JPS59166586A - Method for liquefying coal - Google Patents

Method for liquefying coal

Info

Publication number
JPS59166586A
JPS59166586A JP58039177A JP3917783A JPS59166586A JP S59166586 A JPS59166586 A JP S59166586A JP 58039177 A JP58039177 A JP 58039177A JP 3917783 A JP3917783 A JP 3917783A JP S59166586 A JPS59166586 A JP S59166586A
Authority
JP
Japan
Prior art keywords
coal
catalyst
iron
sulfur
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58039177A
Other languages
Japanese (ja)
Other versions
JPS6126955B2 (en
Inventor
Nobuhiro Tamura
田村 亘弘
Hajime Ebisawa
海老沢 一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58039177A priority Critical patent/JPS59166586A/en
Publication of JPS59166586A publication Critical patent/JPS59166586A/en
Publication of JPS6126955B2 publication Critical patent/JPS6126955B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a liquefied material rich in light oil with a low asphaltene content without increasing the amount of generated gas, by liquefying coal in a high activity in the presence of a catalyst obtained by sulfiding an iron compound previously by a specific method. CONSTITUTION:An iron compound, preferably ferrous oxalate, and sulfur are heat-treated at 300-700 deg.C in an inert gaseous atmosphere to prepare a catalyst, which is used to liquefy coal preferably in the presence of hydrogen. The above- mentioned catalyst in an amount of preferably 1-20wt% based on the coal is added thereto and preferably used in the suspended state for reaction.

Description

【発明の詳細な説明】 本発明は石炭の液化に関する。さらに詳しくは石炭を加
熱して液化するに際し、特定の触媒を共存させることに
よって好適な液化物を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to coal liquefaction. More specifically, the present invention relates to a method of obtaining a suitable liquefied product by coexisting a specific catalyst when heating coal to liquefy it.

石炭全粉砕して加熱し、必要に応じて水素を加えて、ガ
ス及び固形物を含む液化物を得る方法は長年研究され、
多くの技術が知られている。近年、燃料油資源等の問題
や化学品の多様化から、石炭液化技術の開発は非常に盛
んであし、多くの新しい技術が開発されつつある。
The method of obtaining a liquefied product containing gas and solids by pulverizing all coal, heating it, and adding hydrogen as necessary has been researched for many years.
Many techniques are known. In recent years, due to issues such as fuel oil resources and the diversification of chemical products, the development of coal liquefaction technology has been very active, and many new technologies are being developed.

しかし良質の燃料油やガソリン、或いは化学原料油を効
率良く得るためには、まだ多くの問題点も71為かえて
いる。例えば、高価な触媒又は公害上望ましくない触媒
の添加が必要であったり、石炭を夜化する時に要する水
素が多竹であったり、反応中に炭化物が生成したりする
ことである。
However, there are still many problems in order to efficiently obtain high-quality fuel oil, gasoline, or chemical feedstock oil. For example, it is necessary to add an expensive catalyst or a catalyst that is undesirable from a pollution standpoint, the amount of hydrogen required when coal is heated is large, and carbides are generated during the reaction.

なかでも石炭反応器中の反応条件、特にそのうち触媒の
選択は、液化油の品質を決めるための重要な因子の一つ
である。このためその化学種や物理的形状をかえた多種
の触媒が、添加方法も含めて開発されてきた。
Among them, the reaction conditions in the coal reactor, especially the selection of the catalyst, are one of the important factors for determining the quality of liquefied oil. For this reason, a wide variety of catalysts with different chemical species and physical shapes, including methods of addition, have been developed.

従来公知である石炭液化の触媒は非常に多いが代表的な
ものとして、塩化物では塩化亜鉛、塩化スズ、塩化アル
ミ、塩化ニッケル、塩化鉄等が、健化物では硫化スズ、
硫化モリブデン、イ慨化鉛、碕化鋼、硫化亜鉛、硫化ニ
ッケル、硫化鉄等が、酸化物では酸化ニッケル、シリカ
、アルミナ、酸化鉄、酸化コバルト、酸化チタン等があ
り、またそれらの混合物もしくは赤泥や鉱石などの使用
が知ら力、ている。
There are a large number of catalysts for coal liquefaction that have been known in the past, but typical ones include chlorides such as zinc chloride, tin chloride, aluminum chloride, nickel chloride, iron chloride, etc., and healthy oxides such as tin sulfide, tin chloride, and iron chloride.
Molybdenum sulfide, lead oxide, silicate steel, zinc sulfide, nickel sulfide, iron sulfide, etc., and oxides include nickel oxide, silica, alumina, iron oxide, cobalt oxide, titanium oxide, etc., and mixtures or The use of red mud and ore has intellectual power.

以上の触媒群を大別すると6群にわけられる。The above catalyst groups can be roughly divided into six groups.

第一群は噂化物系で、石炭液化の反応性にすぐれた触媒
効果を示す。中でも高濃度で用いる溶融塙法などにおい
て、軽質油の生成に富み、発生ガス量の少なく、良好な
液化成績を示すことが報告さ力、ている。しかしながら
不法を実用化していく上では、塩化水素がスが共存する
ことから、装置材質上大きな制約を受ける。
The first group is a compound type, which exhibits excellent catalytic effects on the reactivity of coal liquefaction. Among them, it has been reported that in the melting method used at high concentrations, light oil is produced abundantly, the amount of gas generated is small, and good liquefaction results are shown. However, in putting illegal methods into practical use, there are major restrictions on equipment materials due to the coexistence of hydrogen chloride and gas.

第二群は、重質油水添などによく使われるCo。The second group is Co, which is often used for heavy oil hydrogenation.

Mo、Ni、Wなどの高価な金属群である。こね、らの
触媒は水素化活性は高いが神前を受けやすく、触媒寿命
が短いという欠点をもつ。又触媒が高価であるために、
H−Coal法の佛嗜床の如く、触媒を反応器内にとど
める工夫あるいはDow法の如く、6− 触媒全非常に低濃度で使い、かつ大半を再使用循環する
フ0ロセス等が提案されている。しかしながらいずれも
未だ完成の域に達していない。
It is a group of expensive metals such as Mo, Ni, and W. Although Kone et al.'s catalyst has high hydrogenation activity, it has the disadvantage of being susceptible to deterioration and having a short catalyst life. Also, since the catalyst is expensive,
As in the H-Coal method, a device to keep the catalyst in the reactor, or as in the Dow method, a 6-0 process has been proposed in which all the catalyst is used at a very low concentration and most of it is reused and recycled. ing. However, none of them have reached the stage of completion yet.

第三群は鉄化合物である。これは安価で便い捨て触媒と
して使用される場合が多い。使用されている鉄化合物の
種類も多いが、中でも水酸化鉄、赤泥、鉄鉱石、硫酸鉄
等が代表的である。これらの鉄化合物は、硫黄が共存す
ると活性が飛躍的に増大する。従って硫黄含有量の少い
石炭においては、硫黄を添加して使用する事も提案され
ている。
The third group is iron compounds. It is inexpensive and is often used as a disposable catalyst. There are many types of iron compounds used, among which iron hydroxide, red mud, iron ore, iron sulfate, etc. are representative. The activity of these iron compounds increases dramatically when sulfur coexists. Therefore, it has been proposed to add sulfur to coal that has a low sulfur content.

本発明者らは、この鉄系触媒と硫黄の触媒作用について
鋭意研究を進めたところ、当初に触媒として鉄化合物と
硫黄を組み合わせたものよりも、一度石炭液化反応を終
了した残渣から、触媒である鉄化合物を回収し、再使用
する場合の方が常に安定して高い触媒活性、すなわち軽
質油にとみアスファルテン分が少く、かつガス発生横も
ほとんど増加しない液化反応特性を示す事を見出した。
The present inventors conducted intensive research on the catalytic action of this iron-based catalyst and sulfur, and found that it is possible to use a catalyst from the residue of the coal liquefaction reaction, rather than using a combination of an iron compound and sulfur as a catalyst. It has been discovered that when a certain iron compound is recovered and reused, it always exhibits stable and high catalytic activity, that is, it exhibits liquefaction reaction characteristics with less asphaltene content in light oil and little increase in gas generation.

これらの知見から、すでに触媒を回収し再使用するプロ
セスについて種々提案してきたが、さら4− に当初より置屋して高活性を示す触媒の開発を進めた結
果、後述するようにあらかじめ傭化処理した触媒が所期
の目的を達成することを発見し、本発明をなすに至った
Based on these findings, we have already proposed various processes for recovering and reusing catalysts, and as a result of our efforts to develop catalysts that exhibit high activity by storing them from the beginning, as will be described later, we have developed various processes for recovering and reusing catalysts. The inventors discovered that the catalyst achieved the desired purpose, leading to the present invention.

即ち本発明は、石炭を加熱し、水素を用いもしくは用い
ずして液化するに際し、鉄化合物と硫黄を不活性ガス#
囲気中で300℃以上700 ”C以下の温度において
加熱処理したものを触媒として使用することを特徴とす
る石炭の液化方法を提供するものであり、特に好ましい
実施態様として、使用する鉄化合物が有機酸鉄である本
発明方法及び使用する@煤の粒径が50μ以下である本
発明方法を提供する。
That is, in the present invention, when heating coal and liquefying it with or without using hydrogen, iron compounds and sulfur are evaporated into an inert gas.
The present invention provides a method for liquefying coal, which is characterized by using as a catalyst a coal that has been heat-treated at a temperature of 300° C. or more and 700 "C or less in an ambient atmosphere. In a particularly preferred embodiment, the iron compound used is an organic The method of the present invention is provided in which the iron acid is used, and the method of the present invention in which the particle size of @ soot used is 50 μm or less.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明で用いる鉄化合物とは、酸化鉄、硫酸鉄、塩化鉄
等の無機酸と鉄からなる塩7F自、シュウ酸鉄、化合物
は純粋なものである必要はなく、赤鉄鉱、褐鉄鉱、黄鉄
駆などの鉄鉱石のような混合物でもよく、何種類かの鉄
化合物あるいはその他の物質との混合物でも良い。中で
も本発明を実施する上での原料としては、有機酸と鉄か
らなる塩類が良く、その中でもシュウ酸第−鉄、シュウ
酸第二鉄アンモニウムを原料にすると特に高活性な触媒
が得られる。
The iron compounds used in the present invention include salts consisting of iron and inorganic acids such as iron oxide, iron sulfate, and iron chloride, iron oxalate, and compounds such as hematite, limonite, and pyrite. It may be a mixture such as iron ore, or it may be a mixture with several types of iron compounds or other substances. Among these, salts consisting of organic acids and iron are preferred as raw materials for carrying out the present invention, and particularly highly active catalysts can be obtained when ferrous oxalate and ferric ammonium oxalate are used as raw materials.

鉄化合物全硫化処理する場合(徒、あらかじめこれを粉
砕しておく方が良い。望ましくは150μ以下、理想的
には50μ以下に粉砕することが好ましいが、限定され
るものではない。
When carrying out total sulfidation treatment of iron compounds (it is better to crush them in advance), it is preferable to crush them to 150μ or less, ideally to 50μ or less, but this is not limited.

本発明でいう硫黄と(は、特に触媒毒となるようなもの
を含有していなければ良く、必ずしも純粋な硫黄という
意味ではない。しかしながら硫黄の純度が低すぎると、
製品純度を低めたり不純物の除去に繁雑な工程を必要と
するので、硫黄の純度は高い方が良い。またこの硫黄は
、粒度が小さければ小さい程良く理想的には200メツ
シユ以下である。
In the present invention, sulfur does not necessarily mean pure sulfur, as long as it does not contain anything that could be a catalyst poison. However, if the purity of sulfur is too low,
The higher the purity of sulfur, the better, as it reduces the purity of the product and requires complicated steps to remove impurities. Moreover, the smaller the particle size of this sulfur, the better, and ideally it is 200 mesh or less.

鉄化合物と硫黄を加熱処理する場合は不活性ガス雰囲気
中で行う。不活性ガスと(は、・窒素、=敵化炭素、ヘ
リウムガスなどのように、鉄化合物とも儲、黄とも反応
しないガスをいう。酸素、塩素などの活性ガス(ri 
@ tない方が良い。ガスは流通状態で使用しても、あ
るいは静+h状態で使用しても良いが、流通状態で加熱
処理する方が好ましい。
Heat treatment of iron compounds and sulfur is performed in an inert gas atmosphere. Inert gas refers to a gas that does not react with iron compounds or yellow, such as nitrogen, carbon, helium gas, etc.Active gases such as oxygen and chlorine
It's better not to have @t. Although the gas may be used in a flowing state or in a static+h state, it is preferable to heat the gas in a flowing state.

硫黄と峡の計関係1は、原子数比(S/Fe )が通常
1.5以上、好ましくは2〜5である。
Regarding the relationship 1 between sulfur and sulfur, the atomic ratio (S/Fe) is usually 1.5 or more, preferably 2 to 5.

反応温度は、300°C未満では鉄化合物の硫化である
ことが必要である。
It is necessary that the reaction temperature be less than 300°C to sulfurize the iron compound.

反応時間は、反応温度及び原料である鉄化合物の種類に
よっても光るが、数分程度あるいはそれ以上が好ましい
The reaction time depends on the reaction temperature and the type of iron compound used as a raw material, but it is preferably about several minutes or longer.

本発明は以上の方法で調製した触媒を用いて石炭の液化
を行うものであるが、以下にさらに詳細にぼり、明する
The present invention is for liquefying coal using the catalyst prepared by the above method, and will be explained in further detail below.

本発明でBう石炭とは、無煙炭、歴青炭、亜歴宵炭、か
つ炭、泥炭等を阿り。本発明に使用する石炭としては、
歴青炭、亜歴青炭、かつ炭がより7− 好ましい。
In the present invention, coal includes anthracite coal, bituminous coal, sublime coal, charcoal, peat, etc. The coal used in the present invention includes:
Bituminous coal, subbituminous coal, and charcoal are more preferred.

石炭の加熱は650℃以上800 ’O以下で行なわれ
る。温度が低いと液化速度が遅く、温度が高いと炭化物
やガスが増大する。400℃以上500’0以下が最も
好ましい。
Coal is heated at a temperature of 650° C. or higher and 800° C. or lower. When the temperature is low, the liquefaction rate is slow, and when the temperature is high, carbide and gas increase. The temperature is most preferably 400°C or higher and 500'0 or lower.

本発明では水素を用いずとも、たとえばあらかじめ水添
した溶媒などを用いて液化する方法も可能であるが、条
件によっては液化率が向上しない。
In the present invention, it is possible to liquefy without using hydrogen, for example, using a pre-hydrogenated solvent, but the liquefaction rate may not improve depending on the conditions.

従って水素の存在下で液化反応を行うのが通常で、その
際できるだけ純度の高いものを使用するのが望ましい。
Therefore, it is common to carry out the liquefaction reaction in the presence of hydrogen, and in this case it is desirable to use the highest possible purity.

また水素の反応時の圧力は、10博/α2以上が好まし
く100〜600kg/cIrL2がそ適である。水素
の反応は複雑で石炭の構造、混合するスラリー化溶媒等
によって適当な圧力が選ばれる。
The pressure during the hydrogen reaction is preferably 10 kg/α2 or more, and suitably 100 to 600 kg/cIrL2. The hydrogen reaction is complex, and an appropriate pressure is selected depending on the structure of the coal, the slurry solvent to be mixed, etc.

この発明で液化とは石炭の大部分を、沸点が常圧換算で
常温(約20 ’O)以上900℃以下の液にすること
をいうが、一部高沸点の化合物、ロー状物、ペースト状
物が含まれていてもよい。従って本発明で液化物とは、
これらのものを含んだ混8− 合物全指す。
In this invention, liquefaction refers to turning most of the coal into a liquid whose boiling point is above room temperature (approximately 20'O) and below 900°C in terms of normal pressure, but some high-boiling point compounds, lozenges, pastes, It may contain substances such as Therefore, in the present invention, the liquefied material is
Refers to all compounds containing these substances.

石炭を液化する場合に、溶媒は添加してもしなくても良
いが、一般的には石炭に対して重量比率で100〜40
0係添加して運転する。
When liquefying coal, a solvent may or may not be added, but generally the weight ratio to the coal is 100 to 40.
Add zero coefficient and run.

ここで使用する好ましい溶媒は、石炭の液化油又は液化
油を水添した油であり、又芳香族炭化水素、脂肪族炭化
水素、酸性油、塩基注油、硫黄化合物等が使用される。
The preferred solvent used here is liquefied coal oil or hydrogenated oil of liquefied oil, and aromatic hydrocarbons, aliphatic hydrocarbons, acidic oils, base oils, sulfur compounds, etc. are used.

又これらを含むクレオソート油、アントラセン油等の混
合油、石油留分等も使用し得る。溶媒の沸点は、常圧下
150℃以上、600 ’C迄の範囲のものが良い。
Mixed oils containing these, such as creosote oil and anthracene oil, petroleum fractions, etc. may also be used. The boiling point of the solvent is preferably in the range of 150° C. or higher and up to 600° C. under normal pressure.

さらに石炭液化反応の際の触媒の添加骨は、石炭に対す
る重量比率で0.01係から60係までいずれでも良い
が、1〜20%が最も望ましい。
Furthermore, the weight ratio of the catalyst added to the coal during the coal liquefaction reaction may be anywhere from 0.01 to 60, but it is most preferably 1 to 20%.

また本発明の触媒は懸濁状態で反応に用いら力、る。反
応は回分式でも連続式でも実施でき、工業的には触媒と
石炭と溶媒とを混合し、水素加圧下予熱して槽型或いは
気泡塔のような基或の反応器に連続的に送入し、連続的
に抜き出し、ガスと油分と不溶成分に分離し、必要なら
油分の一部を循環溶剤としてリサイクルし、かつ不溶成
分中から触媒を分離回収して再使用することもできる。
Further, the catalyst of the present invention is used in the reaction in a suspended state. The reaction can be carried out either batchwise or continuously; industrially, the catalyst, coal, and solvent are mixed, preheated under hydrogen pressure, and then continuously fed into a reactor such as a tank or bubble column. However, it is also possible to extract the catalyst continuously, separate it into gas, oil, and insoluble components, and if necessary, recycle part of the oil as a circulating solvent, and separate and recover the catalyst from the insoluble components for reuse.

なお、本発明の触媒を用いて石炭の液化反応を行うと、
常圧で沸点600°C以下の軽質油分の取得量が増大し
、逆にアスファルテン及びデレアスファルテンの量が減
少する。一方、ガスの発生量はほとんど増大しない。
In addition, when the coal liquefaction reaction is performed using the catalyst of the present invention,
At normal pressure, the amount of light oil with a boiling point of 600° C. or less increases, and conversely the amount of asphaltenes and dereasphaltenes decreases. On the other hand, the amount of gas generated hardly increases.

本発明は鉄の硫化物の調製方法に特色があり、天然の鉄
の硫化物である黄秩呟、白鉄鉱、磁硫鉄鉱などと比較し
て、X線回折等によっては同じようなパターンを示すも
のもあるが、実施例でも示すように石炭の液化反応にか
かわる触媒の活性は、本発明による調製触媒の方が数段
高い。この理由の詳細は不明であるが、おそらく表面積
や表面の状態に由来するものではないかと推定される。
The present invention is characterized by a method for preparing iron sulfide, which exhibits a similar pattern in X-ray diffraction, etc., compared to natural iron sulfides such as sulfite, marcasite, and pyrrhotite. However, as shown in the examples, the activity of the catalyst involved in the coal liquefaction reaction is much higher in the catalyst prepared according to the present invention. Although the details of this reason are unknown, it is presumed that it probably originates from the surface area and surface condition.

ちなみに天然の黄鉄鉱の200メツシユ以下の粉砕物の
表面積(40,1〜5 rn”/9、多くても10 m
2/ji以下であるのに対し、本発明方法で調製した触
媒は60〜200 m279である。父本発明方法で調
製した触媒の多くは粒径0.1〜10μと小さく、大き
くても50μ以下である。
By the way, the surface area of crushed natural pyrite of 200 mesh or less (40.1 to 5 rn"/9, at most 10 m
2/ji or less, whereas the catalyst prepared by the method of the present invention has a diameter of 60 to 200 m279. Most of the catalysts prepared by the method of the present invention have a small particle size of 0.1 to 10μ, and at most 50μ or less.

本発明の触媒による石炭液化反応は、一般の鉄化合物を
触媒とする時と売す、硫黄を別途添加する必要viない
The coal liquefaction reaction using the catalyst of the present invention does not require the separate addition of sulfur, unlike when a general iron compound is used as a catalyst.

以上のようにあらかじめA”IJした触媒を用いるのが
本発明の特徴であって、単に鉄化合物と硫黄を反応系に
触媒として供給する方法に比較して、格段にすぐれた石
炭の液化性能を示す。
As described above, the feature of the present invention is to use a catalyst that has undergone A''IJ in advance, and compared to the method of simply supplying an iron compound and sulfur to the reaction system as a catalyst, it achieves significantly superior coal liquefaction performance. show.

以下、実施例により本発明を更に具体的に説明するが、
本発明はこれら実施例に制限されるものではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples.

実施例1 市販のシュウ酸第−峡粉末と6倍モル骨の硫黄粉末を良
く混合したものを、石英がラス反応管中に静置した磁性
の容器中に入れ、電気炉にセットし、窒素ガスを流通さ
せ、徐々に水分を蒸発させなから450°Cまで温度を
上げ、60分間反応せしめた後冷却して生成物をとりだ
した。
Example 1 A well-mixed mixture of commercially available oxalic acid sulfur powder and 6 times molar bone sulfur powder was placed in a magnetic container placed in a quartz lath reaction tube, set in an electric furnace, and heated with nitrogen. Gas was passed through the reactor, and the temperature was gradually raised to 450° C. without evaporating water. After reacting for 60 minutes, the reactor was cooled and the product was taken out.

こうして調製した触媒と他の代表的な鉄系化合物触媒と
の石炭液化反応結果を比較したのが第1図である。
FIG. 1 shows a comparison of the coal liquefaction reaction results between the catalyst thus prepared and other typical iron-based compound catalysts.

第1図(は、0.51のオートクレーブで活性の評価を
行った結果である。石炭としてはイリノイNα6炭を用
い、水素仕込圧80Kg//crn、2(反応温度での
圧力は約150にシー)、反応時間60分、反応温度4
60℃で液化反応を行った。なお触媒量は、無水無灰炭
あたり鉄電着で10重量%使用した。溶媒には脱晶アン
トラセン油を用い、無水無灰炭に対し重量にして2倍量
を加えた。
Figure 1 ( is the result of evaluating the activity in an autoclave of 0.51. Illinois Nα6 coal was used as the coal, the hydrogen charging pressure was 80 kg//crn, and the pressure at the reaction temperature was about 150 C), reaction time 60 minutes, reaction temperature 4
The liquefaction reaction was carried out at 60°C. The amount of catalyst used was 10% by weight of iron electrodeposition based on anhydrous ash-free coal. Decrystallized anthracene oil was used as a solvent, and twice the amount by weight of anhydrous ash-free charcoal was added.

第1図の横軸は、ヘキサン可溶分抽の全油に対する重量
分率であって水添度合を示す尺度と考えることができる
。ここで全油とは、ヘキサン可溶分抽とアスファルテン
及びプレアスファルテンの総重量をいう。又、縦軸は生
成軽質油の仕込無水無灰炭に対する重量分率を示し、水
素化分解の度合を示す尺度とみなされる。ここでいう軽
質油とは、ヘキサン等のC5以上の物質であって、かつ
常圧の沸点3[]0℃以下のものをいう。
The horizontal axis in FIG. 1 is the weight fraction of the hexane soluble fraction extracted with respect to the total oil, and can be considered as a measure of the degree of hydrogenation. Here, the total oil refers to the total weight of hexane soluble fraction extracted, asphaltenes, and pre-asphaltenes. The vertical axis indicates the weight fraction of the light oil produced relative to the charged anhydrous ash-free coal, which is considered as a measure of the degree of hydrocracking. The light oil referred to herein refers to a substance having a C5 or higher temperature, such as hexane, and having a boiling point of 3[]0° C. or lower at normal pressure.

この図は液化が軽質化の方向に進むと右上りとなり、結
果的に触媒活性の尺度となりうる。
This figure slopes upward to the right as liquefaction progresses toward lighter weight, which can serve as a measure of catalytic activity.

図において(わ、■および■はそれぞれ下記の触媒を用
いた反応の結果を示すものである。
In the figure, (w, ■ and ■ indicate the results of reactions using the following catalysts, respectively.

■:鉱物パイライト ■:電解秩粉+硫黄 ■二本発明方法による調製触媒 上記■の鉱物パイライトとは、岡山系の棚原鉱山産出の
パイライトを200メツシユ以下に粉砕したものである
。■のべ解鉄粉とは市販の成解鉄粉であり、325メツ
シユ以下のものである。この時添加した硫黄の欲は・跣
と等モルである。
(2): Mineral pyrite (2): Electrolyzed chichi powder + sulfur (2) Catalyst prepared by the method of the present invention The mineral pyrite (2) above is pyrite produced at the Tanahara mine in the Okayama region, which has been ground to 200 mesh or less. (2) The melted iron powder is commercially available melted iron powder, and has a particle size of 325 mesh or less. The amount of sulfur added at this time was equal to the amount of sulfur.

第1図で明白なことld、■の調製触媒が■の型物パイ
ライトや■の市解鉄粉と硫黄の触媒に比較して、水添度
合及び水素化分解度合の何れも高く、すぐれた活性を示
している事である。
What is clear from Figure 1 is that the prepared catalyst of ld and This indicates activity.

これらの3種の触媒の粒径分布を示したのが第2図であ
る。調製触媒が非常に徽粒であることが一目瞭然である
FIG. 2 shows the particle size distribution of these three types of catalysts. It is obvious that the prepared catalyst is extremely grainy.

実施例2 実施例1と同様の方法でシュウ酸第1鉄全原料として?
A製した触媒と豪州褐炭Aを用い、0.57のオートク
レーブで液化実1@ヲ行った。
Example 2 Using the same method as in Example 1 as a total raw material for ferrous oxalate?
Using a catalyst manufactured by A and Australian lignite A, liquefaction was carried out in a 0.57 autoclave.

水素の仕込圧は160 KgA”である。反応温度は4
60°C1反応時間は60分である。触、煤の添加縫は
無水無灰炭重量に対し、#重量として10係である。溶
剤は脱晶アントラセン油を用い、無水無灰炭に対し、2
倍重量部を用いた。
The hydrogen charging pressure is 160 KgA''.The reaction temperature is 4
The reaction time at 60° C. is 60 minutes. The amount of soot added is 10 times the weight of anhydrous ash-free charcoal. The solvent used was decrystallized anthracene oil, and 2
Double parts by weight were used.

以上の条件で実験を行った結果を第1表および第6図に
示す。
The results of the experiment conducted under the above conditions are shown in Table 1 and FIG. 6.

第1表 (以下余白) 第6図の符号の枦味(は下記の・[bりである。Table 1 (Margin below) The symbols in Fig. 6 are as follows.

0.()、 :有機がス N−oi、1 : C5〜b、p 200℃のオイルF
−1: b、p 200’O’〜ろooof、cのオイ
ルF 2 : b、p 300°C〜6400Cのオイ
ルH−oil  :  b、p 340℃でかつヘキサ
ン町屑分A : アスファルテン及びフ0レアスフアル
テンテアってヘキサン不溶分でかつTE(F不溶物C:
有機物でかつT’HF不溶物 B、()・:By−gas この結果から、有機ガスの発生・肴はそれ程渭犬せずに
、Nオイル醍びF−1オイル等の軽質油の生成着が僧太
し、アスファルテン及びデレアスファルテンが激減する
という理想的な触媒活性を本調製@媒が示している事が
わかる。
0. (), : Organic gas N-oi, 1: C5~b, p 200℃ oil F
-1: b, p Oil at 200'O' to roooof, c F2: b, p Oil at 300°C to 6400°C H-oil: b, p At 340°C and hexane town waste fraction A: Asphaltene and filtrate 0 rares faltentea is a hexane insoluble matter and TE (F insoluble matter C:
Organic substance and T'HF insoluble substance B, ()・:By-gas From this result, the generation of organic gas and the appetizers are not so bad, and the formation of light oil such as N oil and F-1 oil. It can be seen that the presently prepared media exhibits ideal catalytic activity in that the amount of asphaltenes and dereasphaltenes are greatly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図eよ、実施例1における本発明による触媒とその
他の代表的触媒について、石炭液化反応の結果を示した
ものである。 第2図(L′i上記触媒の粒径分布を図示したものであ
る。 ホロ図は、実施例2における石炭液化生成物組成につい
て、本発明による触媒を用いた場合と、他の触媒を用い
た場合との比較を図示したものである。 特許出願人 旭化成工業株式会社 第1図 へAサン可瀉合油l金油 (%) 第2図 粒径(〃m)
FIG. 1e shows the results of a coal liquefaction reaction using the catalyst according to the present invention in Example 1 and other representative catalysts. Figure 2 (L'i) is a diagram showing the particle size distribution of the above catalyst. The holo diagram shows the composition of the coal liquefaction product in Example 2 when the catalyst of the present invention was used and when another catalyst was used. This figure shows a comparison with the case where the patent applicant was Asahi Kasei Kogyo Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 1、 石炭を加熱し、水素を用いもしくは用いずして液
化するに際し、鉄化合′吻と硫黄を不活性ガス雰囲気中
で3000以上700℃以下の温度において加熱処理し
たものを触媒として使用することを特徴とする石炭の液
化方法 2、使用する鉄化合物が有機酸鉄であることを特徴とす
る特許R青求の範囲第一項記載の石炭液化方法 36  使用する触媒の粒径が50μ以下であることを
特徴とする特許請求の範囲第一項記載の石炭液化方法
[Claims] 1. When coal is heated and liquefied with or without hydrogen, iron compounds and sulfur are heat-treated in an inert gas atmosphere at a temperature of 3000 to 700°C. Coal liquefaction method 2, characterized in that the iron compound used is an organic acid iron, characterized in that the iron compound used is an organic acid iron, 36. Coal liquefaction method according to claim 1, characterized in that the particle size is 50μ or less
JP58039177A 1983-03-11 1983-03-11 Method for liquefying coal Granted JPS59166586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039177A JPS59166586A (en) 1983-03-11 1983-03-11 Method for liquefying coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039177A JPS59166586A (en) 1983-03-11 1983-03-11 Method for liquefying coal

Publications (2)

Publication Number Publication Date
JPS59166586A true JPS59166586A (en) 1984-09-19
JPS6126955B2 JPS6126955B2 (en) 1986-06-23

Family

ID=12545830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039177A Granted JPS59166586A (en) 1983-03-11 1983-03-11 Method for liquefying coal

Country Status (1)

Country Link
JP (1) JPS59166586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158788A (en) * 1986-01-08 1987-07-14 Asahi Chem Ind Co Ltd Method for liquefying coal
JPS62160142A (en) * 1986-01-08 1987-07-16 Asahi Chem Ind Co Ltd Method for liquefying coal
JPS62161889A (en) * 1986-01-09 1987-07-17 Asahi Chem Ind Co Ltd Liquefaction of coal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0188148U (en) * 1987-11-30 1989-06-09

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765779A (en) * 1980-10-07 1982-04-21 Mitsubishi Chem Ind Ltd Conversion solvent-refined coal into liquid material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765779A (en) * 1980-10-07 1982-04-21 Mitsubishi Chem Ind Ltd Conversion solvent-refined coal into liquid material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158788A (en) * 1986-01-08 1987-07-14 Asahi Chem Ind Co Ltd Method for liquefying coal
JPS62160142A (en) * 1986-01-08 1987-07-16 Asahi Chem Ind Co Ltd Method for liquefying coal
JPS62161889A (en) * 1986-01-09 1987-07-17 Asahi Chem Ind Co Ltd Liquefaction of coal

Also Published As

Publication number Publication date
JPS6126955B2 (en) 1986-06-23

Similar Documents

Publication Publication Date Title
CA1305467C (en) Additive for the hydroconversion of a heavy hydrocarbon oil
US4066530A (en) Hydroconversion of heavy hydrocarbons
US4762812A (en) Heavy oil hydroprocess including recovery of molybdenum catalyst
US5094991A (en) Slurry catalyst for hydroprocessing heavy and refractory oils
US5320741A (en) Combination process for the pretreatment and hydroconversion of heavy residual oils
US4548700A (en) Hydroconversion process
JPH02187495A (en) Hydrocracking of heavy oil
JPS59206481A (en) Coal liquefaction by catalytic hydrogenation
US4176041A (en) Method for reforming low grade coals
JPS5861178A (en) Desulfurization demetallization denitrogenation for coal or coal liquid raw material
CA1322746C (en) Hydrocracking of heavy oils in presence of petroleum coke derived from heavy oil coking operations
JPS59166586A (en) Method for liquefying coal
JPS6126836B2 (en)
JPS5839193B2 (en) Coal liquefaction method
JPS58108290A (en) Coal liquefaction by recycling ethyl acetate- insoluble matter
JPS6160115B2 (en)
JPS58180587A (en) Coal conversion
US4604183A (en) Catalytic process for hydroconversion of solid carbonaceous materials
JP3128292B2 (en) Method for producing catalyst for coal liquefaction
JPS6037156B2 (en) Zinc sulfide coal liquefaction catalyst
US4818374A (en) Process for converting coal to an oil fraction
JPH0135871B2 (en)
JPH08311458A (en) Method for liquefying coal by using highly active catalyst containing sulfate
JPS6121731A (en) Preparation of coal liquefying catalyst
JP2955185B2 (en) Coal liquefaction method