A (en) 1984-05-30 1984-05-30 Device for cooling metallic strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11063684A JPS60255932A (en) 1984-05-30 1984-05-30 Device for cooling metallic strip

Publications (1)

Publication Number Publication Date
JPS60255932A true JPS60255932A (en) 1985-12-17

Family

ID=14540750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11063684A Pending JPS60255932A (en) 1984-05-30 1984-05-30 Device for cooling metallic strip

Country Status (1)

Country Link
JP (1) JPS60255932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182074A (en) * 1990-07-31 1993-01-26 Nkk Corporation Apparatus for continuously cooling metal strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182074A (en) * 1990-07-31 1993-01-26 Nkk Corporation Apparatus for continuously cooling metal strip

Similar Documents

Publication Publication Date Title
JP5130733B2 (en) Continuous annealing equipment
EP0815268A1 (en) Primary cooling method in continuously annealing steel strip
KR100221789B1 (en) Method of continuous annealing of cold rolled steel plate and equipment thereof
JPS6314050B2 (en)
JPS60255932A (en) Device for cooling metallic strip
JP4115622B2 (en) Continuous annealing furnace for welding steel wire
JPH1121627A (en) Nitrificating treatment of grain oriented electrical steel sheet having small deviation in longitudinal and width directions and apparatus therefor
JPS60255933A (en) Device for cooling metallic strip
CA1245136A (en) Continuous annealing method and apparatus for cold rolled steel strips
JP2006124817A (en) Cooling device with gas jet into steel sheet continuous annealing facility and its cooling control method
JP3362443B2 (en) Continuous annealing line operation method
JP3156108B2 (en) Continuous annealing method for cold rolled steel sheet
JPH01219128A (en) Manufacture of thin scale hot rolled steel sheet
JP3168753B2 (en) Threading method in direct reduction heating equipment of continuous metal strip processing line
JP2001294940A (en) Heat treatment method for steel strip and apparatus therefor
JP2586996B2 (en) Continuous heat treatment equipment for metal
JPS6130632A (en) Cooling method of steel strip
JPH06306485A (en) Heat treating device for metallic belt
JPS61179818A (en) Cooling method of metallic strip
JP3593253B2 (en) Continuous heat treatment method for steel strip
JP2789819B2 (en) Method of preventing drawing of steel strip in continuous annealing furnace
JPH04285132A (en) Structure of conveying roll in continuous heat treatment equipment for strip
JPS6365028A (en) Method for continuously annealing metallic strip
JP2901802B2 (en) Operating method of indirect heating type continuous heat treatment furnace
JPH051333A (en) Roll cooling device for metal strip